Efficient Adaptive Multiresolution Aggregations of Spatio-temporal Ensembles

dc.contributor.authorBorrelli, Gabrielen_US
dc.contributor.authorEvers, Marinaen_US
dc.contributor.authorLinsen, Larsen_US
dc.contributor.editorReina, Guidoen_US
dc.contributor.editorRizzi, Silvioen_US
dc.date.accessioned2024-05-21T08:24:08Z
dc.date.available2024-05-21T08:24:08Z
dc.date.issued2024
dc.description.abstractSpatio-temporal ensemble data consist of several simulation runs with multiple spatial and a temporal dimension, where the runs are obtained using different parameter settings or initial conditions for the simulation. During analysis, one is interested in investigating the different facets of space, time, and parameter values. When globally analyzing some facet(s), others shall be aggregated to generate summary visualizations. Due to the large amount of data that an ensemble consists of, one may want to generate summary visualizations at multiple levels of detail. Wavelet transforms are a well-known concept for efficiently switching between multiple resolutions. We propose to extend this concept to ensemble data, where individual facets may be aggregated adaptively. We present how to apply the scheme for any data sizes to generate correct averages even when the number of samples is not a power of two in each dimension. We further develop an out-of-core strategy to handle large data sizes. Our scheme is coupled with common 1D, 2D, and 3D visualization methods for an interactive visual analysis of the ensemble data.en_US
dc.description.sectionheadersPapers
dc.description.seriesinformationEurographics Symposium on Parallel Graphics and Visualization
dc.identifier.doi10.2312/pgv.20241128
dc.identifier.isbn978-3-03868-243-1
dc.identifier.issn1727-348X
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.2312/pgv.20241128
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/pgv20241128
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Parallel algorithms; Human-centered computing → Scientific visualization
dc.subjectComputing methodologies → Parallel algorithms
dc.subjectHuman centered computing → Scientific visualization
dc.titleEfficient Adaptive Multiresolution Aggregations of Spatio-temporal Ensemblesen_US
Files
Original bundle
Now showing 1 - 3 of 3
No Thumbnail Available
Name:
01_pgv20241128.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1012-i6.pdf
Size:
22.86 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1012-i7.zip
Size:
265.86 MB
Format:
Zip file