Voronoi Cell Interface-Based Parameter Sensitivity Analysis for Labeled Samples

dc.contributor.authorBauer, Rubenen_US
dc.contributor.authorEvers, Marinaen_US
dc.contributor.authorNgo, Quynh Quangen_US
dc.contributor.authorReina, Guidoen_US
dc.contributor.authorFrey, Steffenen_US
dc.contributor.authorSedlmair, Michaelen_US
dc.contributor.editorAigner, Wolfgangen_US
dc.contributor.editorAndrienko, Nataliaen_US
dc.contributor.editorWang, Beien_US
dc.date.accessioned2025-05-26T06:37:45Z
dc.date.available2025-05-26T06:37:45Z
dc.date.issued2025
dc.description.abstractVarying the input parameters of simulations or experiments often leads to different classes of results. Parameter sensitivity analysis in this context includes estimating the sensitivity to the individual parameters, that is, to understand which parameters contribute most to changes in output classifications and for which parameter ranges these occur. We propose a novel visual parameter sensitivity analysis approach based on Voronoi cell interfaces between the sample points in the parameter space to tackle the problem. The Voronoi diagram of the sample points in the parameter space is first calculated. We then extract Voronoi cell interfaces which we use to quantify the sensitivity to parameters, considering the class label information of each sample's corresponding output. Multiple visual encodings are then utilized to represent the cell interface transitions and class label distribution, including stacked graphs for local parameter sensitivity. We evaluate the approach's expressiveness and usefulness with case studies for synthetic and real-world datasets.en_US
dc.description.sectionheadersDimensionality Reduction and High-Dimensional Data
dc.description.seriesinformationComputer Graphics Forum
dc.identifier.doi10.1111/cgf.70122
dc.identifier.issn1467-8659
dc.identifier.pages12 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70122
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70122
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Information visualization; Visual analytics
dc.subjectHuman centered computing → Information visualization
dc.subjectVisual analytics
dc.titleVoronoi Cell Interface-Based Parameter Sensitivity Analysis for Labeled Samplesen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
cgf70122.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
1099-file-i8.pdf
Size:
484.14 KB
Format:
Adobe Portable Document Format
Collections