Deep Learning for Computer Graphics and Geometry Processing

dc.contributor.authorBronstein, Michaelen_US
dc.contributor.authorGuibas, Leonidasen_US
dc.contributor.authorKokkinos, Iasonasen_US
dc.contributor.authorLitany, Oren_US
dc.contributor.authorMitra, Niloyen_US
dc.contributor.authorMonti, Federicoen_US
dc.contributor.authorRodolĂ , Emanueleen_US
dc.contributor.editorJakob, Wenzel and Puppo, Enricoen_US
dc.date.accessioned2019-05-05T17:53:33Z
dc.date.available2019-05-05T17:53:33Z
dc.date.issued2019
dc.description.abstractIn computer graphics and geometry processing, many traditional problems are now becoming increasingly handled by data-driven methods. In an increasing variety of problem settings, deep networks are state-of-the-art, beating dedicated hand-crafted methods by significant margins. This tutorial gives an organized overview of core theory, practice, and graphics-related applications of deep learning.en_US
dc.description.sectionheadersTutorials
dc.description.seriesinformationEurographics 2019 - Tutorials
dc.identifier.doi10.2312/egt.20191036
dc.identifier.issn1017-4656
dc.identifier.pages43-43
dc.identifier.urihttps://doi.org/10.2312/egt.20191036
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egt20191036
dc.publisherThe Eurographics Associationen_US
dc.titleDeep Learning for Computer Graphics and Geometry Processingen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
043-043.pdf
Size:
80.35 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
tut1003_slides.pdf
Size:
27.08 MB
Format:
Adobe Portable Document Format