NFGD: Neighborhood-Faithful Graph Drawing

dc.contributor.authorFan, Yumingen_US
dc.contributor.authorHong, Seok-Heeen_US
dc.contributor.authorMeidiana, Amyraen_US
dc.contributor.editorEl-Assady, Mennatallahen_US
dc.contributor.editorOttley, Alvittaen_US
dc.contributor.editorTominski, Christianen_US
dc.date.accessioned2025-05-26T06:59:05Z
dc.date.available2025-05-26T06:59:05Z
dc.date.issued2025
dc.description.abstractNeighborhood faithfulness metrics measure how faithfully the ground truth neighbors of vertices in a graph G are represented as the geometric neighbors of vertices in a drawing D of G. In this paper, we present NFGD, a post-processing algorithm for optimizing the neighborhood faithfulness of graph drawings. Experiments demonstrate the effectiveness of NFGD for computing neighbor-faithful drawings, on average 320% improvement over the popular graph drawing algorithms: 425% over Stress Majorization (SM) and 215% over force-directed algorithm Fruchterman-Reingold (FR). In particular, for scale-free graphs, NFGD-SM achieves 776% improvement over SM and NFGD-FR obtains 597% improvement over FR.en_US
dc.description.sectionheadersTechniques and Tools
dc.description.seriesinformationEuroVis 2025 - Short Papers
dc.identifier.doi10.2312/evs.20251090
dc.identifier.isbn978-3-03868-282-0
dc.identifier.pages5 pages
dc.identifier.urihttps://doi.org/10.2312/evs.20251090
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/evs20251090
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing → Graph drawings
dc.subjectHuman centered computing → Graph drawings
dc.titleNFGD: Neighborhood-Faithful Graph Drawingen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
evs20251090.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Collections