Multi-scale Monocular Panorama Depth Estimation

dc.contributor.authorMohadikar, Payalen_US
dc.contributor.authorFan, Chuanmaoen_US
dc.contributor.authorZhao, Chenxien_US
dc.contributor.authorDuan, Yeen_US
dc.contributor.editorChaine, Raphaëlleen_US
dc.contributor.editorDeng, Zhigangen_US
dc.contributor.editorKim, Min H.en_US
dc.date.accessioned2023-10-09T07:42:54Z
dc.date.available2023-10-09T07:42:54Z
dc.date.issued2023
dc.description.abstractPanorama images are widely used for scene depth estimation as they provide comprehensive scene representation. The existing deep-learning monocular panorama depth estimation networks produce inconsistent, discontinuous, and poor-quality depth maps. To overcome this, we propose a novel multi-scale monocular panorama depth estimation framework. We use a coarseto- fine depth estimation approach, where multi-scale tangent perspective images, projected from 360 images, are given to coarse and fine encoder-decoder networks to produce multi-scale perspective depth maps, that are merged to get low and high-resolution 360 depth maps. The coarse branch extracts holistic features that guide fine branch extracted features using a Multi-Scale Feature Fusion (MSFF) module at the network bottleneck. The performed experiments on the Stanford2D3D benchmark dataset show that our model outperforms the existing methods, producing consistent, smooth, structure-detailed, and accurate depth maps.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationPacific Graphics Short Papers and Posters
dc.identifier.doi10.2312/pg.20231282
dc.identifier.isbn978-3-03868-234-9
dc.identifier.pages113-114
dc.identifier.pages2 pages
dc.identifier.urihttps://doi.org/10.2312/pg.20231282
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/pg20231282
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies -> Scene understanding
dc.subjectComputing methodologies
dc.subjectScene understanding
dc.titleMulti-scale Monocular Panorama Depth Estimationen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
113-114.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
conf1011_poster.pdf
Size:
832.2 KB
Format:
Adobe Portable Document Format