VMV12
Permanent URI for this collection
Browse
Browsing VMV12 by Subject "and systems"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 3D Shape Matching based on Geodesic Distance Distributions(The Eurographics Association, 2012) Martinek, Michael; Ferstl, Matthias; Grosso, Roberto; Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard PreimIn this work, we present a signature for 3D shapes which is based on the distribution of geodesic distances. Our shape descriptor is invariant with respect to rotation and scaling as well as articulations of the object. It consists of shape histograms which reflect the geodesic distance distribution of randomly chosen pairs of surface points as well as the distribution of geodesic eccentricity and centricity. We show, that a combination of these shape histograms provides good discriminative power to find similar objects in 3D databases even if they are differently articulated. In order to improve the efficiency of the feature extraction, we employ a fast voxelization method and compute the geodesic distances on a boundary voxel representation of the objects.Item Optimized Canonical Coordinate Frames for 3D Object Normalization(The Eurographics Association, 2012) Martinek, Michael; Grosso, Roberto; Greiner, Günther; Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard PreimIn this paper, we describe a method to optimize an orthogonal system of axes for 3D objects in order to perform normalization with respect to orientation and scale. An energy function evaluates the quality of a system by considering symmetry, rectilinearity and the origin of the system within the current axis aligned bounding box. Starting with the PCA-axes as initial system, we find a canonical coordinate frame by minimizing the energy in an efficient and elaborate optimization process. We provide a fully automatic normalization pipeline with the possibility to manually set various intuitive parameters in order to influence the outcome. The symmetry part of our energy function uses a combination of plane reflective and rotational symmetries. In this context, we introduce a novel continuous symmetry measure which is entirely implemented on the GPU. The high efficiency of the implementation enables us to find an optimal alignment for 3D objects interactively, making our method suitable even for large 3D databases. We also demonstrate the applicability of our framework for 3D shape matching by approximating the Hausdorff distance for 3D models.Item Resolving Twisted Surfaces within an Iterative Refinement Surface Reconstruction Approach(The Eurographics Association, 2012) Annuth, Hendrik; Bohn, Christian-A.; Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard PreimWe present a method which resolves twisted surface regions within a surface reconstruction approach that uses local refinement operations to iteratively fit a surface into an unorganized point cloud. We show that this local operation can be integrated reliably and efficiently, although resolving twisted surfaces is not a local operation since it may cause modifications up to one half of the entire surface. We introduce a novel data structure called the minimal edge front that enables efficiently retrieving topological information from the surface under investigation. Equipped with this operation the algorithm is able to robustly handle huge point-clouds of complex closed and also not closed objects like landscapes.