An Exploratory Technique for Coherent Visualization of Time-varying Volume Data

dc.contributor.authorTikhonova, Annaen_US
dc.contributor.authorCorrea, Carlos D.en_US
dc.contributor.authorMa, Kwan-Liuen_US
dc.contributor.editorG. Melancon, T. Munzner, and D. Weiskopfen_US
dc.date.accessioned2014-02-21T20:05:47Z
dc.date.available2014-02-21T20:05:47Z
dc.date.issued2010en_US
dc.description.abstractThe selection of an appropriate global transfer function is essential for visualizing time-varying simulation data. This is especially challenging when the global data range is not known in advance, as is often the case in remote and in-situ visualization settings. Since the data range may vary dramatically as the simulation progresses, volume rendering using local transfer functions may not be coherent for all time steps. We present an exploratory technique that enables coherent classification of time-varying volume data. Unlike previous approaches, which require pre-processing of all time steps, our approach lets the user explore the transfer function space without accessing the original 3D data. This is useful for interactive visualization, and absolutely essential for in-situ visualization, where the entire simulation data range is not known in advance. Our approach generates a compact representation of each time step at rendering time in the form of ray attenuation functions, which are used for subsequent operations on the opacity and color mappings. The presented approach offers interactive exploration of time-varying simulation data that alleviates the cost associated with reloading and caching large data sets.en_US
dc.description.number3en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume29en_US
dc.identifier.doi10.1111/j.1467-8659.2009.01690.xen_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2009.01690.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleAn Exploratory Technique for Coherent Visualization of Time-varying Volume Dataen_US
Files