A Dashboard for Interactive Convolutional Neural Network Training And Validation Through Saliency Maps

dc.contributor.authorCech, Timen_US
dc.contributor.authorSimsek, Furkanen_US
dc.contributor.authorScheibel, Willyen_US
dc.contributor.authorDöllner, Jürgenen_US
dc.contributor.editorGillmann, Christinaen_US
dc.contributor.editorKrone, Michaelen_US
dc.contributor.editorLenti, Simoneen_US
dc.date.accessioned2023-06-10T06:31:26Z
dc.date.available2023-06-10T06:31:26Z
dc.date.issued2023
dc.description.abstractQuali-quantitative methods provide ways for interrogating Convolutional Neural Networks (CNN). For it, we propose a dashboard using a quali-quantitative method based on quantitative metrics and saliency maps. By those means, a user can discover patterns during the training of a CNN. With this, they can adapt the training hyperparameters of the model, obtaining a CNN that learned patterns desired by the user. Furthermore, they neglect CNNs which learned undesirable patterns. This improves users' agency over the model training process.en_US
dc.description.seriesinformationEuroVis 2023 - Posters
dc.identifier.doi10.2312/evp.20231054
dc.identifier.isbn978-3-03868-220-2
dc.identifier.pages5-7
dc.identifier.pages3 pages
dc.identifier.urihttps://doi.org/10.2312/evp.20231054
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/evp20231054
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Artificial intelligence
dc.subjectComputing methodologies
dc.subjectArtificial intelligence
dc.titleA Dashboard for Interactive Convolutional Neural Network Training And Validation Through Saliency Mapsen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
005-007.pdf
Size:
5.51 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
4532-cech.pdf
Size:
6.53 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
4532-file-i7.pdf
Size:
9.84 MB
Format:
Adobe Portable Document Format