Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cakmak, Eren"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ModelSpeX: Model Specification Using Explainable Artificial Intelligence Methods
    (The Eurographics Association, 2020) Schlegel, Udo; Cakmak, Eren; Keim, Daniel A.; Archambault, Daniel and Nabney, Ian and Peltonen, Jaakko
    Explainable artificial intelligence (XAI) methods aim to reveal the non-transparent decision-making mechanisms of black-box models. The evaluation of insight generated by such XAI methods remains challenging as the applied techniques depend on many factors (e.g., parameters and human interpretation). We propose ModelSpeX, a visual analytics workflow to interactively extract human-centered rule-sets to generate model specifications from black-box models (e.g., neural networks). The workflow enables to reason about the underlying problem, to extract decision rule sets, and to evaluate the suitability of the model for a particular task. An exemplary usage scenario walks an analyst trough the steps of the workflow to show the applicability.
  • Loading...
    Thumbnail Image
    Item
    MotionGlyphs: Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior
    (The Eurographics Association and John Wiley & Sons Ltd., 2020) Cakmak, Eren; Schäfer, Hanna; Buchmüller, Juri; Fuchs, Johannes; Schreck, Tobias; Jordan, Alex; Keim, Daniel A.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, Tatiana
    Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animals over time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as a spatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connected node-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, we developed glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clusters of movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domain experts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. By means of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts, and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.
  • Loading...
    Thumbnail Image
    Item
    SpatialRugs: Enhancing Spatial Awareness of Movement in Dense Pixel Visualizations
    (The Eurographics Association, 2020) Buchmüller, Juri F.; Schlegel, Udo; Cakmak, Eren; Keim, Daniel A.; Dimara, Evanthia; Turkay, Cagatay and Vrotsou, Katerina
    Compact visual summaries of spatio-temporal movement data often strive to express accurate positions of movers. We present SpatialRugs, a technique to enhance the spatial awareness of movements in dense pixel visualizations. SpatialRugs apply 2D colormaps to visualize location mapped to a juxtaposed display. We explore the effect of various colormaps discussing perceptual limitations and introduce a custom color-smoothing method to mitigate distorted patterns of collective movement behavior.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback