Exact Isosurfaces for Marching Cubes

dc.contributor.authorTheisel, Holgeren_US
dc.date.accessioned2015-02-16T07:19:35Z
dc.date.available2015-02-16T07:19:35Z
dc.date.issued2002en_US
dc.description.abstractIn this paper we study the exact contours of a piecewise trilinear scalar field. We show how to represent these contours exactly as trimmed surfaces of triangular rational cubic Bezier patches. As part of this, we introduce an extension of the marching cubes algorithm which gives a topologically exact triangular approximation of the contours for any case. Finally, we modify the exact contours to be globally G1 continuous without changing their topologies. We test the algorithm on both theoretical and practical data sets.en_US
dc.description.number1en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume21en_US
dc.identifier.doi10.1111/1467-8659.00563en_US
dc.identifier.issn1467-8659en_US
dc.identifier.pages19-32en_US
dc.identifier.urihttps://doi.org/10.1111/1467-8659.00563en_US
dc.publisherBlackwell Publishers Ltd and the Eurographics Associationen_US
dc.titleExact Isosurfaces for Marching Cubesen_US
Files
Collections