Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hunter, David"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Computer Graphics and Visual Computing (CGVC): Frontmatter
    (The Eurographics Association, 2023) Hunter, David; Peter Vangorp; Vangorp, Peter; Hunter, David
  • Loading...
    Thumbnail Image
    Item
    SHREC 2021: Surface-based Protein Domains Retrieval
    (The Eurographics Association, 2021) Langenfeld, Florent; Aderinwale, Tunde; Christoffer, Charles; Shin, Woong-Hee; Terashi, Genki; Wang, Xiao; Kihara, Daisuke; Benhabiles, Halim; Hammoudi, Karim; Cabani, Adnane; Windal, Feryal; Melkemi, Mahmoud; Otu, Ekpo; Zwiggelaar, Reyer; Hunter, David; Liu, Yonghuai; Sirugue, Léa; Nguyen, Huu-Nghia H.; Nguyen, Tuan-Duy H.; Nguyen–Truong, Vinh-Thuyen; Le, Danh; Nguyen, Hai-Dang; Tran, Minh-Triet; Montès, Matthieu; Biasotti, Silvia and Dyke, Roberto M. and Lai, Yukun and Rosin, Paul L. and Veltkamp, Remco C.
    Proteins are essential to nearly all cellular mechanism, and often interact through their surface with other cell molecules, such as proteins and ligands. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence surface, which is therefore of primary importance for their activity. In the present work, we assess the ability of five methods to retrieve similar protein surfaces, using either their shape only (3D meshes), or their shape and the electrostatic potential at their surface, an important surface property. Five different groups participated in this challenge using the shape only, and one group extended its pre-existing algorithm to handle the electrostatic potential. The results reveal both the ability of the methods to detect related proteins and their difficulties to distinguish between topologically related proteins.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback