Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sanchez Tapia, Jairo Roberto"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A Stochastic Parallel Method for Real Time Monocular SLAM Applied to Augmented Reality
    (Sanchez Tapia, 2010-12-10) Sanchez Tapia, Jairo Roberto;
    In augmented reality applications, the position and orientation of the observermust be estimated in order to create a virtual camera that renders virtual objectsaligned with the real scene. There are a wide variety of motion sensors availablein the market, however, these sensors are usually expensive and impractical. Incontrast, computer vision techniques can be used to estimate the camera poseusing only the images provided by a single camera if the 3D structure of thecaptured scene is known beforehand. When it is unknown, some solutions useexternal markers, however, they require to modify the scene, which is not alwayspossible. </p><p>Simultaneous Localization and Mapping (SLAM) techniques can deal withcompletely unknown scenes, simultaneously estimating the camera pose and the3D structure. Traditionally, this problem is solved using nonlinear minimizationtechniques that are very accurate but hardly used in real time. In this way, thisthesis presents a highly parallelizable random sampling approach based on MonteCarlo simulations that fits very well on the graphics hardware. As demonstratedin the text, the proposed algorithm achieves the same precision as nonlinearoptimization, getting real time performance running on commodity graphicshardware. </p><p>Along this document, the details of the proposed SLAM algorithm areanalyzed as well as its implementation in a GPU. Moreover, an overview of theexisting techniques is done, comparing the proposed method with the traditionalapproach.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback