EGWR: Eurographics Workshop on Rendering
Permanent URI for this community
Browse
Browsing EGWR: Eurographics Workshop on Rendering by Subject "and texture"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
Item Accurate Fitting of Measured Reflectances Using a Shifted Gamma Micro-facet Distribution(The Eurographics Association and Blackwell Publishing Ltd., 2012) Bagher, Mohammad Mahdi; Soler, Cyril; Holzschuch, Nicolas; Fredo Durand and Diego GutierrezMaterial models are essential to the production of photo-realistic images. Measured BRDFs provide accurate representation with complex visual appearance, but have larger storage cost. Analytical BRDFs such as Cook- Torrance provide a compact representation but fail to represent the effects we observe with measured appearance. Accurately fitting an analytical BRDF to measured data remains a challenging problem. In this paper we introduce the SGD micro-facet distribution for Cook-Torrance BRDF. This distribution accurately models the behavior of most materials. As a consequence, we accurately represent all measured BRDFs using a single lobe. Our fitting procedure is stable and robust, and does not require manual tweaking of the parameters.Item An Area-Preserving Parametrization for Spherical Rectangles(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ureña, Carlos; Fajardo, Marcos; King, Alan; Nicolas Holzschuch and Szymon RusinkiewiczWe present an area-preserving parametrization for spherical rectangles which is an analytical function with domain in the unit rectangle [0;1]2 and range in a region included in the unit-radius sphere. The parametrization preserves areas up to a constant factor and is thus very useful in the context of rendering as it allows to map random sample point sets in [0;1]2 onto the spherical rectangle. This allows for easily incorporating stratified, quasi-Monte Carlo or other sampling strategies in algorithms that compute scattering from planar rectangular emitters.Item Example-Based Fractured Appearance(The Eurographics Association and Blackwell Publishing Ltd., 2012) Glondu, Loeiz; Muguercia, Lien; Marchal, Maud; Bosch, Carles; Rushmeier, Holly; Dumont, Georges; Drettakis, George; Fredo Durand and Diego GutierrezA common weathering effect is the appearance of cracks due to material fractures. Previous exemplar-based aging and weathering methods have either reused images or sought to replicate observed patterns exactly. We introduce a new approach to exemplar-based modeling that creates weathered patterns on synthetic objects by matching the statistics of fracture patterns in a photograph. We present a user study to determine which statistics are correlated to visual similarity and how they are perceived by the user. We then describe a revised physically-based fracture model capable of producing a wide range of crack patterns at interactive rates. We demonstrate how a Bayesian optimization method can determine the parameters of this model so it can produce a pattern with the same key statistics as an exemplar. Finally, we present results using our approach and various exemplars to produce a variety of fracture effects in synthetic renderings of complex environments. The speed of the fracture simulation allows interactive previews of the fractured results and its application on large scale environments.Item Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations(The Eurographics Association and John Wiley & Sons Ltd., 2015) Dupuy, Jonathan; Heitz, Eric; Iehl, Jean-Claude; Poulin, Pierre; Ostromoukhov, Victor; Jaakko Lehtinen and Derek NowrouzezahraiWe introduce a novel fitting procedure that takes as input an arbitrary material, possibly anisotropic, and automatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples. We show that the eigenvector associated to the largest eigenvalue is always the only solution to this problem, and compute it using the power iteration method. This approach is straightforward to implement, much faster to compute, and considerably more robust than solutions based on nonlinear optimizations. In addition, we provide simple conversion procedures of our fits into both Beckmann and GGX roughness parameters, and discuss the advantages of microfacet slope space to make our fits editable. We apply our method to measured materials from two large databases that include anisotropic materials, and demonstrate the benefits of spatially varying roughness on texture mapped geometric models.Item ISHair: Importance Sampling for Hair Scattering(The Eurographics Association and Blackwell Publishing Ltd., 2012) Ou, Jiawei; Xie, Feng; Krishnamachari, Parashar; Pellacini, Fabio; Fredo Durand and Diego GutierrezWe present an importance sampling method for the bidirectional scattering distribution function (bsdf) of hair. Our method is based on the multi-lobe hair scattering model presented by Sadeghi et al. [SPJT10]. We reduce noise by drawing samples from a distribution that approximates the bsdf well. Our algorithm is efficient and easy to implement, since the sampling process requires only the evaluation of a few analytic functions, with no significant memory overhead or