
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Greedy Cut Construction for Parameterizations

Tianyu Zhu1 Chunyang Ye1 Shuangming Chai2 Xiao-Ming Fu†1

1University of Science and Technology of China 2Shining 3D Tech Co., Ltd.

OptCuts [LKK∗18] Ours OptCuts [LKK∗18] Ours

Er
iso = 4.046

LC = 2.33Lbb
188 seconds

Er
iso = 4.050

LC = 1.79Lbb
5.91 seconds

Er
iso = 4.178

LC = 3.71Lbb
329 seconds

Er
iso = 4.179

LC = 3.19Lbb
13.01 seconds

Figure 1: Cut construction for two examples. Compared to OptCut [LKK∗18], our method generates shorter cuts and similar isometric
distortions in much less time. We generate bijective parameterizations for both methods and annotate the resulting symmetric Dirichlet energy
Er

iso, the cut length LC , and the running time next to each figure. Here, Lbb refers to the diagonal length of the bounding box of an input mesh.

Abstract
We present a novel method to construct short cuts for parameterizations with low isometric distortion. The algorithm contains two
steps: (i) detect feature points, where the distortion is usually concentrated; and (ii) construct a cut by connecting the detected
feature points. Central to each step is a greedy method. After generating a redundant feature point set, a greedy filtering process
is performed to identify the feature points required for low isometric distortion parameterizations. This filtering process discards
the feature points that are useless for distortion reduction while still enabling us to obtain low isometric distortion. Next, we
formulate the process of connecting the detected feature points as a Steiner tree problem. To find an approximate solution, we
first successively and greedily produce a collection of auxiliary points. Then, a cut is constructed by connecting the feature points
and auxiliary points. In the 26,299 test cases in which an exact solution to the Steiner tree problem is available, the length of the
cut obtained by our method is on average 0.17% longer than optimal. Compared to state-of-the-art cut construction methods,
our method is one order of magnitude faster and generates shorter cuts while achieving similar isometric distortion.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

The task of parameterizing 3D meshes to a plane is fundamental in
computer graphics. Parameterized 2D meshes are commonly used
to store surface signals, such as colors, normals, and displacements.
Two major factors affecting the feasibility and practicality of parame-
terizations are distortion and cut length. Short cuts and low isometric
distortion are both required for high-quality parameterizations.

Solving this problem is very challenging, and the reason is

† The corresponding author

twofold. First, since a cut is discretely represented as mesh edges,
it is highly complex to reduce the length using combinatorial opti-
mization techniques. Second, cut construction and parameterization
generation are coupled. Parameterizations are usually computed af-
ter cuts are determined, and the distortion heavily depends on the cut
location. To handle these challenges, simultaneous optimization of
both cuts and the corresponding distortions have recently been devel-
oped [LKK∗18,PTH∗17]. However, since these two goals are highly
coupled, the optimization problem is nonlinear and non-convex, ren-
dering it exceedingly costly. Consequently, it is easy to be trapped
by local minima, thereby resulting in long cuts (Figure 1).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13923

https://diglib.eg.orghttps://www.eg.org



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

(a) [GGH02] (b) [CFH∗18] (c) Ours

#F = 6
Er

iso = 4.492
LC = 1.51Lbb

#F = 16
Er

iso = 4.228
LC = 2.25Lbb

#F = 12
Er

iso = 4.141
LC = 2.01Lbb

Figure 2: Different methods for detecting feature points (colored in
green). Our feature point connection method is used to connect the
feature points. #F indicates the number of feature points.

(a) MST (b) Ours (c) Optimum
LC = 3.50Lbb LC = 2.55Lbb LC = 2.51Lbb

Figure 3: Different methods for connecting the green points. (a)
The MST-based method [KMB81]. (b) Our method. (c) The exact
solution to the Steiner tree problem. The cyan points in (b) are the
auxiliary points generated by our method. The symmetric Dirichlet
energies are similar (4.098 in (a), 4.095 in (b), and 4.074 in (c)).

A possible strategy to overcome these difficulties is to first de-
tect feature points where the distortion is usually concentrated and
then connect these feature points to construct cuts [SH02, CFH∗18].
We call this a point-to-cut strategy. Since parameterizations are not
determined during the feature point detection process, proxy met-
rics, such as the Gaussian curvature [She02, SH02] and distortion
from spherical parameterizations [CFH∗18], are used as predictors
of anticipated parameterization distortion. However, the relation-
ship between proxy metrics and parameterization distortion is not
clear and direct, and the configuration (number and locations) of
generated feature points is not always appropriate. For example,
large distortions can occur if feature points are missing (Figure 2
(a)), whereas too many points produce long cuts (Figure 2 (b)).
To make the constructed cuts as short as possible, connecting de-
tected feature points is usually formulated as a Steiner tree problem;
however, it is an NP-hard problem. One approximate solution used
in [SH02, She02, CFH∗18] is based on the minimum spanning tree
(MST) [KMB81]. However, sometimes it is far from an exact so-
lution, so much longer cuts may be generated (Figure 3). It is non-
trivial to develop an effective and efficient method for computing
approximate solutions.

We propose a novel method to compute short cuts for low iso-
metric distortion parameterizations. We use the point-to-cut strategy
with two key additions: (1) a filtering-based process for detecting
feature points and (2) an approximate solution to the Steiner tree
problem driven by auxiliary points. The process of feature point
detection first computes a set of candidate feature points, which are
the local maximizers for a distortion metric function. These feature

points are usually redundant, so we then greedily filter out some
points so that the isometric parameterization distortion is similar
before and after filtering. Thanks to this filtering process, we si-
multaneously prevent the occurrence of too many feature points
and achieve low isometric distortion. To approximately solve the
Steiner tree problem, we first generate auxiliary points one by one
and then construct a cut by connecting the detected auxiliary points
and feature points using the algorithm in [KMB81]. Our intensive
experiments and comparisons indicate that our approximate solu-
tion approaches the exact solution to the Steiner tree problem. Our
approximate solution is parallelizable, and the implementation is
simple and efficient. Since feature point filtering and auxiliary point
generation are greedy processes, we call our algorithm GreedyCuts.

Our method is able to generate short cuts and low isometric distor-
tion parameterizations. We demonstrate the feasibility and efficacy
of our method on a data set with 3,757 complex models. Compared
to state-of-the-art methods for cut construction, our method achieves
shorter cuts while maintaining similar parameterization distortion
and is one order of magnitude faster.

2. Related Work

Parameterizations. Given a 3D mesh that has been cut into disk-
topology charts, many parameterization methods have been pre-
sented [SPR06, FH05, HLS07]. The flip-free property is a basic
requirement in many computer graphics tasks. Tutte’s embedding
method [Tut63, Flo03] guarantees bijective parameterizations; how-
ever, the parameterizations often contain high distortions. Progres-
sive embedding [SJZP19] has similar theoretical guarantees to
Tutte’s embedding and more reliable with regard to the rounding er-
ror of floating point arithmetic. Maintenance-based methods initial-
ize flip-free parameterizations using the Tutte’s embedding method
and then try to reduce parameterization distortion while ensuring
no flips [FLG15, RPPSH17, SPSH∗17, GSC18, HG00, LYNF18].
There are also some recent methods that guarantee a final bijec-
tive parameterization by maintaining bijection during the optimiza-
tion [SS15, JSP17]. Since computing flip-free planar parameteriza-
tions is theoretically guaranteed, we use proxy metrics from planar
parameterizations for our feature point detection.

Mesh cutting. Simultaneous optimization of the parameterization
distortion and the cut length is introduced in [LKK∗18, PTH∗17];
however, since the nonlinear and non-convex optimization prob-
lem is very complicated, these methods are time-consuming and
usually generate long cuts. Some methods adopt the point-to-cut
strategy containing two steps: (1) detect the feature points and then
(2) connect the feature points [CFH∗18,She02,SH02]. We follow
this strategy. Segmenting an input mesh into multiple charts is an-
other way to construct cuts [JKS05, LPRM02, SGSH02, ZSGS04],
but these methods do not explicitly minimize cut lengths. Gu et
al. [GGH02] alternately parameterize the mesh and connect the
maximum distortion vertex to the existing cut via the shortest path.
As observed by [CFH∗18], this algorithm often terminates early, re-
sulting in large isometric distortion. Triangles are parameterized one
by one in [SCOGL02] without violating the user-provided distor-
tion bound. In general, the one-by-one way is too local to produce
a shorter cut than the cut required to achieve a given bound, as

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

192



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

observed by [PTH∗17, HLS07]. An analytic and interactive seg-
mentation framework is developed to construct cuts for minimizing
parameterization distortion [LDB17]. A global variational approach
is presented to generate cuts [SC18]. Several extra cuts are intro-
duced for atlas refinement [LVS18, LFY∗19]. Liu et al. [LZF∗19]
construct cuts for peeling art to meet various design constraints.

