Convolutional Sparse Coding for High Dynamic Range Imaging

Thumbnail Image
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association and John Wiley & Sons Ltd.
Abstract
Current HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) modifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single image with spatially-varying pixel exposures. In this paper, we propose a novel algorithm to recover high-quality HDRI images from a single, coded exposure. The proposed reconstruction method builds on recently-introduced ideas of convolutional sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed algorithm achieves higher-quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze algorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI coding with a custom hardware platform.
Description

        
@article{
10.1111:cgf.12819
, journal = {Computer Graphics Forum}, title = {{
Convolutional Sparse Coding for High Dynamic Range Imaging
}}, author = {
Serrano, Ana
and
Heide, Felix
and
Gutierrez, Diego
and
Wetzstein, Gordon
and
Masia, Belen
}, year = {
2016
}, publisher = {
The Eurographics Association and John Wiley & Sons Ltd.
}, ISSN = {
1467-8659
}, DOI = {
10.1111/cgf.12819
} }
Citation