Browsing by Author "Correll, Michael"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Designing Animated Transitions to Convey Aggregate Operations(The Eurographics Association and John Wiley & Sons Ltd., 2019) Kim, Younghoon; Correll, Michael; Heer, Jeffrey; Gleicher, Michael and Viola, Ivan and Leitte, HeikeData can be aggregated in many ways before being visualized in charts, profoundly affecting what a chart conveys. Despite this importance, the type of aggregation is often communicated only via axis titles. In this paper, we investigate the use of animation to disambiguate different types of aggregation and communicate the meaning of aggregate operations. We present design rationales for animated transitions depicting aggregate operations and present the results of an experiment assessing the impact of these different transitions on identification tasks. We find that judiciously staged animated transitions can improve subjects' accuracy at identifying the aggregation performed, though sometimes with longer response times than with static transitions. Through an analysis of participants' rankings and qualitative responses, we find a consistent preference for animation over static transitions and highlight visual features subjects report relying on to make their judgments. We conclude by extending our animation designs to more complex charts of aggregated data such as box plots and bootstrapped confidence intervals.Item Teru Teru Bozu: Defensive Raincloud Plots(The Eurographics Association and John Wiley & Sons Ltd., 2023) Correll, Michael; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasUnivariate visualizations like histograms, rug plots, or box plots provide concise visual summaries of distributions. However, each individual visualization may fail to robustly distinguish important features of a distribution, or provide sufficient information for all of the relevant tasks involved in summarizing univariate data. One solution is to juxtapose or superimpose multiple univariate visualizations in the same chart, as in Allen et al.'s [APW*19] ''raincloud plots.'' In this paper I examine the design space of raincloud plots, and, through a series of simulation studies, explore designs where the component visualizations mutually ''defend'' against situations where important distribution features are missed or trivial features are given undue prominence. I suggest a class of ''defensive'' raincloud plot designs that provide good mutual coverage for surfacing distributional features of interest.Item VisuaLint: Sketchy In Situ Annotations of Chart Construction Errors(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hopkins, Aspen K.; Correll, Michael; Satyanarayan, Arvind; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaChart construction errors, such as truncated axes or inexpressive visual encodings, can hinder reading a visualization, or worse, imply misleading facts about the underlying data. These errors can be caught by critical readings of visualizations, but readers must have a high level of data and design literacy and must be paying close attention. To address this issue, we introduce VisuaLint: a technique for surfacing chart construction errors in situ. Inspired by the ubiquitous red wavy underline that indicates spelling mistakes, visualization elements that contain errors (e.g., axes and legends) are sketchily rendered and accompanied by a concise annotation. VisuaLint is unobtrusive-it does not interfere with reading a visualization-and its direct display establishes a close mapping between erroneous elements and the expression of error. We demonstrate five examples of VisualLint and present the results of a crowdsourced evaluation (N = 62) of its efficacy. These results contribute an empirical baseline proficiency for recognizing chart construction errors, and indicate near-universal difficulty in error identification. We find that people more reliably identify chart construction errors after being shown examples of VisuaLint, and prefer more verbose explanations for unfamiliar or less obvious flaws.