An Improved Multiple Importance Sampling Heuristic for Density Estimates in Light Transport Simulations

dc.contributor.authorJendersie, Johannesen_US
dc.contributor.authorGrosch, Thorstenen_US
dc.contributor.editorJakob, Wenzel and Hachisuka, Toshiyaen_US
dc.date.accessioned2018-07-01T07:32:55Z
dc.date.available2018-07-01T07:32:55Z
dc.date.issued2018
dc.description.abstractVertex connection and merging (VCM) is one of the most robust light transport simulation algorithms developed so far. It combines bidirectional path tracing with photon mapping using multiple importance sampling (MIS). However, there are scene setups where the current weight computation is not optimal. If different merge events on a single path have roughly the same likelihood to be found, but different photon densities, this leads to high variance samples. We show how to improve the heuristic for density estimation events to overcome this issue by including the photon density into the MIS computation. This leads to a faster convergence in VCM and related techniques. The proposed change is easy to implement and is orthogonal to other improvements of the algorithm.en_US
dc.description.sectionheadersRendering Techniques II
dc.description.seriesinformationEurographics Symposium on Rendering - Experimental Ideas & Implementations
dc.identifier.doi10.2312/sre.20181173
dc.identifier.isbn978-3-03868-068-0
dc.identifier.issn1727-3463
dc.identifier.pages65-72
dc.identifier.urihttps://doi.org/10.2312/sre.20181173
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/sre20181173
dc.publisherThe Eurographics Associationen_US
dc.subjectComputing methodologies
dc.subjectRay tracing
dc.subjectMathematics of computing
dc.subjectSequential Monte Carlo methods
dc.titleAn Improved Multiple Importance Sampling Heuristic for Density Estimates in Light Transport Simulationsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
065-072.pdf
Size:
7.55 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
egsr_vcmvariance_sup1_v2.pdf
Size:
81.04 MB
Format:
Adobe Portable Document Format