Feature point detection. Numerous methods for detecting feature
points have been proposed. Some of them are used for semantic
tasks, e.g., segmentation and shape correspondences, and there is
no clear, direct relationship between these feature points and low
distortion parameterizations. For example, the Heat Kernel Signa-
ture [SOG09] is a function of time, and it is challenging to determine
an appropriate time to detect local maxima for all models so that
low distortion is always achieved. Here, we review the most rele-
vant prior works. For the goal of low distortion, there are various
proxy metrics used to detect feature points, such as Gaussian cur-
vatures [She02, SH02] and distortion metrics [GGH02, CFH∗18].
High curvature vertices have a high probability of producing high
isometric distortion. However as observed by [SSC18], the rela-
tionship between curvatures and distortions is not direct or clear. A
hierarchical clustering method uses distortion metrics from spher-
ical parameterizations [CFH∗18]. Since the spherical parameter-
ization method [HFL18] used in [CFH∗18] may fail to generate
bijective spherical parameterizations, distortion metrics from planar
parameterizations are used [CFL19]. Similar to [CFL19], we also
use planar parameterizations to generate proxy metrics. However,
different from [CFL19], we develop a greedy filtering process to
detect necessary feature points to achieve low isometric distortion
and prevent too many feature points. Conformal cone singulari-
ties [SSC18, MZ12, BCGB08, SSP08] and singularities of regular
fields [KCPS13, BZK09, VCD∗16] can also be treated as feature
points. As observed in Figure 15 in [SSC18], some important fea-
ture points are not captured with default parameters, leading to high
distortion. As shown in Figure 17 in [SSC18], a low isometric dis-
tortion parameterization is not achieved when using the singularities
from a regular field [KCPS13] as feature points.

Steiner tree problem. Given a graph and a set of terminal vertices
in the graph, the Steiner tree problem seeks to find the minimum cost
tree connecting all the terminal vertices. This is an NP-hard prob-
lem [HRW92]. Some algorithms for computing an exact solution to
the Steiner tree problem have been proposed [FGK08,Bea89,Hak71].
However, they cannot generate the exact solution in a reasonable
amount of time for large-scale graphs or when there are many ter-
minal vertices. On this account, some approximation methods have
been proposed [BR94, BGRS13, RZ05, PUW18]. Two commonly
used approaches are based on the minimal spanning tree [KMB81]
and the shortest paths heuristic [TA80]. The algorithm in [KMB81]
is used by [She02, SH02, CFH∗18]. We propose a greedy algorithm
to compute an approximate solution driven by auxiliary points. In
practice, our results approximate the optimal solution better in the
sense of relative error.

3. Method

Input. We study cut construction for parameterizations. The input
is a closed triangular meshM that consists of a set of vertices V =

{vi}, edges E = {ei}, and triangles T = {ti}. The mesh structure
naturally forms a weighted undirected graph G = (V,E). The weight
of each edge is its length.

Goal. Our goal is to construct a cut C consisting of mesh edges that
satisfies the following three requirements:

1. After being cut along C, the mesh should only contain disk-
topology charts.

2. The isometric parameterization distortion in each chart should
be as low as possible.

3. The length of the cut C, i.e. the total length of the mesh edges it
contains, should be as short as possible.

Overview. Our method follows the point-to-cut strategy but pro-
poses two key techniques:

• A set of feature points F is detected using two steps: (i) generate
redundant candidates guided by proxy metrics from a planar pa-
rameterization (Section 3.1.1), and (ii) filter out some candidates
while keeping the parameterization distortion low (Section 3.1.2).
• A cut C is constructed by connecting F via a two-step procedure:

(1) generate auxiliary points A using a greedy technique, and (2)
connect A and F using [KMB81] (Section 3.2).

Figure 4 illustrates the workflow of our method. In Section 3.1
and 3.2, we assume thatM is a closed, orientable surface with genus
zero, while the high-genus surfaces are discussed in Section 3.3.

3.1. Detecting feature points

Distortion metrics. There are two kinds of distortion metrics being
used as optimization energies or proxy metrics. After being cut into
a disk topology, the input mesh is able to be parameterized to the
plane. We denote the parameterized triangle of ti as tp

i , and the
mapping from ti to tp

i is an affine transformation whose Jacobian
matrix is denoted as Ji. The MIPS energy [HG00] on ti is used to
measure the conformal distortion:

δ
con
i =

1
2
‖Ji‖2

F
detJi

, (1)

where ‖ · ‖F is the Frobenius norm. The symmetric Dirichlet en-
ergy [SS15] is computed as the isometric distortion of ti:

δ
iso
i = ‖Ji‖2

F +‖J−1
i ‖

2
F . (2)

3.1.1. Generating redundant feature points

Overview. We generate the initial feature points by cutting the
meshM and collecting all local maximizers for an isometric dis-
tortion function defined by an as-conformal-as-possible (ACAP)
planar parameterization. In this section, we first describe isometric
distortions as proxy metrics and the generation process for candidate
feature points. Then we introduce a dual cutting strategy to avoid
excluding feature points.

Proxy metrics. As observed by [CFH∗18], the distortion con-
centration in an ACAP parameterization is more significant com-
pared to an as-isometric-as-possible parameterization (See Figure 3
in [CFH∗18]). Therefore, we use the isometric distortion metrics of
an ACAP planar parameterization as proxy metrics. The isometric

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

193



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

(a) Input (b) Redundant feature points (c) Filtered feature points (d) Auxiliary points (e) Constructed cut (f) Result
Figure 4: Workflow of our method. Given a closed meshM (a), we first detect feature points F (b, c) and then connect them to construct the
cut C (d, e). The feature points and the auxiliary points are colored in green and cyan, respectively. The cut is rendered as a black line.

distortion is considered to be a single-valued function δ
iso defined

onM, where each triangle ti has a constant distortion value δ
iso
i .

We also define the distortion value for each vertex vi as follows:

δ
iso
vi =

1
Area(Ω(vi))

∑
t j∈Ω(vi)

Area(t j)δ
iso
j , (3)

where Ω(vi) is a triangle set from the one-ring neighborhood of
vi. We compute an ACAP planar parameterization by optimizing
∑i Area(ti)δ

con
i using the method in [GSC18].

Candidate feature points generation. We observe that feature
points are usually included amongst the local maximizers of the
proxy metric δ

iso. We denote Θn(vi) as the n-ring vertices of vi.
Since the distortion metric δ

iso
v of an ACAP planar parameteri-

zation is a discrete function defined in the vertices, the defini-
tion of a local maximizer is: a vertex vi is a local maximizer, if
δ

iso
vi ≥ δ

iso
v j ,∀v j ∈Θ1(vi). Then, the feature point set F is initialized

in the same manner as all of the local maximizers. Note that this
initial set F is usually redundant and requires further filtering. For
each candidate feature point vi ∈ F , we also define the scope of
influence si as the geodesic distance to the closest vertex with a
distortion level higher than δ

iso
vi , i.e. si = minδiso

v j
>δiso

vi
d(vi,v j), where

d(·, ·) denotes the geodesic distance between two vertices. In partic-
ular, the vertex with the greatest level of distortion has an infinite
scope of influence. In our implementation, we use the Dijkstra’s dis-
tance to approximate the geodesic distance due to its computational
efficiency. This distance is computed only once and reused in other
parts of our method.

A dual cutting strategy. If a cut, denoted as Cp, passes through
points that should be detected as feature points, their isometric
distortions are usually not local maxima, thereby resulting in the
omission of certain feature points. Therefore, cuts should stay far
away from feature points to avoid leaving any out. Since we have
no prior knowledge regarding the location of feature points, we
devise a dual cutting strategy to generate candidate feature points
accurately. Briefly, we generate a first cut Cp

0 and parameterize the
mesh to establish a forbidden regionR. In order to refine the feature
point detection process, we then construct a second cut Cp that is
prohibited from passing through this forbidden region. The detailed
algorithm for the construction ofR and Cp is as follows:

(a) (b)

(c) (d)
Figure 5: Constructing Cp to generate redundant feature points. (a)
The first cut Cp

0 . (b) We generate F0 (vertices in green) using Cp
0 . (c)

The forbidden regionR is colored in lime. (d) The resulting Cp is
generated inM\R. In this example,R=M\R.

1. Construct the first cut Cp
0 via three steps: (i) randomly select one

vertex vi, (ii) for each vertex v j ∈ V, j 6= i, compute the shortest
distance li j from vi to v j using the Dijkstra’s algorithm, and (iii)
find the farthest vertex vk with the largest lik and the shortest
path between vi and vk to form the first cut Cp

0 .
2. Cut the meshM along Cp

0 into a disk topology and compute an
ACAP parameterization. Then, compute δ

iso for each vertex and
collect the local maximizers into a set F0.

3. Initialize a positive number dn.
4. Define the forbidden regionR as the union of triangles whose

three vertices have geodesic distances to F0 or Cp
0 less than dn.

5. Find the largest connected componentR ofM\R.
6. If Area(R) < αArea(M), where α is a positive threshold, set

dn← 0.9dn and revert to Step 4; otherwise, we generate Cp in
R by using the approach in Step 1.

Note that we detect the second cut in the largest connected compo-
nent R. If the area ofR is small, then the cut Cp is short, thereby
affecting the detection accuracy of feature points in next steps. Thus,

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

194



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

our iterative shrinking of dn ensures that the area of R is not too
small. In our experiments, the initial dn is set as 10lavg, where lavg
is the average edge length, and the threshold α is set as 0.1. Figure 5
shows an example to illustrate the process for constructing Cp. After
the cut Cp is computed, we repeat Step 2 in which the first cut Cp

0
is replaced by the second cut Cp. Then, we collect all the local
maximizers as a candidate feature point set F for the next filtering
process. Note that the dual cutting strategy is only performed once in
order to preserve all feature points in our experiments. It is possible
to perform the strategy multiple times, but the important feature
points remain unchanged.

3.1.2. Filtering redundant feature points

Overview. Since connecting all the candidate feature points leads
to a long cut, the purpose of the filtering process is to eliminate
redundant feature points while shortening the cut and slightly in-
creasing distortion. Therefore, we determine whether each feature
point should be filtered out based on its contribution to the parame-
terization distortion. Specifically, if the distortion value significantly
decreases after a point is connected to the cut, then the contribution
of this point is considered to be large. Based on this criterion, we
propose an algorithm that calculates the contribution of candidate
feature points and filters out the points that contribute less.

Initialization. Since a cut must connect at least two feature points,
we initialize the set of feature points with more than two points.
Recall that we have already computed the scope of influence for
each feature point. In general, we observe that candidate points
with a large scope of influence are more likely to be feature points.
Based on this key observation, we initialize the feature point set
by dividing the candidate set F into two subsets, Fs and Fl , repre-
senting the points whose scope of influence si is smaller and larger
than a specific threshold β, respectively. Next, we initialize a cut by
connecting the points in Fl using an MST-based method [KMB81].
Without a loss of generality, we reuse the notation Cp to denote the
cut during the filtering process. After being cut along Cp, the mesh
is parameterized to the plane using the progressive parameterization
method [LYNF18], which minimizes the isometric distortion energy
Eiso = ∑i Area(ti)δ

iso
i . We denote the optimal energy as E p

iso.

Modified cut initialization. There is a drawback to the above sim-
ple initialization. If a candidate point in Fs is located on or near Cp,
our filtering process does not correctly evaluate this point’s contri-
bution. To counteract this drawback, we introduce forbidden regions
for the candidate points in Fs. The forbidden region is initialized
as the triangles within a geodesic disk with a radius of 5lavg. If the
forbidden regions of two candidate points vi and v j overlap, we reset
the forbidden region of vi and v j as the triangles within a geodesic
disk with a radius of d(vi,v j)/2, where d(vi,v j) is the geodesic
distance between vi and v j. Without a loss of generality, we also
reuse the notationR to denote the union of these forbidden regions.
The cut Cp is initialized as follows:

1. Divide the candidate feature points into two sets Fs and Fl so
that the influence scope is smaller or larger than a threshold β.

2. Compute the forbidden regionR for the feature points in Fs.
3. Compute all the connected components ofM\R.

(a) (b) (c) (d) (e)
Figure 6: The schemetic diagram of the greedy filtering process.
We render the candidate feature points, the selected feature points,
and the discarded feature points in red circles, green dots, and gray
crosses, respectively. The first row shows cuts on the input mesh and
the second row shows the parameterized meshes. (a) The mesh is
cut and parameterized using the initial cut. (b) A candidate point is
considered as a feature point if the distortion decrease significantly
when it is connected to the cut. (c) If the distortion decrease slightly
when a candidate point is connected to the cut, then (d) we discard
this point and (e) search for the next.

(a) (b) (c) (d)
Figure 7: Progressive filtering results. The candidate feature points
(Q), the selected feature points (Fl), and the discarded feature points
are in red, green, and gray, respectively. Cp is shown as a black line.
(a) Initialization (#Fl = 6, E p

iso = 4.302), where #Fl indicates the
number of points in Fl . (b) After the fifth iteration (#Fl = 10, E p

iso =
4.183). (c) After the nineteenth iteration (#Fl = 11, E p

iso = 4.144).
(d) Final result (#Fl = 15, E p

iso = 4.091) after 115 iterations.

4. Count the number of candidate points in Fl for each connected
component.

5. Find the connected component R with the largest number of
candidates Nl,R.

6. If Nl,R < 2, we halve the threshold β← β/2 and revert to Step 1
to update Fl and Fs; otherwise, we connect the candidate feature
points in Fl within R to construct the initial cut Cp using the
MST-based method [KMB81].

The initial β is set as 20lavg.

Greedy filtering. We filter the candidate points in Fs one by one
according to their contributions to the distortion decrease. Here, we
introduce a threshold εiso, and if the distortion decreases less than
εiso after connecting a point to the cut, we consider this point to be
inconsequential, and it is discarded.

The detailed greedy filtration process is illustrated in Figure 6
and is described as follows:

1. Sort the points in Fs according to their scope of influence si from
large to small and construct a queue Q by pushing back these
points in turn.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

195



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

(a) (b) (c) (d)
Figure 8: Progressive connection results. The green and cyan points
represent the detected feature vertices and auxiliary vertices, respec-
tively. (a) Initial cut (LC = 3.32Lbb, Er

iso = 4.091). (b) After the first
iteration (LC = 3.23Lbb, Er

iso = 4.096). (c) After the seventh itera-
tion (LC = 2.82Lbb, Er

iso = 4.098). (d) Final result (LC = 2.80Lbb,
Er

iso = 4.098) after 12 iterations.

2. IfQ 6= ∅, pop a candidate point vq fromQ; otherwise, set F
Fl and stop the algorithm.

3. Compute the shortest path Cp
q from vq to Cp withinM\R using

the Dijkstra’s algorithm. If such a path does not exist due to
the occlusion of forbidden regions, we push back vq intoQ and
return to Step 2.

4. We cutM along Cp ⋃Cp
q and parameterize it to the plane us-

ing [LYNF18] to obtain an optimized distortion Eq
iso. If E p

iso−
Eq

iso > εiso, we move vq from Fs to Fl and update E p
iso← Eq

iso
and Cp←Cp ⋃Cp

q ; otherwise, we keep vq in Fs.
5. Update the forbidden region byR←R\Rq, whereRq is the

forbidden region corresponding to vq, and then revert to Step 2.

Figure 7 shows the process of the greedy filter algorithm. In each
iteration, the parameterization is initialized to the parameterization
of the last iteration, so our greedy filtration process is efficient. Since
there is at least one ‘nearest’ vq ∈ Q so that the shortest path Cp

q
exists, Step 3 will never cause an infinite loop, and our filtering
process always terminates.

3.2. Connecting feature points

Minimum spanning tree (MST) based method. The method
in [KMB81] efficiently finds an approximate solution for the Steiner
tree problem. Given a set of terminal points P , it proceeds as fol-
lows:

1. For each pair of terminal points va ∈ P and vb ∈ P , compute the
shortest path Ca,b between va and vb on G.

2. Construct a complete graph with the node set P . The weight of
each edge vavb is equal to the length of Ca,b.

3. Construct an MST for this shortest distance graph.
4. All mesh edges in the shortest paths that correspond to edges in

the MST form an approximate Steiner tree for G.

