Supervised Machine Learning for Grouping Sketch Diagram Strokes
dc.contributor.author | Stevens, Philip C | en_US |
dc.contributor.author | Blagojevic, Rachel | en_US |
dc.contributor.author | Plimmer, Beryl | en_US |
dc.contributor.editor | Levent Burak Kara and Cindy Grimm | en_US |
dc.date.accessioned | 2016-02-18T11:38:47Z | |
dc.date.available | 2016-02-18T11:38:47Z | |
dc.date.issued | 2013 | en_US |
dc.description.abstract | Grouping of strokes into semantically meaningful diagram elements is a difficult problem. Yet such grouping is needed if truly natural sketching is to be supported in intelligent sketch tools. Using a machine learning approach, we propose a number of new paired-stroke features for grouping and evaluate the suitability of a range of algorithms. Our evaluation shows the new features and algorithms produce promising results that are statistically better than the existing machine learning grouper. | en_US |
dc.description.sectionheaders | Segmenting Sketches | en_US |
dc.description.seriesinformation | Eurographics Workshop on Sketch-Based Interfaces and Modeling | en_US |
dc.identifier.doi | 10.1145/2487381.2487383 | en_US |
dc.identifier.isbn | 978-1-4503-2205-8 | en_US |
dc.identifier.issn | 1812-3503 | en_US |
dc.identifier.pages | 43-52 | en_US |
dc.identifier.uri | https://doi.org/10.1145/2487381.2487383 | en_US |
dc.publisher | ACM | en_US |
dc.subject | I.7.5 [Document and Text Processing] | en_US |
dc.subject | Document Capture | en_US |
dc.subject | Graphics recognition and interpretation | en_US |
dc.subject | I.2.5 [Artificial Intelligence] | en_US |
dc.subject | Programming Languages and Software | en_US |
dc.subject | Expert system tools and techniques. Keywords | en_US |
dc.subject | Digital Ink recognition | en_US |
dc.subject | grouping strokes | en_US |
dc.title | Supervised Machine Learning for Grouping Sketch Diagram Strokes | en_US |