Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Philip, Julien"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training
    (The Eurographics Association, 2023) Philip, Julien; Deschaintre, Valentin; Ritschel, Tobias; Weidlich, Andrea
    NeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse, creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes receive significantly more gradients, leading to incorrect density buildup. We propose a gradient scaling approach to counter-balance this sampling imbalance, removing the need for near planes, while preventing background collapse. Our method can be implemented in a few lines, does not induce any significant overhead, and is compatible with most NeRF implementations.
  • Loading...
    Thumbnail Image
    Item
    OutCast: Outdoor Single-image Relighting with Cast Shadows
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Griffiths, David; Ritschel, Tobias; Philip, Julien; Chaine, Raphaëlle; Kim, Min H.
    We propose a relighting method for outdoor images. Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image while also accounting for shading and global effects such the sun light color and clouds. Previous solutions for this problem rely on reconstructing occluder geometry, e. g., using multi-view stereo, which requires many images of the scene. Instead, in this work we make use of a noisy off-the-shelf single-image depth map estimation as a source of geometry. Whilst this can be a good guide for some lighting effects, the resulting depth map quality is insufficient for directly ray-tracing the shadows. Addressing this, we propose a learned image space ray-marching layer that converts the approximate depth map into a deep 3D representation that is fused into occlusion queries using a learned traversal. Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input.
  • Loading...
    Thumbnail Image
    Item
    Point-Based Neural Rendering with Per-View Optimization
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Kopanas, Georgios; Philip, Julien; Leimkühler, Thomas; Drettakis, George; Bousseau, Adrien and McGuire, Morgan
    There has recently been great interest in neural rendering methods. Some approaches use 3D geometry reconstructed with Multi-View Stereo (MVS) but cannot recover from the errors of this process, while others directly learn a volumetric neural representation, but suffer from expensive training and inference. We introduce a general approach that is initialized with MVS, but allows further optimization of scene properties in the space of input views, including depth and reprojected features, resulting in improved novel-view synthesis. A key element of our approach is our new differentiable point-based pipeline, based on bi-directional Elliptical Weighted Average splatting, a probabilistic depth test and effective camera selection. We use these elements together in our neural renderer, that outperforms all previous methods both in quality and speed in almost all scenes we tested. Our pipeline can be applied to multi-view harmonization and stylization in addition to novel-view synthesis.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback