Browsing by Author "Mindek, Peter"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Illustrative Motion Smoothing for Attention Guidance in Dynamic Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2023) Eschner, Johannes; Mindek, Peter; Waldner, Manuela; Bujack, Roxana; Archambault, Daniel; Schreck, Tobias3D animations are an effective method to learn about complex dynamic phenomena, such as mesoscale biological processes. The animators' goals are to convey a sense of the scene's overall complexity while, at the same time, visually guiding the user through a story of subsequent events embedded in the chaotic environment. Animators use a variety of visual emphasis techniques to guide the observers' attention through the story, such as highlighting, halos - or by manipulating motion parameters of the scene. In this paper, we investigate the effect of smoothing the motion of contextual scene elements to attract attention to focus elements of the story exhibiting high-frequency motion. We conducted a crowdsourced study with 108 participants observing short animations with two illustrative motion smoothing strategies: geometric smoothing through noise reduction of contextual motion trajectories and visual smoothing through motion blur of context items. We investigated the observers' ability to follow the story as well as the effect of the techniques on speed perception in a molecular scene. Our results show that moderate motion blur significantly improves users' ability to follow the story. Geometric motion smoothing is less effective but increases the visual appeal of the animation. However, both techniques also slow down the perceived speed of the animation. We discuss the implications of these results and derive design guidelines for animators of complex dynamic visualizations.Item A Multi-Scale Animation Framework for Biological Fibrous Structures(The Eurographics Association, 2019) Klein, Tobias; Viola, Ivan; Mindek, Peter; Madeiras Pereira, João and Raidou, Renata GeorgiaFibrous structures are ubiquitous in cell biology and play essential structural and functional roles in the life cycle of a cell. They are long polymers, such as DNA carrying genetic information, or filaments forming the cytoskeleton, crucial for cell division and maintaining the cell shape. In order to disseminate new findings of such structures to peers or a general audience, animated 3D models of these structures have to be created, as they are too small to be imaged with microscopes. However, this is a tedious task carried out by scientific animators, who manually create expressive visual representations of biological phenomena. In this work, we present a novel concept which simplifies the process of animating multi-scale procedural models of biological fibrous structures. In contrast with existing work in the domain of molecular visualization, our approach can also capture dynamics, which are important to show when communicating biological processes.Item Semantic Screen-Space Occlusion for Multiscale Molecular Visualization(The Eurographics Association, 2018) Koch, Thomas Bernhard; Kouril, David; Klein, Tobias; Mindek, Peter; Viola, Ivan; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauVisual clutter is a major problem in large biological data visualization. It is often addressed through the means of level of detail schemes coupled with an appropriate coloring of the visualized structures. Ambient occlusion and shadows are often used to improve the depth perception. However, when used excessively, these techniques are sources of visual clutter themselves. In this paper we present a new approach to screen-space illumination algorithms suitable for use in illustrative visualization. The illumination effect can be controlled so that desired levels of semantic scene organization cast shadows while other remain flat. This way the illumination design can be parameterized to keep visual clutter, originating from illumination, to a minimum, while also guiding the user in a multiscale model exploration. We achieve this by selectively applying occlusion shading based on the inherent semantics of the visualized hierarchically-organized data. The technique is in principle generally applicable to any hierarchically organized 3D scene and has been demonstrated on an exemplary scene from integrative structural biology.