SHREC 2021: Classification in Cryo-electron Tomograms

Abstract
Cryo-electron tomography (cryo-ET) is an imaging technique that allows three-dimensional visualization of macro-molecular assemblies under near-native conditions. Cryo-ET comes with a number of challenges, mainly low signal-to-noise and inability to obtain images from all angles. Computational methods are key to analyze cryo-electron tomograms. To promote innovation in computational methods, we generate a novel simulated dataset to benchmark different methods of localization and classification of biological macromolecules in tomograms. Our publicly available dataset contains ten tomographic reconstructions of simulated cell-like volumes. Each volume contains twelve different types of complexes, varying in size, function and structure. In this paper, we have evaluated seven different methods of finding and classifying proteins. Seven research groups present results obtained with learning-based methods and trained on the simulated dataset, as well as a baseline template matching (TM), a traditional method widely used in cryo-ET research. We show that learning-based approaches can achieve notably better localization and classification performance than TM. We also experimentally confirm that there is a negative relationship between particle size and performance for all methods.
Description

        
@inproceedings{
10.2312:3dor.20211307
, booktitle = {
Eurographics Workshop on 3D Object Retrieval
}, editor = {
Biasotti, Silvia and Dyke, Roberto M. and Lai, Yukun and Rosin, Paul L. and Veltkamp, Remco C.
}, title = {{
SHREC 2021: Classification in Cryo-electron Tomograms
}}, author = {
Gubins, Ilja
and
Chaillet, Marten L.
and
White, Tommi
and
Bunyak, Filiz
and
Papoulias, Giorgos
and
Gerolymatos, Stavros
and
Zacharaki, Evangelia I.
and
Moustakas, Konstantinos
and
Zeng, Xiangrui
and
Liu, Sinuo
and
Xu, Min
and
Wang, Yaoyu
and
Schot, Gijs van der
and
Chen, Cheng
and
Cui, Xuefeng
and
Zhang, Fa
and
Trueba, M. Cristina
and
Veltkamp, Remco C.
and
Förster, Friedrich
and
Wang, Xiao
and
Kihara, Daisuke
and
Moebel, Emmanuel
and
Nguyen, Nguyen P.
}, year = {
2021
}, publisher = {
The Eurographics Association
}, ISSN = {
1997-0471
}, ISBN = {
978-3-03868-137-3
}, DOI = {
10.2312/3dor.20211307
} }
Citation