Browsing by Author "Lawonn, Kai"
Now showing 1 - 20 of 20
Results Per Page
Sort Options
Item Aneulysis - A System for Aneurysm Data Analysis(The Eurographics Association, 2020) Meuschke, Monique; Wickenhöfer, Ralph; Preim, Bernhard; Lawonn, Kai; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe present ANEULYSIS, a system to improve risk assessment and treatment planning of cerebral aneurysms. Aneurysm treatment must be carefully examined as there is a risk of fatal outcome during surgery. Aneurysm growth, rupture, and treatment success depend on the interplay of vascular morphology and hemodynamics. Blood flow simulations can obtain the patient-specific hemodynamics. However, analyzing the time-dependent, multi-attribute data is time-consuming and error-prone. ANEULYSIS supports the analysis and visual exploration of aneurysm data including morphological and hemodynamic attributes. Since this is an interdisciplinary process involving both physicians and fluid mechanics experts, we provide a redundancy-free management of aneurysm data sets according to a consistent structure. Major contributions are an improved analysis of morphological aspects, simultaneous evaluation of wall- and flow-related characteristics as well as multiple attributes on the vessel wall, the assessment of mechanical wall processes as well as an automatic classification of the internal flow behavior. It was designed and evaluated in collaboration with domain experts who confirmed its usefulness and clinical necessity.Item Automatic Generation of Web-Based User Studies to Evaluate Depth Perception in Vascular Surface Visualizations(The Eurographics Association, 2018) Meuschke, Monique; Smit, Noeska N.; Lichtenberg, Nils; Preim, Bernhard; Lawonn, Kai; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauUser studies are often required in biomedical visualization application papers in order to provide evidence for the utility of the presented approach. An important aspect is how well depth information can be perceived, as depth encoding is important to enable an understandable representation of complex data. Unfortunately, in practice there is often little time available to perform such studies, and setting up and conducting user studies may be labor-intensive. In addition, it can be challenging to reach enough participants to support the contribution claims of the paper. In this paper, we propose a system that allows biomedical visualization researchers to quickly generate perceptual task-based user studies for novel surface visualizations, and to perform the resulting experiment via a web interface. This approach helps to reduce effort in the setup of user studies themselves, and at the same time leverages a web-based approach that can help researchers attract more participants to their study. We demonstrate our system using the specific application of depth judgment tasks to evaluate vascular surface visualizations, since there is a lot of recent interest in this area. However, the system is also generally applicable for conducting other task-based user studies in biomedical visualization.Item Autonomous Particles for Interactive Flow Visualization(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Engelke, Wito; Lawonn, Kai; Preim, Bernhard; Hotz, Ingrid; Chen, Min and Benes, BedrichWe present an interactive approach to analyse flow fields using a new type of particle system, which is composed of autonomous particles exploring the flow. While particles provide a very intuitive way to visualize flows, it is a challenge to capture the important features with such systems. Particles tend to cluster in regions of low velocity and regions of interest are often sparsely populated. To overcome these disadvantages, we propose an automatic adaption of the particle density with respect to local importance measures. These measures are user defined and the systems sensitivity to them can be adjusted interactively. Together with the particle history, these measures define a probability for particles to multiply or die, respectively. There is no communication between the particles and no neighbourhood information has to be maintained. Thus, the particles can be handled in parallel and support a real‐time investigation of flow fields. To enhance the visualization, the particles' properties and selected field measures are also used to specify the systems rendering parameters, such as colour and size. We demonstrate the effectiveness of our approach on different simulated vector fields from technical and medical applications.We present an interactive approach to analyse flow fields using a new type of particle system, which is composed of autonomous particles exploring the flow. While particles provide a very intuitive way to visualize flows, it is a challenge to capture the important features with such systems. Particles tend to cluster in regions of low velocity and regions of interest are often sparsely populated. To overcome these disadvantages, we propose an automatic adaption of the particle density with respect to local importance measures. These measures are user defined and the systems sensitivity to them can be adjusted interactively. Together with the particle history, these measures define a probability for particles to multiply or die, respectively. There is no communication between the particles and no neighbourhood information has to be maintained. Thus, the particles can be handled in parallel and support a real‐time investigation of flow fields. To enhance the visualization, the particles' properties and selected field measures are also used to specify the systems rendering parameters, such as colour and size. We demonstrate the effectiveness of our approach on different simulated vector fields from technical and medical applications.Item COMFIS - Comparative Visualization of Simulated Medical Flow Data(The Eurographics Association, 2022) Meuschke, Monique; Voß, Samuel; Eulzer, Pepe; Janiga, Gabor; Arens, Christoph; Wickenhöfer, Ralph; Preim, Bernhard; Lawonn, Kai; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuSimulations of human blood and airflow are playing an increasing role in personalized medicine. Comparing flow data of different treatment scenarios or before and after an intervention is important to assess treatment options and success. However, existing visualization tools are either designed for the evaluation of a single data set or limit the comparison to a few partial aspects such as scalar fields defined on the vessel wall or internal flow patterns. Therefore, we present COMFIS, a system for the comparative visual analysis of two simulated medical flow data sets, e.g. before and after an intervention. We combine various visualization and interaction methods for comparing different aspects of the underlying, often time-dependent data. These include comparative views of different scalar fields defined on the vessel/mucous wall, comparative depictions of the underlying volume data, and comparisons of flow patterns. We evaluated COMFIS with CFD engineers and medical experts, who were able to efficiently find interesting data insights that help to assess treatment options.Item Communicating Pathologies and Growth to a General Audience(The Eurographics Association, 2023) Mittenentzwei, Sarah; Mlitzke, Sophie; Lawonn, Kai; Preim, Bernhard; Meuschke, Monique; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasIn this paper, we investigate the suitability of different visual representations of pathological growth using surface models of intracranial aneurysms and liver tumors. By presenting complex medical information in a visually accessible manner, audiences can better understand and comprehend the progression of pathological structures. Previous work in medical visualization provides an extensive design space for visualizing medical image data. However, determining which visualization techniques are appropriate for a general audience has not been thoroughly investigated. We conducted a user study (n = 60) to evaluate different visual representations in terms of their suitability for solving tasks and their aesthetics. We created surface models representing the evolution of pathological structures over multiple discrete time steps and visualized them using illumination-based and illustrative techniques. Our results indicate that the suitability of visualization techniques depends on the task at hand. Users' aesthetic preferences largely coincide with their preferred visualization technique for task-solving purposes.Item Distance Field Visualization and 2D Abstraction of Vessel Tree Structures with on-the-fly Parameterization(The Eurographics Association, 2019) Lichtenberg, Nils; Krayer, Bastian; Hansen, Christian; Müller, Stefan; Lawonn, Kai; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaIn this paper, we make contributions to the visualization of vascular structures. Based on skeletal input data, we provide a combined 2D and implicit 3D visualization of vasculature, that is parameterized on-the-fly for illustrative visualization. We use an efficient algorithm that creates a distance field volume from triangles and extend it to handle skeletal tree data. Spheretracing this volume allows to visualize the vasculature in a flexible way, without the need to recompute the volume. Illustrative techniques, that have been frequently applied to vascular visualizations often require texture coordinates. Therefore, modifying an object-based algorithm, we propose an image-based, hierarchical optimization process that allows to derive periodic texture coordinates in a frame-coherent way and suits the implicit representation of the vascular structures. In addition to the 3D surface visualization, we propose a simple layout algorithm that applies a 2D parameterization to the skeletal tree nodes. This parameterization can be used to color-code the vasculature or to plot a 2D overview-graph, that highlights the branching topology of the skeleton. We transfer measurements, done in 3D space, to the 2D plot in order to avoid visual clutter and self occlusions in the 3D representation. A visual link between the 3D and 2D views is established via color codes and texture patterns. The potential of our pipeline is shown in several prototypical application scenarios.Item Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation(The Eurographics Association, 2022) Hombeck, Jan; Meuschke, Monique; Lieb, Simon; Lichtenberg, Nils; Datta, Rabi; Krone, Michael; Hansen, Christian; Preim, Bernhard; Lawonn, Kai; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuThe role of expressive surface visualizations in rendering vascular structures has seen an increased impact over the last years. Surface visualizations provide an overview of complex anatomical structures and support treatment planning as well as medical education. To support decision-making, physicians need visualizations that depict anatomical structures and their spatial relations to each other, i.e., well perceivable visual encodings of egocentric and endocentric distances. We give an overview of common techniques for encoding distance information of 3D vessel surfaces. We also provide an implementation of all the visualizations presented as a starting point for other researchers. Therefore, we provide a Unity environment for each visualization, as well as implementation instructions. Thirteen different visualizations are included in this work, which can be divided into fundamental, surface-based, auxiliary and illustrative visualizations.Item EuroRV3 2017: Frontmatter(Eurographics Association, 2017) Lawonn, Kai; Smit, Noeska; Cunningham, Douglas;Item A Geometric Optimization Approach for the Detection and Segmentation of Multiple Aneurysms(The Eurographics Association and John Wiley & Sons Ltd., 2019) Lawonn, Kai; Meuschke, Monique; Wickenhöfer, Ralph; Preim, Bernhard; Hildebrandt, Klaus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeWe present a method for detecting and segmenting aneurysms in blood vessels that facilitates the assessment of risks associated with the aneurysms. The detection and analysis of aneurysms is important for medical diagnosis as aneurysms bear the risk of rupture with fatal consequences for the patient. For risk assessment and treatment planning, morphological descriptors, such as the height and width of the aneurysm, are used. Our system enables the fast detection, segmentation and analysis of single and multiple aneurysms. The method proceeds in two stages plus an optional third stage in which the user interacts with the system. First, a set of aneurysm candidate regions is created by segmenting regions of the vessels. Second, the aneurysms are detected by a classification of the candidates. The third stage allows users to adjust and correct the result of the previous stages using a brushing interface. When the segmentation of the aneurysm is complete, the corresponding ostium curves and morphological descriptors are computed and a report including the results of the analysis and renderings of the aneurysms is generated. The novelty of our approach lies in combining an analytic characterization of aneurysms and vessels to generate a list of candidate regions with a classifier trained on data to identify the aneurysms in the candidate list. The candidate generation is modeled as a global combinatorial optimization problem that is based on a local geometric characterization of aneurysms and vessels and can be efficiently solved using a graph cut algorithm. For the aneurysm classification scheme, we identified four suitable features and modeled appropriate training data. An important aspect of our approach is that the resulting system is fast enough to allow for user interaction with the global optimization by specifying additional constraints via a brushing interface.Item Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization(The Eurographics Association, 2022) Kleinau, Anna; Stupak, Evgenia; Mörth, Eric; Garrison, Laura A.; Mittenentzwei, Sarah; Smit, Noeska N.; Lawonn, Kai; Bruckner, Stefan; Gutberlet, Matthias; Preim, Bernhard; Meuschke, Monique; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuNarrative visualization advantageously combines storytelling with new media formats and techniques, like interactivity, to create improved learning experiences. In medicine, it has the potential to improve patient understanding of diagnostic procedures and treatment options, promote confidence, reduce anxiety, and support informed decision-making. However, limited scientific research has been conducted regarding the use of narrative visualization in medicine. To explore the value of narrative visualization in this domain, we introduce a data-driven story to inform a broad audience about the usage of measured blood flow data to diagnose and treat cardiovascular diseases. The focus of the story is on blood flow vortices in the aorta, with which imaging technique they are examined, and why they can be dangerous. In an interdisciplinary team, we define the main