Browsing by Author "Niemann, Uli"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Visual Analytics for Epidemiology(The Eurographics Association, 2019) Preim, Bernhard; Alemzadeh, Shiva; Ittermann, Till; Klemm, Paul; Niemann, Uli; Spiliopoulou, Myra; Bruckner, Stefan and Oeltze-Jafra, SteffenWe present visual analytics methods to analyze epidemiologic cohort studies. We consider the automatic identification of strong correlations and of subgroups that deviate from the global mean with respect to their risk for health disorders. Moreover, we tackle missing value problems and discuss appropriate imputation strategies and visual analytics support.Item Visual Analytics to Support Treatment Decisions in Late-Stage Melanoma Patients(The Eurographics Association, 2023) Pereira, Calida; Niemann, Uli; Braun, Andreas; Mengoni, Miriam; Tüting, Thomas; Preim, Bernhard; Meuschke, Monique; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasWe present a visual analytics system to support treatment decisions in late-stage Melanoma patients. With the aim of improving patient outcomes, personalized treatment decisions based on individual characteristics and medical histories are crucial. The research focuses on the design and development of a visual analytics system tailored specifically for tumor boards, where multidisciplinary teams collaborate to make informed decisions. By leveraging a comprehensive database containing treatment and tumor stage progression information from over 1100 patients, the system provides healthcare professionals with a holistic overview and facilitates the analysis of individual cases as well as comparisons between multiple patients. The distinction between tumor board preparation systems and systems used during discussions is emphasized to ensure user-centric design and usability. Through the use of visual analytics techniques, complex relationships between treatment outcomes, temporal features, and patient-specific factors are explored, enabling clinicians to identify patterns and trends that may impact treatment decisions. The findings of this research contribute to the growing field of visual analytics in healthcare and have the potential to enhance treatment decision-making and patient care in late-stage cancer scenarios.