Efficient image-based rendering
No Thumbnail Available
Date
2023-07-12
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Recent advancements in real-time ray tracing and deep learning have significantly enhanced the realism of computer-generated images. However, conventional 3D computer graphics (CG) can still be time-consuming and resource-intensive, particularly when creating photo-realistic simulations of complex or animated scenes. Image-based rendering (IBR) has emerged as an alternative approach that utilizes pre-captured images from the real world to generate realistic images in real-time, eliminating the need for extensive modeling. Although IBR has its advantages, it faces challenges in providing the same level of control over scene attributes as traditional CG pipelines and accurately reproducing complex scenes and objects with different materials, such as transparent objects. This thesis endeavors to address these issues by harnessing the power of deep learning and incorporating the fundamental principles of graphics and physical-based rendering. It offers an efficient solution that enables interactive manipulation of real-world dynamic scenes captured from sparse views, lighting positions, and times, as well as a physically-based approach that facilitates accurate reproduction of the view dependency effect resulting from the interaction between transparent objects and their surrounding environment. Additionally, this thesis develops a visibility metric that can identify artifacts in the reconstructed IBR images without observing the reference image, thereby contributing to the design of an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique is developed to provide high-fidelity visual content in virtual reality displays while retaining computational efficiency.
Description