contents of the story and the resulting design questions. We sketch the iterative design process and implement the story based on two genres. In a between-subject study, we evaluate the suitability and understandability of the story and the influence of different navigation concepts on user experience. Finally, we discuss reusable concepts for further narrative medical visualization projects.Item Model-based Visualization for Medical Education and Training(The Eurographics Association, 2019) Smit, Noeska; Lawonn, Kai; Kraima, Annelot; deRuiter, Marco; Bruckner, Stefan; Eisemann, Elmar; Vilanova, Anna; Bruckner, Stefan and Oeltze-Jafra, SteffenAnatomy, or the study of the structure of the human body, is an essential component of medical education. Certain parts of human anatomy are considered to be more complex to understand than others, due to a multitude of closely related structures. Furthermore, there are many potential variations in anatomy, e.g., different topologies of vessels, and knowledge of these variations is critical for many in medical practice. Some aspects of individual anatomy, such as the autonomic nerves, are not visible in individuals through medical imaging techniques or even during surgery, placing these nerves at risk for damage. 3D models and interactive visualization techniques can be used to improve understanding of this complex anatomy, in combination with traditional medical education paradigms. We present a framework incorporating several advanced medical visualization techniques and applications for teaching and training purposes, which is the result of an interdisciplinary project. In contrast to previous approaches which focus on general anatomy visualization or direct visualization of medical imaging data, we employ model-based techniques to represent variational anatomy, as well as anatomy not visible from imaging. Our framework covers the complete spectrum including general anatomy, anatomical variations, and anatomy in individual patients. Applications within our framework were evaluated positively with medical users, and our educational tool for general anatomy is in use in a Massive Open Online Course (MOOC) on anatomy, which had over 17000 participants worldwide in the first run.Item Parameterization and Feature Extraction for the Visualization of Tree-like Structures(The Eurographics Association, 2018) Lichtenberg, Nils; Lawonn, Kai; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauThe study and visualization of vascular structures, using 3D models obtained from medical data, is an active field of research. Illustrative visualizations have been applied to this domain in multiple ways. Researchers have tried to make the geometric properties of vasculature more comprehensive and to augment the surface with representations of multivariate clinical data. Techniques that head beyond the application of color-maps or simple shading approaches require a sort of surface parameterization, i.e., texture coordinates, in order to overcome locality. When extracting 3D models, the computation of texture coordinates on the mesh is not always part of the data processing pipeline. We combine existing techniques to a simple, yet effective, parameterization approach that is suitable for tree-like structures. The parameterization is done w.r.t. to a pre-defined source vertex. For this, we present an automatic algorithm, that detects the root of a tree-structure. The parameterization is partly done in screen-space and recomputed per frame. However, the screen-space computation comes with positive features that are not present in object-space approaches. We show how the resulting texture coordinates can be used for varying hatching, contour parameterization, the display of decals, as an additional depth cue and feature extraction.Item Perceptual Evaluation of Common Line Variables for Displaying Uncertainty on Molecular Surfaces(The Eurographics Association, 2022) Sterzik, Anna; Lichtenberg, Nils; Krone, Michael; Cunningham, Douglas W.; Lawonn, Kai; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuData are often subject to some degree of uncertainty, whether aleatory or epistemic. This applies both to experimental data acquired with sensors as well as to simulation data. Displaying these data and their uncertainty faithfully is crucial for gaining knowledge. Specifically, the effective communication of the uncertainty can influence the interpretation of the data and the users' trust in the visualization. However, uncertainty-aware visualization has gotten little attention in molecular visualization. When using the established molecular representations, the physicochemical attributes of the molecular data usually already occupy the common visual channels like shape, size, and color. Consequently, to encode uncertainty information, we need to open up another channel by using feature lines. Even though various line variables have been proposed for uncertainty visualizations, they have so far been primarily used for two-dimensional data and there has been little perceptual evaluation. Therefore, we conducted a perceptual study to determine the suitability of the line variables sketchiness, dashing, grayscale, and width for distinguishing several uncertainty values on molecular surfaces.Item Robustness Evaluation of CFD Simulations to Mesh Deformation(The Eurographics Association, 2019) Scheid-Rehder, Alexander; Lawonn, Kai; Meuschke, Monique; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaCFD simulations are an increasingly important method for the non-invasive analysis of risk factors for aneurysm rupture. Their robustness, however, has to be examined more thoroughly before clinical use is possible. We present a novel framework that enables robustness evaluation of CFD simulation according to mesh deformation on patient-specific blood vessel geometry. Our tool offers a guided workflow to generate, run, and visualize OpenFOAM simulations, which significantly decreases the usual overhead of CFD simulations with OpenFOAM. Besides, the deformation of the original geometry allows the user to evaluate the robustness of the simulation without the need to repeat expensive operations of the data pre-processing phase. We assessed the robustness of CFD simulations by applying our framework to several aneurysm data sets.Item Stylized Image Triangulation(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Lawonn, Kai; Günther, Tobias; Chen, Min and Benes, BedrichThe art of representing images with triangles is known as image triangulation, which purposefully uses abstraction and simplification to guide the viewer's attention. The manual creation of image triangulations is tedious and thus several tools have been developed in the past that assist in the placement of vertices by means of image feature detection and subsequent Delaunay triangulation. In this paper, we formulate the image triangulation process as an optimization problem. We provide an interactive system that optimizes the vertex locations of an image triangulation to reduce the root mean squared approximation error. Along the way, the triangulation is incrementally refined by splitting triangles until certain refinement criteria are met. Thereby, the calculation of the energy gradients is expensive and thus we propose an efficient rasterization‐based GPU implementation. To ensure that artists have control over details, the system offers a number of direct and indirect editing tools that split, collapse and re‐triangulate selected parts of the image. For final display, we provide a set of rendering styles, including constant colours, linear gradients, tonal art maps and textures. Finally, we demonstrate temporal coherence for animations and compare our method with existing image triangulation tools.Item A Survey of Surface‐Based Illustrative Rendering for Visualization(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Lawonn, Kai; Viola, Ivan; Preim, Bernhard; Isenberg, Tobias; Chen, Min and Benes, BedrichIn this paper, we survey illustrative rendering techniques for 3D surface models. We first discuss the field of illustrative visualization in general and provide a new definition for this sub‐area of visualization. For the remainder of the survey, we then focus on surface‐based models. We start by briefly summarizing the differential geometry fundamental to many approaches and discuss additional general requirements for the underlying models and the methods' implementations. We then provide an overview of low‐level illustrative rendering techniques including sparse lines, stippling and hatching, and illustrative shading, connecting each of them to practical examples of visualization applications. We also mention evaluation approaches and list various application fields, before we close with a discussion of the state of the art and future work.In this paper, we survey illustrative rendering techniques for 3D surface models. We first discuss the field of illustrative visualization in general and provide a new definition for this sub‐area of visualization. For the remainder of the survey, we then focus on surface‐based models. We start by briefly summarizing the differential geometry fundamental to many approaches and discuss additional general requirements for the underlying models and the methods' implementations. We then provide an overview of low‐level illustrative rendering techniques including sparse lines, stippling and hatching, and illustrative shading, connecting each of them to practical examples of visualization applications. We also mention evaluation approaches and list various application fields, before we close with a discussion of the state of the art and future work.Item TrustVis 2019: Frontmatter(The Eurographics Association, 2019) Kosara, Robert; Lawonn, Kai; Linsen, Lars; Smit, Noeska; Kosara, Robert and Lawonn, Kai and Linsen, Lars and Smit, NoeskaItem VEHICLE: Validation and Exploration of the Hierarchical Integration of Conflict Event Data(The Eurographics Association and John Wiley & Sons Ltd., 2021) Mayer, Benedikt; Lawonn, Kai; Donnay, Karsten; Preim, Bernhard; Meuschke, Monique; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonThe exploration of large-scale conflicts, as well as their causes and effects, is an important aspect of socio-political analysis. Since event data related to major conflicts are usually obtained from different sources, researchers developed a semi-automatic matching algorithm to integrate event data of different origins into one comprehensive dataset using hierarchical taxonomies. The validity of the corresponding integration results is not easy to assess since the results depend on user-defined input parameters and the relationships between the original data sources. However, only rudimentary visualization techniques have been used so far to analyze the results, allowing no trustworthy validation or exploration of how the final dataset is composed. To overcome this problem, we developed VEHICLE, a web-based tool to validate and explore the results of the hierarchical integration. For the design, we collaborated with a domain expert to identify the underlying domain problems and derive a task and workflow description. The tool combines both traditional and novel visual analysis techniques, employing statistical and map-based depictions as well as advanced interaction techniques. We showed the usefulness of VEHICLE in two case studies and by conducting an evaluation together with conflict researchers, confirming domain hypotheses and generating new insights.Item Visualizing Carotid Blood Flow Simulations for Stroke Prevention(The Eurographics Association and John Wiley & Sons Ltd., 2021) Eulzer, Pepe; Meuschke, Monique; Klingner, Carsten M.; Lawonn, Kai; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonIn this work, we investigate how concepts from medical flow visualization can be applied to enhance stroke prevention diagnostics. Our focus lies on carotid stenoses, i.e., local narrowings of the major brain-supplying arteries, which are a frequent cause of stroke. Carotid surgery can reduce the stroke risk associated with stenoses, however, the procedure entails risks itself. Therefore, a thorough assessment of each case is necessary. In routine diagnostics, the morphology and hemodynamics of an afflicted vessel are separately analyzed using angiography and sonography, respectively. Blood flow simulations based on computational fluid dynamics could enable the visual integration of hemodynamic and morphological information and provide a higher resolution on relevant parameters. We identify and abstract the tasks involved in the assessment of stenoses and investigate how clinicians could derive relevant insights from carotid blood flow simulations. We adapt and refine a combination of techniques to facilitate this purpose, integrating spatiotemporal navigation, dimensional reduction, and contextual embedding. We evaluated and discussed our approach with an interdisciplinary group of medical practitioners, fluid simulation and flow visualization researchers. Our initial findings indicate that visualization techniques could promote usage of carotid blood flow simulations in practice.Item Visualizing Carotid Stenoses for Stroke Treatment and Prevention(The Eurographics Association, 2023) Eulzer, Pepe; Richter, Kevin; Hundertmark, Anna; Meuschke, Monique; Wickenhöfer, Ralph; Klingner, Carsten M.; Lawonn, Kai; Raidou, Renata; Kuhlen, TorstenAnalyzing carotid stenoses - potentially lethal constrictions of the brain-supplying arteries - is a critical task in clinical stroke treatment and prevention. Determining the ideal type of treatment and point for surgical intervention to minimize stroke risk is considerably challenging. We propose a collection of visual exploration tools to advance the assessment of carotid stenoses in clinical applications and research on stenosis formation. We developed methods to analyze the internal blood flow, anatomical context, vessel wall composition, and to automatically and reliably classify stenosis candidates. We do not presume already segmented and extracted surface meshes but integrate streamlined model extraction and pre-processing along with the result visualizations into a single framework. We connect multiple sophisticated processing stages in one user interface, including a neural prediction network for vessel segmentation and automatic global diameter computation. We enable retrospective user control over each processing stage, greatly simplifying error detection and correction. The framework was developed and evaluated in multiple iterative user studies, involving a group of eight specialists working in stroke care (radiologists and neurologists). It is publicly available, along with a database of over 100 carotid bifurcation geometries that were extracted with the framework from computed tomography data. Further, it is a vital part of multiple ongoing studies investigating stenosis pathophysiology, stroke risk, and the necessity for surgical intervention.