need for precomputation. We tested our method in a research raytracer and a production renderer based on micropolygon rasterization. We show significant improvements for rendering direct illumination using multiple importance sampling and for rendering indirect illumination using path tracing.Item Line-Sweep Ambient Obscurance(The Eurographics Association and Blackwell Publishing Ltd., 2013) Timonen, Ville; Nicolas Holzschuch and Szymon RusinkiewiczScreen-space ambient occlusion and obscurance have become established methods for rendering global illumi- nation effects in real-time applications. While they have seen a steady line of refinements, their computational complexity has remained largely unchanged and either undersampling artefacts or too high render times limit their scalability. In this paper we show how the fundamentally quadratic per-pixel complexity of previous work can be reduced to a linear complexity. We solve obscurance in discrete azimuthal directions by performing line sweeps across the depth buffer in each direction. Our method builds upon the insight that scene points along each line can be incrementally inserted into a data structure such that querying for the largest occluder among the visited samples along the line can be achieved at an amortized constant cost. The obscurance radius therefore has no impact on the execution time and our method produces accurate results with smooth occlusion gradients in a few milliseconds per frame on commodity hardware.Item Parameterization-Aware MIP-Mapping(The Eurographics Association and Blackwell Publishing Ltd., 2012) Manson, Josiah; Schaefer, Scott; Fredo Durand and Diego GutierrezWe present a method of generating mipmaps that takes into account the distortions due to the parameterization of a surface. Existing algorithms for generating mipmaps assume that the texture is isometrically mapped to the surface and ignore the actual surface parameterization. Our method correctly downsamples warped textures by assigning texels weights proportional to their area on a surface. We also provide a least-squares approach to filtering over these warped domains that takes into account the postfilter used by the GPU. Our method improves texture filtering for most models but only modifies mipmap generation, requires no modification of art assets or rasterization algorithms, and does not affect run-time performance.Item Path-space Motion Estimation and Decomposition for Robust Animation Filtering(The Eurographics Association and John Wiley & Sons Ltd., 2015) Zimmer, Henning; Rousselle, Fabrice; Jakob, Wenzel; Wang, Oliver; Adler, David; Jarosz, Wojciech; Sorkine-Hornung, Olga; Sorkine-Hornung, Alexander; Jaakko Lehtinen and Derek NowrouzezahraiRenderings of animation sequences with physics-based Monte Carlo light transport simulations are exceedingly costly to generate frame-by-frame, yet much of this computation is highly redundant due to the strong coherence in space, time and among samples. A promising approach pursued in prior work entails subsampling the sequence in space, time, and number of samples, followed by image-based spatio-temporal upsampling and denoising. These methods can provide significant performance gains, though major issues remain: firstly, in a multiple scattering simulation, the final pixel color is the composite of many different light transport phenomena, and this conflicting information causes artifacts in image-based methods. Secondly, motion vectors are needed to establish correspondence between the pixels in different frames, but it is unclear how to obtain them for most kinds of light paths (e.g. an object seen through a curved glass panel). To reduce these ambiguities, we propose a general decomposition framework, where the final pixel color is separated into components corresponding to disjoint subsets of the space of light paths. Each component is accompanied by motion vectors and other auxiliary features such as reflectance and surface normals. The motion vectors of specular paths are computed using a temporal extension of manifold exploration and the remaining components use a specialized variant of optical flow. Our experiments show that this decomposition leads to significant improvements in three image-based applications: denoising, spatial upsampling, and temporal interpolation.Item Physically Meaningful Rendering using Tristimulus Colours(The Eurographics Association and John Wiley & Sons Ltd., 2015) Meng, Johannes; Simon, Florian; Hanika, Johannes; Dachsbacher, Carsten; Jaakko Lehtinen and Derek NowrouzezahraiIn photorealistic image synthesis the radiative transfer equation is often not solved by simulating every wavelength of light, but instead by computing tristimulus transport, for instance using sRGB primaries as a basis. This choice is convenient, because input texture data is usually stored in RGB colour spaces. However, there are problems with this approach which are often overlooked or ignored. By comparing to spectral reference renderings, we show how rendering in tristimulus colour spaces introduces colour shifts in indirect light, violation of energy conservation, and unexpected behaviour in participating media. Furthermore, we introduce a fast method to compute spectra from almost any given XYZ input colour. It creates spectra that match the input colour precisely. Additionally, like in natural reflectance spectra, their energy is smoothly distributed over wide wavelength bands. This method is both useful to upsample RGB input data when spectral transport is used and as an intermediate step for corrected tristimulus-based transport. Finally, we show how energy conservation can be enforced in RGB by mapping colours to valid reflectances.Item Pre-convolved Radiance Caching(The Eurographics Association and Blackwell Publishing Ltd., 2012) Scherzer, Daniel; Nguyen, Chuong; Ritschel, Tobias; Seidel, Hans-Peter; Fredo Durand and Diego GutierrezThe incident indirect light over a range of image pixels is often coherent. Two common approaches to exploit this inter-pixel coherence to improve rendering performance are Irradiance Caching and Radiance Caching. Both compute incident indirect light only for a small subset of pixels (the cache), and later interpolate between pixels. Irradiance Caching uses scalar values that can be interpolated efficiently, but cannot account for shading variations caused by normal and reflectance variation between cache items. Radiance Caching maintains directional information, e. g., to allow highlights between cache items, but at the cost of storing and evaluating a Spherical Harmonics (SH) function per pixel. The arithmetic and bandwidth cost for this evaluation is linear in the number of coefficients and can be substantial. In this paper, we propose a method to replace it by an efficient per-cache item pre-filtering based on MIP maps - such as previously done for environment maps - leading to a single constant-time lookup per pixel. Additionally, per-cache item geometry statistics stored in distance-MIP maps are used to improve the quality of each pixel's lookup. Our approximate interactive global illumination approach is an order of magnitude faster than Radiance Caching with Phong BRDFs and can be combined with Monte Carlo-raytracing, Point-based Global Illumination or Instant Radiosity.Item A Statistical Method for SVBRDF Approximation from Video Sequences in General Lighting Conditions(The Eurographics Association and Blackwell Publishing Ltd., 2012) Palma, Gianpaolo; Callieri, Marco; Dellepiane, Matteo; Scopigno, Roberto; Fredo Durand and Diego GutierrezWe present a statistical method for the estimation of the Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF) of an object with complex geometry, starting from video sequences acquired with fixed but general lighting conditions. The aim of this work is to define a method that simplifies the acquisition phase of the object surface appearance and allows to reconstruct an approximated SVBRDF. The final output is suitable to be used with a 3D model of the object to obtain accurate and photo-realistic renderings. The method is composed by three steps: the approximation of the environment map of the acquisition scene, using the same object as a probe; the estimation of the diffuse color of the object; the estimation of the specular components of the main materials of the object, by using a Phong model. All the steps are based on statistical analysis of the color samples projected by the video sequences on the surface of the object. Although the method presents some limitations, the trade-off between the easiness of acquisition and the obtained results makes it useful for practical applications.Item Stochastic Soft Shadow Mapping(The Eurographics Association and John Wiley & Sons Ltd., 2015) Liktor, Gabor; Spassov, Stanislav; Mückl, Gregor; Dachsbacher, Carsten; Jaakko Lehtinen and Derek NowrouzezahraiIn this paper, we extend the concept of pre-filtered shadow mapping to stochastic rasterization, enabling real-time rendering of soft shadows from planar area lights. Most existing soft shadow mapping methods lose important visibility information by relying on pinhole renderings from an area light source, providing plausible results only for small light sources. Since we sample the entire 4D shadow light field stochastically, we are able to closely approximate shadows of large area lights as well. In order to efficiently reconstruct smooth shadows from this sparse data, we exploit the analogy of soft shadow computation to rendering defocus blur, and introduce a multiplane pre-filtering algorithm. We demonstrate how existing pre-filterable approximations of the visibility function, such as variance shadow mapping, can be extended to four dimensions within our framework.Item Unifying Color and Texture Transfer for Predictive Appearance Manipulation(The Eurographics Association and John Wiley & Sons Ltd., 2015) Okura, Fumio; Vanhoey, Kenneth; Bousseau, Adrien; Efros, Alexei A.; Drettakis, George; Jaakko Lehtinen and Derek NowrouzezahraiRecent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from ''sunny'' to ''overcast''. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season - e.g., leaves on bare trees or piles of snow on a street - and flooding.