This method generates cuts in the same manner as MST, so we call
it the MST-based method.

Greedy connection. Our greedy connection process computes the
auxiliary points A and constructs the final cut C as follows:

1. We initializeA← ∅ and use the MST-based method to construct
a tree connecting all feature points F . The cost L of the initial
tree cost is set as the total edge length of this tree.

(a) (b) (c) (d)
Figure 9: Cut construction in high genus meshes. (a) ConvertM to
a genus-zero meshMone. The used handle indicated by an orange
box. (b) The detected feature points inMone. (c) The constructed
cut Cone on Mone. (d) The final C is generated by mapping Cone
back ontoM.

2. For each vertex v ∈ V \ (A
⋃
F), we treat P = {v}

⋃
A

⋃
F as

the terminal points and use the MST-based method to compute a
tree, whose length is Lv.

3. Compute the minimal length Lmin = minv∈V\(A
⋃
F) Lv, and the

corresponding vertex is vmin.
4. If L− Lmin > εlen, where εlen is a small positive number, we

first add the vertex vmin into A. Then we update the tree cost
L← Lmin, and finally go back to Step 2.

5. We connect all the points in A
⋃
F to construct the final cut C

using the MST-based method.

Figure 8 shows the process of greedy connection. As the connection
algorithm iterates, the cut length monotonously decreases and the
isometric distortion is maintained at a low level. In Step 2, the
shortest paths from a vertex in A

⋃
F to each vertex in V \ (A

⋃
F)

are pre-computed, so the shortest paths required for the MST-based
method do not need repeated calculation. In addition, Step 2 is
parallelizable. Therefore, our greedy connection is very fast.

3.3. High-genus meshes

Similar to [CFH∗18], we first convert an input high-genus meshM
to a genus-zero meshMone according to the following procedure:
(1) compute handles of the meshM using [DFW13], (2) cutM
along the handles, and (3) fill the holes without any extra vertices.
Each handle vertex of M has two copies in Mone, and both of
them must be connected to the final cut. We denote the set of all the
vertices at the handles inMone as Fh. Then, we construct the cut
Cone forMone accordingly: (i) apply our feature detection algorithm
toMone to detect the feature pointsFone, (ii) setFtotal =Fone

⋃
Fh,

and (iii) connect the vertices in Ftotal onMone by using our greedy
connection technique. Finally, we map Cone back ontoM to obtain
the resulting cut C. Figure 9 shows an example.

3.4. Discussions

ACAP parameterizations. Since ACAP parameterizations of a
mesh are not unique, different ACAP parameterizations result in
different feature points and cuts. However, as observed in our exper-
iments, the ACAP parameterization method we employ helps us to
accurately detect the feature points required for reducing isometric
distortion. We implement it as follows: starting from the Tutte’s em-
bedding that parameterizes an open mesh to a unit disk, the ACAP

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

196



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

Parameter Description

dn Radius of forbidden region, initial: 10lavg
α Threshold in the dual cut stategy, default: 0.1
β Scope of influence threshold, initial: 20lavg
εiso Distortion threshold, default: 0.01Lbb
εlen Cut length threshold, default: 0.01Lbb

Table 1: List of parameters

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
4.05

4.08

4.11

4.14

4.17

4.2

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
5

10

15

20

25

30

35

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
2.6

3

3.4

3.8

4.2

(a) (b) (c)log(εiso) log(εiso) log(εiso)

Er
iso #F LC

Figure 10: Different εisos. Thirteen values for εiso are tested on a
Hand model, as shown in Figure 3. The deep pink points represent
our selected εiso.

parameterizations are generated by optimizing ∑i Area(ti)δ
con
i with

free boundaries using the KP-Newton method [GSC18].

4. Experiments

Our method generates short cuts for parameterizations, and we
apply it to various models. We report the timings and the cut quality
statistics, as shown in Table 3. Our experiments were performed on
a desktop PC with a 4.0 GHz Intel Core i7-4790K CPU and a 16
GB RAM.

Implementation details. We implement the KP-Newton method
independently, and the implementation for the progressive param-
eterization method is kindly provided by the authors. The Pardiso
solver is used to solve the linear systems in these two methods. Note
that no early adaptive termination criteria is used for them. We list
the used parameters in Table 1.

Quality metrics. The cut length and parameterization distortion
are used to measure the quality of a cut. For the cut length (denoted
as LC), we measure the sum of the length of each edge in C. To
mitigate the impact of the model size, we report LC w.r.t. Lbb, which
is the diagonal length of the bounding box of M. Here, we use
flip-free parameterizations as the resulting parameterizations. After
cutting the input meshM with a cut C, we optimize Eiso using the
method in [LYNF18] to generate a resulting parameterization whose
isometric distortion is denoted as Er

iso.

4.1. Evaluations

The filtering threshold εiso. In the filtering process, we use a
threshold εiso to determine the contribution of a candidate point.
We test thirteen different thresholds using a Hand model, and show
the relations to the distortion Er

iso, the number of feature points #F ,
and the cut length LC in Figure 10. These tests show that a larger
εiso value filters out more candidate feature points and results in
higher isometric distortions, while a smaller εiso value preserves

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
2.5

2.6

2.7

2.8

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
10

20

30

40

50

60

70

80

90

100

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
4

4.02

4.04

4.06

4.08

4.1

(a) (b) (c)log(εlen) log(εlen) log(εlen)

LC Time(ms) Er
iso

Figure 11: Different εlens. Twelve values for εlen are tested on a
Hand model, as shown in Figure 3. Our selected εlen is shown in
deep pink.

(a) Source (b) Sparse (c) Dense

(d) Noisy (e) Isotropic (f) Anisotropic

LC = 2.67Lbb
Er

iso = 4.093
LC = 2.68Lbb
Er

iso = 4.101
LC = 2.96Lbb
Er

iso = 4.093

LC = 2.76Lbb
Er

iso = 4.114
LC = 2.94Lbb
Er

iso = 4.098
LC = 2.68Lbb
Er

iso = 4.095

Figure 12: Different triangulations. We include six types of trian-
gulations: (a) source; (b) sparse; (c) dense; (d) noisy; (e) isotropic;
and (f) anisotropic. The anisotropic mesh is generated by the LCT
method [FLSG14].

more candidate feature points, thereby resulting in longer cuts. This
parameter can be used to control the tradeoff between cut length
and parameterization distortion. We select εiso = 0.01 as a default
for all other experiments to achieve a balance.

The threshold εlen in the greedy connection. In the greedy con-
nection algorithm, we use another threshold εlen to determine if
an auxiliary vertex makes a significant contribution to cut length
shortening. In Figure 11, we test twelve different εlen values for
a Hand model (Figure 3). From the line charts, we observe that
a smaller εlen value induces more auxiliary points and results in

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

197



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

LC = 4.32Lbb
Er

iso = 4.019
LC = 3.71Lbb
Er

iso = 4.086
LC = 3.88Lbb
Er

iso = 4.034

Figure 13: Results of uneven densities in triangulations.

(a) (b)
Figure 14: Different cut construction methods. In our greedy fea-
ture point connections, the MST-based method (a) and the SPH
method (b) are used, respectively. The zoom-out figures show the
differences (rendered in different colors) between the two methods
for cut construction.

shorter cuts but higher computational costs, while a larger εlen value
locates fewer auxiliary points, leading to longer cuts. To achieve a
tradeoff between efficiency and quality, we set εlen = 0.01Lbb.

Different triangulations. In Figure 12, six types of triangulations
representing a common shape are tested as input meshes. Although
only some of the detected feature points are found in similar loca-
tions, such as the ears, mouth, and feet, LC and Er

iso are similar in all
triangulations. In addition, we show some examples of triangulations
with uneven densities in Figure 13. It is observed that these models
have some symmetric features, and the detected feature points are
almost symmetric. Although our results are slightly different for
various triangulations for a single shape, the isometric distortions are
all at a low level. This indicates that our method reliably generates
high-quality results when using different triangulations as inputs.

Cut construction. A cut C = (VC ,EC) is a subgraph of the mesh
with a vertex set VC and an edge set EC . Another commonly used ap-
proximate solution to the Steiner tree problem is proposed in [TA80].
Given a set of feature points P , it constructs C as follows:

1. Compute the shortest path Ca,b on G between all pairs of the fea-
ture points va and vb, and find the nearest pair (vi,v j). Initialize
the cut C ← Ci, j.

2. Find the nearest pair of vertices vk ∈VC and vl ∈P \VC in terms
of graph distance, and the shortest path between them is Ck,l .

3. Add the vertices and edges of Ck,l to C.
4. If P \VC = ∅, stop the algorithm; otherwise, return to Step 2.

We call this method the shortest paths heuristic (SPH) method.
For comparison, the MST-based method is replaced with the SPH

Figure 15: Gallery. Our method succeeds in generating short cuts
for parameterizations with low isometric distortion.

method in our greedy connections for feature points. Figure 14
shows an example, where almost the same cuts are obtained by
the two methods. In all of the testing examples, the intermediate
differences are negligible.

Experiments on a data set. We test our method on a data set con-
sisting of 3,757 models with an average of 13,000 vertices, of which
two-thirds are CAD models and one-third are organic models. Our
data set also contains some simple models. Our method succeeds
in constructing cuts that result in flip-free parameterizations with
low isometric distortion in all models. We show eight models in Fig-
ure 15. All of the models and our C++ implementation are publicly
accessible at http://staff.ustc.edu.cn/~fuxm/.

Timings. For the Bunny model in Figure 12(c) with 120,000 trian-
gles, it takes 22.75 seconds, 175.91 seconds, and 3.63 seconds to
generate redundant feature points, filter redundant feature points,
and connect the feature points, respectively. Redundant feature point
generation, redundant feature point filtering, and feature point con-
nection takes 1.61 seconds, 3.74 seconds, and 0.08 seconds for the
Teddy model in Figure 22 with 11,596 triangles. The larger the size
of the input mesh, the more time it takes to compute planar parame-
terizations. Since planar parameterizations are used to generate and
filter redundant feature points, the time spent to carry out these two
processes is much longer than the time it takes to connect feature
points, especially in the greedy feature point filtering. Although we
have used the parameterization of the previous iteration to initialize

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

198

http://staff.ustc.edu.cn/~fuxm/


T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 >6
0

100

200

300

400

500

600

700

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 >6
0

100

200

300

400

500

600

700

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 >6
0

100

200

300

400

500

600

700

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 >6
0

100

200

300

400

500

600

700

(a) Seamster [SH02] (b) Geometry Image [GGH02]

(c) Sphere [CFH∗18] (d) Ours

Eseam
avg = 5.285

Eseam
max = 40.161

Eseam
std = 2.393

Esph
avg = 4.230

Esph
max = 31.357

Esph
std = 1.074

Egeo
avg = 4.410

Egeo
max = 15.594

Egeo
std = 0.466

Eours
avg = 4.096

Eours
max = 4.888

Eours
std = 0.072

Figure 16: Distributions of Eseam, Egeo, Esph, and Eours. The sub-
scripts max, avg, and std indicate the average, the maximum, and
the standard deviation of the resulting distortion for each method
across all test models.

the next iteration, the total number of iterations for solving the linear
system is still so large that it accounts for the majority of the total
time.

4.2. Comparisons with other methods for feature point
detection

First, we conduct comparisons with other methods for feature point
detection. We select the Seamster method [SH02], the Geometry
Image method [GGH02], and the sphere-based method [CFH∗18]
as competitors. The implementation of the sphere-based method is
kindly provided by the authors, and we implement the other two
competitors by ourselves. We run the three competitors and our
method on our data set. Our feature point connection method is used
in all methods to construct the final cuts.

We denote the resulting isometric distortion of the Seamster
method, the Geometry Image method, the sphere-based method,
and ours as Eseam, Egeo, Esph, and Eours, respectively. We show the
distortion distributions via histograms in Figure 16. Our method out-
performs the other methods judging from the statistics. Compared
to the other three methods, the feature points required to reduce the
isometric distortion are detected with higher accuracy.

We observe that the Seamster method and the Geometry Image
method usually leave out some necessary feature points for reducing
isometric distortion. Thus, their results often exhibit higher distor-
tion than ours (see the two examples in Figure 17). For the Red
Box model in the first row of Figure 17, the sphere-based method
achieves slightly smaller distortion than ours; however, its cut is
much longer than ours (4.94Lbb versus 2.66Lbb). The hierarchical
clustering method developed by the sphere-based method may omit
some feature points, resulting in large distortion (see the Vase model
in the second row of Figure 17). Maintaining small distortion while
reducing the number of feature points is a characteristic of our
greedy filtering process. In addition, the spherical parameterization

(a) [SH02] (b) [GGH02] (c) [CFH∗18] (d) Ours

Eseam
iso = 4.171 Egeo

iso = 4.272 Esph
iso = 4.060 Eours

iso = 4.090

Eseam
iso = 4.356 Egeo

iso = 4.548 Esph
iso = 4.270 Eours

iso = 4.048

Figure 17: Comparisons to the Seamster method, the Geometry
Image method, and the sphere-based method using the Red Box and
Vase for feature point detection.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ours (45.77%, 1.0017, 1.1023)

SPH (5.54%, 1.0230, 1.1915)

MST (4.57%, 1.0440, 1.3353)

Figure 18: Cumulative distribution functions of θ
mst, θ

sph, and θ
ours.

The text in the bracket indicates the percentage of examples with
θ = 1, the average θ, and the maximum θ of the corresponding
method over all examples, respectively.

method used by the sphere-based method cannot always generate
bijective parameterizations. In fact, there are 203 failed cases in
which bijective spherical parameterizations are not achieved.

4.3. Comparisons with other methods for feature point
connection

Our greedy connection of feature points is an approximate solution
to the Steiner tree problem. We then compare our technique to
three competitors, including the MST-based method [KMB81], the
SPH method [TA80], and the exact solution. The exact solution is
achieved by a dynamic programming algorithm [FKM∗07]. Since
the exact solution cannot be generated in a reasonable time if the
number of feature points is too large, the number of feature points
for testing is between four and ten. For each model in our data set,
we randomly generate seven collections of feature points, whose
numbers range from four to ten. We run the four methods on 26,229
test models.

We denote the cut length of the MST-based method, the SPH
method, ours, and the exact solution as Lmst, Lsph, Lours, and
Lexact, respectively. We report the ratios: θ

mst = Lmst/Lexact, θ
sph =

Lsph/Lexact, and θ
ours = Lours/Lexact, of which the cumulative dis-

tribution functions are illustrated in Figure 18. For 45.77% of the
examples, our results are the same as the exact solutions. According
to the statistics, we outperform the MST-based method and the SPH
method and approach the exact solutions.

Comparisons on the Alien and Rabbit models are shown in Fig-
ure 19. The cuts generated by our method are shorter than the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

199



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

(a) MST (b) SPH (c) Ours

θ
mst = 1.0880

θ
mst = 1.0151

θ
sph = 1.0228

θ
sph = 1.0055

θ
ours = 1.0029

θ
ours = 1.0000

Figure 19: Comparisons to the MST-based method, the SPH method,
and the exact solution on the Alien and Rabbit for feature point
connection. On each model, the union of the black and red lines
represents the exact solution, while the black and blue lines form
the approximate solution.

(a) AutoCuts (b) Ours (c) AutoCuts (d) Ours
Er

iso = 4.068
LC = 3.42Lbb

Er
iso = 4.062

LC = 2.87Lbb

Er
iso = 4.168

LC = 8.06Lbb

Er
iso = 4.131

LC = 2.92Lbb

Figure 20: Comparisons to the AutoCuts method for cut construc-
tion on the Buddha and Tiger models.

MST-based method and the SPH method, and for the Rabbit model,
the cut is even the same as the exact solution.

4.4. Comparisons with other methods for cut construction

Finally, we perform comparisons with other methods for cut con-
struction. We select the AutoCuts method [PTH∗17] and the Opt-
Cuts method [LKK∗18] as competitors. Besides, the cut construction
methods in [SH02,CFH∗18] use MST-based methods to connect the
detected feature points. From the comparisons in Section 4.2 and 4.3,
it is apparent that our method outperforms them in producing low
distortion and short cuts.

We conduct a comparison with the AutoCuts method using the
results provided by [LKK∗18]. Comparisons using the Buddha
model and the Tiger model are shown in Figure 20. Our results have
much shorter cuts while the distortions are almost the same.

The implementation for the OptCuts method is kindly provided
by the authors. Bijective parameterizations are enabled in both our
method and the OptCuts method for fair comparisons. We use the
method from [JSP17] to achieve our bijective parameterizations.
The input isometric distortion bound in the OptCuts method is set
as our resulting distortion, so the distortion values for the OptCuts
method and our method are almost the same. We run the OptCuts
method and our method on our data set.

The running timings for our method and the OptCuts method are
denoted as tours and topt. We denote the resulting cut length for our
method and OptCuts as Lours and Lopt, respectively. We report the

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
0

50

100

150

200

250

300

350

400

(a) ln(ρtime) (b) ln(ρlength)

ρtime
avg = 17.22

ρtime
std = 31.00

ρ
length
avg = 1.12

ρ
length
std = 0.17

Figure 21: Distributions of ln(ρtime) and ln(ρlength). The average
and standard deviation of ρ

time and ρ
length over all models are

denoted as ρ
time
avg , ρ

time
std , ρ

length
avg , and ρ

length
std , respectively.

(a) AutoCuts (b) Ours (c) AutoCuts (d) Ours
Er

iso = 4.106
LC = 4.16Lbb
234 seconds

Er
iso = 4.106

LC = 2.58Lbb
5.43 seconds

Er
iso = 4.148

LC = 4.32Lbb
315 seconds

Er
iso = 4.148

LC = 3.48Lbb
10.52 seconds

Figure 22: Comparisons to the OptCuts method for cut construction
on the Teddy and Spider models.

ratios: ρ
time = topt/tours and ρ

length = Lopt/Lours. The distributions
of ρ

time and ρ
length are illustrated via histograms, as shown in Fig-

ure 21. As shown in the statistics, when producing similar isometric
distortion levels, our method is one order of magnitude faster and
generates shorter cuts than the OptCuts method on average. Com-
parisons using a Teddy bear model and a Spider model are shown
in Figure 22, again verifying that our method is much faster and
generates shorter cuts than the OptCuts method.

Fairness in comparison with OptCuts. There are two commonly
used libraries, Eigen and Pardiso, to solve linear systems. OptCuts
adopts Eigen as the default linear system solver, while we use Par-
diso by default. However, to thoroughly compare the performance,
we test the performances of OptCuts and our method via four models
with both Pardiso and Eigen respectively in the same computer and
operating system. Table 2 lists the running time of each result. For
Optcuts, Pardiso has a small advantage over Eigen only when the
model has more than 50,000 vertices. Besides, it takes about 1.39
times longer to run with Pardiso than Eigen when the model has
around 13,000 vertices. As for our method, running with Pardiso
is slightly faster than running with Eigen. From the perspective of
algorithm efficiency, we use the faster setting of each method to
have a fair comparison since the average number of model vertices
in our data set is about 13,000. Overall, our method is faster than
OptCuts with both solvers.

5. Conclusion

Our method provides a novel technique for constructing short cuts
for parameterizations while maintaining low isometric distortion.
Due to two greedy strategies for filtering redundant feature points

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

200



T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

Model #vert OptCuts (Eigen) OptCuts (Pardiso) Ours (Eigen) Ours (Pardiso)

Swallow 10,000 162 228 10.64 8.95
Toy 13,000 225 337 10.21 8.86
Plane 15,000 113 143 12.67 11.20
Elephant 50,000 3,578 3,501 138.62 117.32

Table 2: Running time (in seconds) of two different linear system
solvers on four models.

(a) OptCuts (b) Ours (c) Ours + OptCuts

Er
iso = 4.050

LC = 3.26Lbb
234 seconds

Er
iso = 4.083

LC = 2.15Lbb
7.61 seconds

Er
iso = 4.050

LC = 2.49Lbb
92.61 seconds

Figure 23: Bounding isometric distortion. (a) The isometric dis-
tortion bound in the OptCuts method is set as 4.050. (b) Er

iso in
our method is larger than the bound. (c) We initialize the OptCuts
method as our result. The frames in the first row and the second row
show the model from two perspectives.

and connecting feature points, our method achieves short cuts and
low isometric distortion. It performs very fast, and the overall cut
quality is superior to previous methods. We have demonstrated the
efficacy of our method on a data set containing 3,757 models.

Bounded isometric distortion. Although our method tries to de-
tect necessary feature points in order to reduce isometric distortion,
we cannot explicitly bound it. For example, the maximum isometric
distortion in our data set is 4.888. Fortunately, our method is very
fast, so our method can be used as a pre-processing step in the Opt-
Cuts method to achieve bounded distortion. As shown in Figure 23,
to achieve the same user-specified isometric distortion bound as the
OptCuts method, combining our method with the OptCuts method
uses much less time and generates a shorter cut.

Cut length. For 21.2% of the examples, our method generates
longer cuts than the OptCuts method. This indicates that our output
leaves room for improvement in reducing cut length. Therefore, effi-
ciently and effectively reducing cut length while bounding isometric
distortion is still an intriguing direction for future research.

Acknowledgments

We would like to thank Minchen Li for sharing their source code
for [LKK∗18], and the anonymous reviewers for their constructive
suggestions and comments. This work is supported by the National
Natural Science Foundation of China (61802359), the Fundamen-
tal Research Funds for the Central Universities (WK0010460006,
WK0010450004), the Anhui Provincial Natural Science Foundation
(1808085QF208), and the Key R&D Program of Zhejiang Province
(2018C01112).

Model #tri #Fb/Lb/Eb
iso #Fa/La/Ea

iso #A/LC /Er
iso tg/t f /tc/ttotal (s)

Fish (Figure 1) 13000 54/2.48/4.060 7/1.87/4.043 4/1.79/4.050 1.78/4.09/0.04/5.91
Frog (Figure 1) 13000 41/4.29/4.112 16/3.88/4.190 15/3.19/4.179 2.39/10.08/0.54/13.01

Torso (Figure 2 (c)) 11392 87/3.73/4.048 12/2.13/4.131 6/2.01/4.141 2.17/9.78/0.13/12.08
Hand (Figure 3 (b)) 13000 96/4.07/4.029 7/3.50/4.083 5/2.55/4.095 1.92/8.41/0.07/10.39
GardenPig (Figure 4) 19022 92/4.74/4.036 9/2.74/4.067 5/2.33/4.072 2.81/11.80/0.12/14.73
Cow (Figure 5) 16452 71/4.84/4.043 13/3.39/4.087 9/3.10/4.096 2.74/8.10/0.22/11.05
Robot (Figure 7&8) 13000 122/5.03/4.043 15/3.32/4.091 11/2.80/4.098 2.11/15.72/0.29/18.12
Kitten (Figure 9) 15462 72/4.60/4.044 11/2.81/4.057 6/2.67/4.063 4.75/12.08/0.11/16.95

Bunny (Figure 12 (a)) 13000 79/6.07/4.048 11/2.94/4.092 9/2.67/4.093 2.23/9.14/0.12/11.49
Bunny (Figure 12 (b)) 2000 33/4.93/4.073 12/2.94/4.103 6/2.68/4.101 0.52/1.22/0.02/1.76
Bunny (Figure 12 (c)) 120000 188/7.49/4.031 19/3.40/4.082 11/2.96/4.093 22.75/175.91/3.63/202.30
Bunny (Figure 12 (d)) 13000 265/10.72/4.039 12/2.90/4.103 5/2.76/4.114 1.95/22.83/0.09/24.87
Bunny (Figure 12 (e)) 14797 59/5.42/4.058 8/3.36/4.146 4/2.94/4.098 2.32/7.38/0.07/9.77
Bunny (Figure 12 (f)) 10043 49/5.27/4.060 11/3.05/4.136 6/2.68/4.095 1.49/6.06/0.08/7.63

Head (Figure 13) 109945 219/7.57/4.008 41/4.57/4.020 17/4.32/4.019 17.47/146.06/22.83/186.93
Oni (Figure 13) 107810 99/5.59/4.054 20/4.01/4.097 11/3.71/4.086 16.90/78.73/4.09/100.25
Buddha (Figure 13) 114335 235/8.60/4.015 26/4.04/4.035 9/3.88/4.034 18.00/190.40/5.08/214.07
Armchair (Figure 14 (a)) 18342 98/5.03/4.018 9/2.51/4.061 2/2.43/4.075 2.65/15.46/0.05/18.16

Dragon (Figure 15) 16326 1192/15.66/4.019 14/2.82/4.101 11/2.52/4.103 3.67/119.12/0.56/123.36
Kangaroo (Figure 15) 14958 156/6.58/4.033 12/3.57/4.097 12/3.19/4.123 2.49/17.39/0.35/20.23
Octopus (Figure 15) 16272 42/4.61/4.078 9/5.42/4.072 10/3.91/4.113 4.04/5.78/0.28/10.10
Uu-memento (Figure 15) 15945 67/5.53/4.089 16/4.87/4.112 12/4.09/4.116 2.96/11.41/0.51/14.88
Asclepius (Figure 15) 24994 410/10.19/4.054 15/3.08/4.113 14/2.88/4.120 14.96/83.05/1.10/99.11
Rockerarm (Figure 15) 10044 79/5.10/4.026 12/2.96/4.139 5/2.83/4.157 3.36/7.73/0.10/11.20
Fertility (Figure 15) 13971 61/4.85/4.061 14/4.03/4.161 9/3.88/4.084 4.87/8.51/0.31/13.69
Pegaso (Figure 15) 15319 154/7.99/4.100 21/4.94/4.190 21/4.71/4.131 5.93/32.67/1.92/40.52

Red (Figure 17) 12767 644/20.35/4.030 11/2.78/4.085 3/2.66/4.090 3.67/62.60/0.05/66.33
Vase (Figure 17) 13315 93/4.03/4.022 9/2.38/4.041 3/2.24/4.048 2.14/8.67/0.03/10.84
Alien (Figure 19) 17732 102/5.85/4.096 17/4.98/4.119 19/3.73/4.129 3.16/14.44/1.11/18.72
Rabbit (Figure 19) 13697 66/5.03/4.058 10/3.30/4.125 7/2.79/4.133 1.95/6.65/0.10/8.70
Buddha (Figure 20) 5002 102/7.76/4.032 11/2.92/4.071 4/2.87/4.062 0.96/8.13/0.03/9.14
Tiger (Figure 20) 5396 68/4.28/4.105 18/3.697/4.104 17/2.92/4.131 1.52/10.67/0.40/12.60
Teddy (Figure 22) 11596 36/3.51/4.141 10/2.85/4.073 6/2.58/4.106 1.61/3.74/0.08/5.43
Spider (Figure 22) 16220 51/4.36/4.145 12/4.10/4.107 12/3.48/4.148 2.35/7.82/0.35/10.52
Cat (Figure 23) 13000 69/3.73/4.044 8/2.52/4.090 5/2.15/4.083 2.15/5.39/0.072/7.61

Table 3: Statistics and timings of our results. We report the number
of triangles of the input mesh (“#tri”), the number of feature points,
the cut length, and parameterization distortion before (“#Fb, Lb,
and Eb

iso”) and after filtering (“#Fa, La, and Ea
iso”), the number

of auxiliary points (“#A”), the length of the resulting cut (“LC”),
the isometric distortion metric of the resulting parameterization
(“Er

iso”), and the computational time in seconds for redundant fea-
ture point generation (“tg”), redundant feature point filtering (“t f ”)
and feature point connection (“tc”). Lb, La, and LC are in Lbb, which
is the diagonal length of the bounding box ofM. Note that the cuts
before and after filtering are constructed by the MST-based method
using the candidate feature pointsFb and final feature pointsFa, re-
spectively. For high-genus models, we report the statistics ofMone.

References
[BCGB08] BEN-CHEN M., GOTSMAN C., BUNIN G.: Conformal flatten-

ing by curvature prescription and metric scaling. Comput. Graph. Forum
27, 2 (2008), 449–458. 3

[Bea89] BEASLEY J. E.: An SST-based algorithm for the Steiner problem
in graphs. Networks 19, 1 (1989), 1–16. 3

[BGRS13] BYRKA J., GRANDONI F., ROTHVOSS T., SANITÀ L.: Steiner
tree approximation via iterative randomized rounding. Journal of the ACM
(JACM) 60, 1 (2013), 6. 3

[BR94] BERMAN P., RAMAIYER V.: Improved approximations for the
Steiner tree problem. Journal of Algorithms 17, 3 (1994), 381–408. 3

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-
rangulation. ACM Trans. Graph. 28, 3 (2009), 77:1–77:10. 3

[CFH∗18] CHAI S., FU X.-M., HU X., YANG Y., LIU L.: Sphere-based
Cut Construction for Planar Parameterizations. Computer & Graphics 74
(2018), 66–75. 2, 3, 6, 9, 10

[CFL19] CHAI S., FU X.-M., LIU L.: Voting for Distortion Points in
Geometric Processing. IEEE. T. Vis. Comput. Gr. (2019). 3

[DFW13] DEY T. K., FAN F., WANG Y.: An Efficient Computation of
Handle and Tunnel Loops via Reeb Graphs. ACM Trans. Graph. 32, 4
(2013), 32:1–32:10. 6

[FGK08] FOMIN F. V., GRANDONI F., KRATSCH D.: Faster Steiner tree
computation in polynomial-space. In European Symposium on Algorithms
(2008), pp. 430–441. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

201

https://doi.org/10.1111/j.1467-8659.2008.01142.x
https://doi.org/10.1111/j.1467-8659.2008.01142.x
https://doi.org/10.1002/net.3230190102
https://doi.org/10.1002/net.3230190102
ttps://doi.org/10.1145/2432622.2432628
ttps://doi.org/10.1145/2432622.2432628
https://doi.org/10.1006/jagm.1994.1041
https://doi.org/10.1006/jagm.1994.1041
https://doi.org/10.1145/1576246.1531383
https://doi.org/10.1145/1576246.1531383
https://doi.org/10.1016/j.cag.2018.05.007
https://doi.org/10.1016/j.cag.2018.05.007
http://doi.org/10.1109/TVCG.2019.2947420
http://doi.org/10.1109/TVCG.2019.2947420
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1007/978-3-540-87744-8_36
https://doi.org/10.1007/978-3-540-87744-8_36


T. Zhu & C. Ye & S. Chai & X. Fu / Greedy Cut Construction for Parameterizations

[FH05] FLOATER M. S., HORMANN K.: Surface parameterization: a
tutorial and survey. In In Advances in Multiresolution for Geometric
Modelling (2005), Springer, pp. 157–186. 2

[FKM∗07] FUCHS B., KERN W., MOLLE D., RICHTER S., ROSS-
MANITH P., WANG X.: Dynamic programming for minimum Steiner
trees. Theory of Computing Systems 41, 3 (2007), 493–500. 9

[FLG15] FU X.-M., LIU Y., GUO B.: Computing locally injective map-
pings by advanced MIPS. ACM Trans. Graph. 34, 4 (2015), 71:1–71:12.
2

[Flo03] FLOATER M. S.: One-to-one piecewise linear mappings over
triangulations. Math. Comput. 72 (2003), 685–696. 2

[FLSG14] FU X.-M., LIU Y., SNYDER J., GUO B.: Anisotropic sim-
plicial meshing using local convex functions. ACM Trans. Graph. 33, 6
(2014), 182:1–182:11. 7

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry Images. ACM
Trans. Graph. 21, 3 (2002), 355–361. 2, 3, 9

[GSC18] GOLLA B., SEIDEL H.-P., CHEN R.: Piecewise linear mapping
optimization based on the complex view. Comput. Graph. Forum 37, 7
(2018), 233–243. 2, 4, 7

[Hak71] HAKIMI S. L.: Steiner’s problem in graphs and its implications.
Networks 1, 2 (1971), 113–133. 3

[HFL18] HU X., FU X.-M., LIU L.: Advanced Hierarchical Spherical
Parameterizations. IEEE. T. Vis. Comput. Gr. 24, 6 (2018), 1930–1941. 3

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global
parametrization method. In Curve and Surface Design: Saint-Malo 1999.
Vanderbilt University Press, 2000, pp. 153–162. 2, 3

[HLS07] HORMANN K., LÉVY B., SHEFFER A.: Mesh Parameteriza-
tion: Theory and Practice. In ACM SIGGRAPH 2007 Courses (2007),
SIGGRAPH ’07. 2, 3

[HRW92] HWANG F. K., RICHARDS D. S., WINTER P.: The steiner tree
problem. Annals of Discrete Mathematics 53 (1992). 3

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-Charts: Quasi-
Developable Mesh Segmentation. In Comput. Graph. Forum (2005),
vol. 24, pp. 581–590. 2

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial Complex
Augmentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6
(2017), 186:1–186:9. 2, 10

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally Optimal Direction Fields. ACM Trans. Graph. 32, 4 (2013), 59:1–
59:10. 3

[KMB81] KOU L., MARKOWSKY G., BERMAN L.: A fast algorithm for
Steiner trees. Acta informatica 15, 2 (1981), 141–145. 2, 3, 5, 6, 9

[LDB17] LUCQUIN V., DEGUY S., BOUBEKEUR T.: SeamCut: Interac-
tive Mesh Segmentation for Parameterization. In ACM SIGGRAPH 2017
Technical Briefs (2017). 3

[LFY∗19] LIU H.-Y., FU X.-M., YE C., CHAI S., LIU L.: Atlas Refine-
ment with Bounded Packing Efficiency. ACM Trans. Graph. 38, 4 (2019),
33:1–33:13. 3

[LKK∗18] LI M., KAUFMAN D. M., KIM V. G., SOLOMON J., SHEFFER
A.: OptCuts: Joint Optimization of Surface Cuts and Parameterization.
ACM Trans. Graph. 37, 6 (2018), 247:1–247:13. 1, 2, 10, 11

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least squares
conformal maps for automatic texture atlas generation. ACM Trans. Graph.
21, 3 (2002), 362–371. 2

[LVS18] LIMPER M., VINING N., SHEFFER A.: Box Cutter: Atlas Re-
finement for Efficient Packing via Void Elimination. ACM Trans. Graph.
37, 4 (2018), 153:1–153:13. 3

[LYNF18] LIU L., YE C., NI R., FU X.-M.: Progressive Parameteriza-
tions. ACM Trans. Graph. 37, 4 (2018), 41:1–41:12. 2, 5, 6, 7

[LZF∗19] LIU H., ZHANG X.-T., FU X.-M., DONG Z.-C., LIU L.:
Computational Peeling Art Design. ACM Trans. Graph. 38, 4 (2019),
64:1–64:12. 3

[MZ12] MYLES A., ZORIN D.: Global Parametrization by Incremental
Flattening. ACM Trans. Graph. 31, 4 (2012), 109:1–109:11. 3

[PTH∗17] PORANNE R., TARINI M., HUBER S., PANOZZO D.,
SORKINE-HORNUNG O.: Autocuts: Simultaneous Distortion and Cut
Optimization for UV Mapping. ACM Trans. Graph. 36, 6 (2017), 215:1–
215:11. 1, 2, 3, 10

[PUW18] PAJOR T., UCHOA E., WERNECK R. F.: A robust and scalable
algorithm for the Steiner problem in graphs. Mathematical Programming
Computation 10, 1 (2018), 69–118. 3

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable Locally Injective Mappings. ACM Trans. Graph.
36, 2 (2017), 16:1–16:16. 2

[RZ05] ROBINS G., ZELIKOVSKY A.: Tighter bounds for graph Steiner
tree approximation. SIAM Journal on Discrete Mathematics 19, 1 (2005),
122–134. 3

[SC18] SHARP N., CRANE K.: Variational Surface Cutting. ACM Trans.
Graph. 37, 4 (2018), 156:1–156:13. 3

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R., LISCHIN-
SKI D.: Bounded-distortion piecewise mesh parameterization. In Pro-
ceedings of the Conference on Visualization ’02 (2002), pp. 355–362.
2

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J., HOPPE H.:
Signal-specialized parametrization. In Proceedings of the 13th Euro-
graphics Workshop on Rendering (2002), pp. 87–98. 2

[SH02] SHEFFER A., HART J. C.: Seamster: inconspicuous low-distortion
texture seam layout. In Proceedings of the conference on Visualization’02
(2002), pp. 291–298. 2, 3, 9, 10

[She02] SHEFFER A.: Spanning tree seams for reducing parameterization
distortion of triangulated surfaces. In Shape Modeling International
(2002), pp. 61–66. 2, 3

[SJZP19] SHEN H., JIANG Z., ZORIN D., PANOZZO D.: Progressive
Embedding. ACM Trans. Graph. 38, 4 (2019), 32:1–32:13. 2

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A Concise and Provably
Informative Multi-Scale Signature Based on Heat Diffusion. Comput.
Graph. Forum 28, 5 (2009), 1383–1392. 3

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameterization
methods and their applications. Found. Trends. Comput. Graph. Vis. 2, 2
(2006), 105–171. 2

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O., KO-
VALSKY S., LIPMAN Y.: Geometric Optimization via Composite Ma-
jorization. ACM Trans. Graph. 36, 4 (2017), 38:1–38:11. 2

[SS15] SMITH J., SCHAEFER S.: Bijective Parameterization with Free
Boundaries. ACM Trans. Graph. 34, 4 (2015), 70:1–70:9. 2, 3

[SSC18] SOLIMAN Y., SLEPČEV D., CRANE K.: Optimal Cone Sin-
gularities for Conformal Flattening. ACM Trans. Graph. 37, 4 (2018),
105:1–105:17. 3

[SSP08] SPRINGBORN B., SCHRÖDER P., PINKALL U.: Conformal
equivalence of triangle meshes. ACM Trans. Graph. 27, 3 (2008), 77:1–
77:11. 3

[TA80] TAKAHASHI H., AKIRA M.: An approximate solution for the
Steiner problem in graphs. Mathematica Japonica 24, 6 (1980), 573–577.
3, 8, 9

[Tut63] TUTTE W. T.: How to draw a graph. In Proceedings of the London
Mathematical Society (1963), vol. 13, pp. 747–767. 2

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. Comput. Graph. Forum 35, 2 (2016),
545–572. 3

[ZSGS04] ZHOU K., SYNDER J., GUO B., SHUM H.-Y.: Iso-charts:
Stretch-driven Mesh Parameterization Using Spectral Analysis. In Pro-
ceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (2004), pp. 45–54. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

202

https://doi.org/10.1007/3-540-26808-1_9
https://doi.org/10.1007/3-540-26808-1_9
https://doi.org/10.1007/s00224-007-1324-4
https://doi.org/10.1007/s00224-007-1324-4
https://doi.org/10.1145/2766938
https://doi.org/10.1145/2766938
https://doi.org/10.1090/S0025-5718-02-01466-7
https://doi.org/10.1090/S0025-5718-02-01466-7
https://doi.org/10.1145/2661229.2661235
https://doi.org/10.1145/2661229.2661235
https://doi.org/10.1145/566654.566589
https://doi.org/10.1111/cgf.13563
https://doi.org/10.1111/cgf.13563
https://doi.org/10.1002/net.3230010203
https://doi.org/10.1109/TVCG.2017.2704119
https://doi.org/10.1109/TVCG.2017.2704119
https://doi.org/10.1145/3250694
https://doi.org/10.1145/3250694
https://doi.org/10.1111/j.1467-8659.2005.00883.x
https://doi.org/10.1111/j.1467-8659.2005.00883.x
https://doi.org/10.1145/3130800.3130895
https://doi.org/10.1145/3130800.3130895
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1007/BF00288961
https://doi.org/10.1007/BF00288961
https://doi.org/10.1145/3145749.3149435
https://doi.org/10.1145/3145749.3149435
https://doi.org/10.1145/3306346.3323001
https://doi.org/10.1145/3306346.3323001
https://doi.org/10.1145/3272127.3275042
https://doi.org/10.1145/566654.566590
https://doi.org/10.1145/566654.566590
https://doi.org/10.1145/3197517.3201328
https://doi.org/10.1145/3197517.3201328
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/3197517.3201331
https://doi.org/10.1145/3306346.3323000
https://doi.org/10.1145/2185520.2185605
https://doi.org/10.1145/2185520.2185605
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1145/3130800.3130845
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1145/2983621
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1145/3197517.3201356
https://doi.org/10.1109/SMI.2002.1003529
https://doi.org/10.1109/SMI.2002.1003529
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1145/3306346.3323012
https://doi.org/10.1111/j.1467-8659.2009.01515.x
https://doi.org/10.1111/j.1467-8659.2009.01515.x
https://doi.org/10.1561/0600000011
https://doi.org/10.1561/0600000011
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/3072959.3073618
https://doi.org/10.1145/2766947
https://doi.org/10.1145/2766947
https://doi.org/10.1145/3197517.3201367
https://doi.org/10.1145/3197517.3201367
https://doi.org/10.1145/1399504.1360676
https://doi.org/10.1145/1399504.1360676
https://doi.org/10.1007/978-1-4613-0255-1_7
https://doi.org/10.1007/978-1-4613-0255-1_7
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1111/cgf.12864
https://doi.org/10.1111/cgf.12864
https://doi.org/10.1145/1057432.1057439
https://doi.org/10.1145/1057432.1057439



