Feature Selection for Enhanced Spectral Shape Comparison
dc.contributor.author | Marini, Simone | en_US |
dc.contributor.author | Patané, Giuseppe | en_US |
dc.contributor.author | Spagnuolo, Michela | en_US |
dc.contributor.author | Falcidieno, Bianca | en_US |
dc.contributor.editor | Mohamed Daoudi and Tobias Schreck | en_US |
dc.date.accessioned | 2013-10-21T16:10:01Z | |
dc.date.available | 2013-10-21T16:10:01Z | |
dc.date.issued | 2010 | en_US |
dc.description.abstract | In the context of shape matching, this paper proposes a framework for selecting the Laplacian eigenvalues of 3D shapes that are more relevant for shape comparison and classification. Three approaches are compared to identify a specific set of eigenvalues such that they maximise the retrieval and/or the classification performance on the input benchmark data set: the first k eigenvalues, by varying k over the cardinality of the spectrum; the Hill Climbing technique; and the AdaBoost algorithm. In this way, we demonstrate that the information coded by the whole spectrum is unnecessary and we improve the shape matching results using only a set of selected eigenvalues. Finally, we test the efficacy of the selected eigenvalues by coupling shape classification and retrieval. | en_US |
dc.description.seriesinformation | Eurographics Workshop on 3D Object Retrieval | en_US |
dc.identifier.isbn | 978-3-905674-22-4 | en_US |
dc.identifier.issn | 1997-0471 | en_US |
dc.identifier.uri | https://doi.org/10.2312/3DOR/3DOR10/031-038 | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.title | Feature Selection for Enhanced Spectral Shape Comparison | en_US |
Files
Original bundle
1 - 1 of 1