Evaluating Autoencoders for Parametric and Invertible Multidimensional Projections

dc.contributor.authorDennig, Frederik L.en_US
dc.contributor.authorGeyer, Ninaen_US
dc.contributor.authorBlumberg, Danielaen_US
dc.contributor.authorMetz, Yannicken_US
dc.contributor.authorKeim, Daniel A.en_US
dc.contributor.editorSchulz, Hans-Jörgen_US
dc.contributor.editorVillanova, Annaen_US
dc.date.accessioned2025-05-26T06:30:36Z
dc.date.available2025-05-26T06:30:36Z
dc.date.issued2025
dc.description.abstractRecently, neural networks have gained attention for creating parametric and invertible multidimensional data projections. Parametric projections allow for embedding previously unseen data without recomputing the projection as a whole, while invertible projections enable the generation of new data points. However, these properties have never been explored simultaneously for arbitrary projection methods. We evaluate three autoencoder (AE) architectures for creating parametric and invertible projections. Based on a given projection, we train AEs to learn a mapping into 2D space and an inverse mapping into the original space. We perform a quantitative and qualitative comparison on four datasets of varying dimensionality and pattern complexity using t-SNE. Our results indicate that AEs with a customized loss function can create smoother parametric and inverse projections than feed-forward neural networks while giving users control over the strength of the smoothing effect.en_US
dc.description.sectionheadersVisual Analytics Methods and Approaches
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.identifier.doi10.2312/eurova.20251099
dc.identifier.isbn978-3-03868-283-7
dc.identifier.issn2664-4487
dc.identifier.pages6 pages
dc.identifier.urihttps://doi.org/10.2312/eurova.20251099
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/eurova20251099
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Visualization; Computing methodologies → Machine learning
dc.subjectHuman centered computing → Visualization
dc.subjectComputing methodologies → Machine learning
dc.titleEvaluating Autoencoders for Parametric and Invertible Multidimensional Projectionsen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
eurova20251099.pdf
Size:
4.53 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
6080-file-i7.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Collections