Browsing by Author "Jensen, Henrik Wann"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Deep Kernel Density Estimation for Photon Mapping(The Eurographics Association and John Wiley & Sons Ltd., 2020) Zhu, Shilin; Xu, Zexiang; Jensen, Henrik Wann; Su, Hao; Ramamoorthi, Ravi; Dachsbacher, Carsten and Pharr, MattRecently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particlebased rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.Item Practical Ply-Based Appearance Modeling for Knitted Fabrics(The Eurographics Association, 2021) Montazeri, Zahra; Gammelmark, Søren; Jensen, Henrik Wann; Zhao, Shuang; Bousseau, Adrien and McGuire, MorganAbstract Modeling the geometry and the appearance of knitted fabrics has been challenging due to their complex geometries and interactions with light. Previous surface-based models have difficulties capturing fine-grained knit geometries; Micro-appearance models, on the other hands, typically store individual cloth fibers explicitly and are expensive to be generated and rendered. Further, neither of the models offers the flexibility to accurately capture both the reflection and the transmission of light simultaneously. In this paper, we introduce an efficient technique to generate knit models with user-specified knitting patterns. Our model stores individual knit plies with fiber-level detailed depicted using normal and tangent mapping. We evaluate our generated models using a wide array of knitting patterns. Further, we compare qualitatively renderings to our models to photos of real samples.Item Practical Temporal and Stereoscopic Filtering for Real-time Ray Tracing(The Eurographics Association, 2023) Philippi, Henrik; Frisvad, Jeppe Revall; Jensen, Henrik Wann; Ritschel, Tobias; Weidlich, AndreaWe present a practical method for temporal and stereoscopic filtering that generates stereo-consistent rendering. Existing methods for stereoscopic rendering often reuse samples from one eye for the other or do averaging between the two eyes. These approaches fail in the presence of ray tracing effects such as specular reflections and refractions. We derive a new blending strategy that leverages variance to compute per pixel blending weights for both temporal and stereoscopic rendering. In the temporal domain, our method works well in a low noise context and is robust in the presence of inconsistent motion vectors, where existing methods such as temporal anti-aliasing (TAA) and deep learning super sampling (DLSS) produce artifacts. In the stereoscopic domain, our method provides a new way to ensure consistency between the left and right eyes. The stereoscopic version of our method can be used with our new temporal method or with existing methods such as DLSS and TAA. In all combinations, it reduces the error and significantly increases the consistency between the eyes making it practical for real-time settings such as virtual reality (VR).Item Progressive Denoising of Monte Carlo Rendered Images(The Eurographics Association and John Wiley & Sons Ltd., 2022) Firmino, Arthur; Frisvad, Jeppe Revall; Jensen, Henrik Wann; Chaine, Raphaëlle; Kim, Min H.Image denoising based on deep learning has become a powerful tool to accelerate Monte Carlo rendering. Deep learning techniques can produce smooth images using a low sample count. Unfortunately, existing deep learning methods are biased and do not converge to the correct solution as the number of samples increase. In this paper, we propose a progressive denoising technique that aims to use denoising only when it is beneficial and to reduce its impact at high sample counts. We use Stein's unbiased risk estimate (SURE) to estimate the error in the denoised image, and we combine this with a neural network to infer a per-pixel mixing parameter. We further augment this network with confidence intervals based on classical statistics to ensure consistency and convergence of the final denoised image. Our results demonstrate that our method is consistent and that it improves existing denoising techniques. Furthermore, it can be used in combination with existing high quality denoisers to ensure consistency. In addition to being asymptotically unbiased, progressive denoising is particularly good at preserving fine details that would otherwise be lost with existing denoisers.