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Can’t Invert the CDF?
The Triangle-Cut Parameterization of the Region under the Curve
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Figure 1: The triangle-cut parameterization. Analytic sampling is typically achieved by inverting the Cumulative Distribution Function (CDF)
of the target density. Intuitively, the inverse CDF partitions the region under the curve according to a uniform random number u ∈ [0,1].
In this example, the CDF is not analytically invertible. Our idea is to use the analytic inverse CDF of an approximate density and fix it by
cutting a triangle such that the partitioning with respect to u ∈ [0,1] remains correct. By sampling along the partitioning segment using a
second random number, we obtain a 2D area-preserving parameterization that we use to sample points uniformly in the region under the
curve of the density. The computation of these points is fully analytic and their abscissae are distributed with the target density.

Abstract
We present an exact, analytic and deterministic method for sampling densities whose Cumulative Distribution Functions (CDFs)
cannot be inverted analytically. Indeed, the inverse-CDF method is often considered the way to go for sampling non-uniform
densities. If the CDF is not analytically invertible, the typical fallback solutions are either approximate, numerical, or non-
deterministic such as acceptance-rejection. To overcome this problem, we show how to compute an analytic area-preserving
parameterization of the region under the curve of the target density. We use it to generate random points uniformly distributed
under the curve of the target density and their abscissae are thus distributed with the target density. Technically, our idea is
to use an approximate analytic parameterization whose error can be represented geometrically as a triangle that is simple to
cut out. This triangle-cut parameterization yields exact and analytic solutions to sampling problems that were presumably not
analytically resolvable.

CCS Concepts
•Mathematics of computing → Stochastic processes;

1. Introduction

Monte Carlo integration relies heavily on the generation of random
variates from non-uniform distributions. The statistical literature
offers a variety of techniques for this purpose [Dev86]. However,
the majority of them are not recommended for Monte Carlo ren-
dering. Indeed, it is well known that Monte Carlo estimators can
greatly benefit from sample stratification [Shi91] and the rendering
community actively researches stratified sampling techniques. The

main component of stratified sampling is an area-preserving (for
a region) or integral-preserving (for a density) parameterization.
These parameterizations are bijective mappings between the unit
square (where uniform random numbers are sampled) and the tar-
get region or density. The ability to find and evaluate these parame-
terizations is the key to stratified sampling and the main motivation
behind this paper.
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The successful research of analytic parameterizations. With
stratified sampling for Monte Carlo rendering as a motivation,
the computer graphics community started to revisit parameteriza-
tions of simple shapes such as triangles [Tur90], disks [SC97],
cylinders and spheres [SWZ96]. Occasionally, improvements can
still be found for simple shapes such as triangles [Hei19] but the
community moved on to more challenging problems. To approach
these new problems, Arvo promoted a general recipe for comput-
ing area-preserving parameterizations of arbitrary regions or dis-
tributions [Arv01]. It is based on the classic inverse-CDF sam-
pling method, which consists of inverting the integral of the tar-
get domain or density, represented by its Cumulative Distribution
Function (CDF). Today, the inverse-CDF method is largely con-
sidered the way to go for computing area-preserving parameteri-
zations. It has been successfully used to obtain analytic solutions
for the hemisphere [Arv01], Phong distributions [Arv01], spherical
triangles [Arv95], convex quadrilaterals [AN07], spherical rectan-
gles [UnFK13], and the distribution of visible normals of micro-
facet surfaces [Hd14, Hei18].

Stumbling on more complex problems. Unfortunately, only a
fraction of functions can be analytically inverted, and the main-
stream inverse-CDF method often fails to provide analytic param-
eterizations. It is interesting to point out that the more the com-
munity tries to address complicated problems, the less likely it
seems to obtain analytic parameterizations. For instance, Gamito
observed that the inverse-CDF parameterization for the solid an-
gle of disks and cylinders is not analytic and instead falls back to
a simpler proxy shape with rejection sampling, which breaks the
stratification [Gam16]. Urẽna et al. chose to not compromise the
stratification of spherical ellipses and they use Newton iterations
to make a numerical inversion of the non-analytically invertible
CDFs, which is computationally expensive [GUnK∗17]. Another
interesting example is the area-preserving parameterization of a
truncated disk as in Figure 2, which has been recently motivated
by stratified sampling of projected spherical caps [UnG18, PD19].
While a truncated disk appears to be a simple shape, its CDF can-
not be analytically inverted, so these previous works do not pro-
vide an analytic and exact solution. Urẽna and Georgiev invert the
CDF numerically and Peters and Dachsbacher designed an analytic
approximation. Other communities face the same problem. For in-
stance, elaborate phase functions for astronomy do not have ana-
lytic inverse CDFs either [Zha19]. Recent works in graphics have
started to approach difficult sampling problems with machine learn-
ing [MMR∗19, ZZ19]. All considered, we should not expect to ob-
tain exact and analytic solutions when tackling more difficult sam-
pling problems in the future.

Insights. Our contribution arises from several observations that
can be made by looking at the truncated-disk example of Figure 2.
First, we note that finding an area-preserving parameterization for
the truncated disk is equivalent to finding one for the region under
the curve of its marginal density. More generally:

→ Observation 1: Many interesting 2D densities have a trivial
mapping to the 2D region under the curve of their 1D marginal
density.

Furthermore, by looking at the region under the curve, we can see
that the inverse-CDF parameterization is special.

→ Observation 2: The inverse CDF computes a unique area-
preserving parameterization of the region under the curve that is
axis aligned.

If this axis-aligned parameterization is not analytic, the inverse-
CDF approach leaves no other choice than using a numerical in-
version or an approximation. However, we might envision other
options.

→ Observation 3: There are an infinite number of alternative non-
axis-aligned area-preserving parameterizations that we could use.

If one of these alternative parameterizations is analytic, then we can
obtain analytic stratified sampling even when the CDF is not ana-
lytically invertible. But are some of these alternative parameteriza-
tions analytic? We are not aware of relevant previous work on the
topic. We thus created one of these alternative parameterizations
that we call the triangle-cut parameterization shown in Figure 1.

unit square marginal density truncated disk

⇒ ⇔
inverse CDF
(not analytic) (analytic)

⇒ ⇔
triangle cut
(analytic) (analytic)

Figure 2: Stratified sampling of a truncated disk. The parameter-
ization of a 2D region or density can also be regarded as a pa-
rameterization of the region under the curve of its 1D marginal
density. Under the region of the curve, the inverse-CDF method
computes a unique parameterization that is axis aligned. In this ex-
ample, this axis-aligned parameterization cannot be evaluated an-
alytically and previous works use either a numerical inversion or
an approximation [UnG18, PD19]. With the triangle cut, we relax
the axis-aligned constraint to obtain an alternative area-preserving
parameterization that can be evaluated analytically (Sec. 5).

Contributions. After recalling the classic inverse-CDF parameter-
ization in Section 2, we make the following contributions:

• In Section 3, we introduce an alternative area-preserving param-
eterization of the 2D region under the curve of a 1D density that
we call the triangle-cut parameterization. We obtain it by reg-
ularizing an approximate analytic parameterization whose error
can be represented as a triangle that we cut out. We show how to
evaluate it analytically and provide a formal proof that, so long
as the approximation meets some conditions, it is an exact area-
preserving bijection.

• In Section 4, we explain how the triangle-cut parameterization
can be used for sampling 1D densities and for stratified sam-
pling of 2D densities. We apply this approach to a truncated disk
(Sec. 5), the surface of a torus (Sec. 6), a polar shape (Sec. 7), a
polynomial density (Sec. 8), and a subsurface-scattering model
(Sec. 9).
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unit square inverse CDF (Section 2) triangle cut (Section 3)
(u,v) ∈ [0,1]2 (x,y) = ΦF−1 (u,v) (x,y) = Φtri (u,v)

(a) Partitioning the region un-
der the curve of density f . The
partitioning is such that the
area of the left part is u and the
area of the right part is 1−u. u 1−u
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(b) Infinitesimal thickness of
the partitioning segment. The
parameterization maps an in-
finitesimal vertical slice of area
du to an infinitesimal slice of
the same area.
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(c) Sampling the partitioning
segment. The partitioning seg-
ment is sampled with a distri-
bution proportional to its in-
finitesimal thickness.
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(d) Jacobian of the parameteri-
zation. The parameterization is
area preserving if it maps in-
finitesimal regions to infinitesi-
mal regions of the same area.
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du

dv
dudv
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(e) Visualization of the param-
eterization. All the cells of the
checkers have the same area.

U

V

(u,v) (x,y) = ΦF−1 (u,v)

y = f (x)

X

Y
y = f (x)

X

Y

(x,y) = Φtri (u,v)

Figure 3: Area-preserving parameterizations of the 2D region under the curve of a 1D density. The inverse CDF computes a unique
area-preserving parameterization that is axis aligned. When the inverse-CDF parameterization is not analytic, we propose to compute an
alternative non-axis-aligned parameterization that is also area preserving and that can be analytically computed.
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2. Background on the Inverse-CDF Parameterization

In this section, we review classic and well-known results related to
the inverse CDF. The point is to review the derivation of an area-
preserving parameterization in order to prepare the reader for Sec-
tion 3, where we introduce our new parameterization with the same
methodology, as shown in Figure 3.

Probability Distribution Function (PDF). We consider a density

f (x) = y, (1)

that is a PDF, i.e. it is non-negative and integrates to exactly 1.

Cumulative Distribution Function (CDF) The CDF is the inte-
gral of the PDF and we denote it with the same capitalized letter:

F (x) =
∫ x

−∞
f
(
x′
)

dx′. (2)

Inverse Cumulative Distribution Function (iCDF). The inverse
CDF maps a uniform random number u ∈ [0,1] to a point dis-
tributed with density f :

x = F−1 (u) . (3)

The inverse CDF is represented in Figure 3-(a). It partitions the
region under the curve of f with a vertical segment located at x
such that the area of the left part is u and the area of the right part is
1−u. As shown in Figure 3-(b), the consequence is that it maps an
infinitesimal vertical slice of area du in the uniform distribution to
an infinitesimal vertical slice of the same area du = f (x)dx under
the curve of f . The larger f (x), the smaller dx. The density of x is
thus proportional to f .

Fundamental theorem of simulation. This theorem states that
uniform sampling of the region under the curve of a PDF is equiv-
alent to sampling this PDF [MLM18]. This is what motivated us
to look into area-preserving parameterizations that can be used to
sample 2D points (x,y) uniformly distributed in the region under
the curve of f .

Parameterizing the region under the curve. In the case of the
inverse-CDF parametrization, Equation (3) yields a 1D point x dis-
tributed with density f . The second coordinate y can thus be sam-
pled uniformly over the vertical segment, i.e. by multiplying a uni-
form random number v ∈ [0,1] by f (x), as shown in Figure 3-(c).
The inverse-CDF parameterization of the region under the curve is
defined by

ΦF−1 (u,v) = (x,y) =
(

F−1 (u) ,v f (x)
)
, (4)

and it is shown in Figure 3-(e).

Proof that the parameterization is area preserving. Intuitively,
the parameterization is area preserving because, by construction,
it maps an infinitely small region of area dudv to a region of the
same area, as shown in Figure 3-(d). Formally, proving that it is
area preserving means showing that the determinant of its Jacobian
matrix is 1 everywhere. We compute the partial derivatives

∂x
∂u

=
1

f (x)
,

∂x
∂v

= 0,
∂y
∂u

=
f ′ (x)
f (x)

v,
∂y
∂v

= f (x) , (5)

and the determinant of the Jacobian matrix evaluates to∣∣∣JΦF−1

∣∣∣= ∣∣∣∣∣
(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣∣∣= 1. (6)

Discussion. In many real-life problems, the integral of the den-
sity can be evaluated analytically (F is analytic) but cannot be an-
alytically inverted (F−1 is not analytic). In the next section, we
introduce an alternative parameterization that avoids non-analytic
inversions.

3. The Triangle-Cut Parameterization

In this section, we introduce an alternative analytic area-preserving
parameterization Φtri of the region under the curve of density f that
we call the triangle-cut parameterization.

Problem statement. Our goal is to compute an area-preserving
parameterization of the region under the curve of a target density
f . A classic problem to overcome is that we can easily evaluate F
but not F−1. Our idea is to use an approximate density g whose
inverse-CDF parameterization can be computed analytically and
we apply a triangle cut, a modification such that it becomes an area-
preserving parameterization Φtri of the region under the curve of f .

3.1. Evaluation of the Triangle-Cut Parameterization

We now show how to map two uniform random numbers (u,v) ∈
[0,1]2 to a random point (x,y) = Φtri (u,v) distributed uniformly in
the region under the curve of f . We prove it in Section 3.2.

Approximate density. The first step consists of mapping the ran-
dom number u to a sample xa from the approximate density g:

xa = G−1 (u) . (7)

In Figure 4-(a), we can see that xa is perfectly distributed with den-
sity g because it perfectly partitions the region under the curve of
g. However, as shown in Figure 4-(b), the bias of xa with respect
to f can be visualized as an excess or loss of area ε in the vertical
partitioning of the region under the curve, which is measured by

ε = u−F (xa) . (8)

Triangle cut. To fix the incorrect partitioning of Figure 4-(b), we
cut out a region that has the same area as the error ε. We found that
the simplest way to remove the error was to cut out a triangle, as
shown in Figure 4-(c). Indeed, since we know the area ε and the
height f (xa) of the triangle, the location xb of the new vertex is
given by

ε =
(xb− xa) f (xa)

2
⇒ xb = xa +

2ε

f (xa)
. (9)

After removing the triangle, we obtain a correct partitioning of the
region under the curve, which is represented in Figure 3-(a). In
summary, for a given u ∈ [0,1], the end points of the partitioning
segment are

Pa(u) = (xa,ya) =
(

G−1 (u) , f (xa)
)
, (10)

Pb(u) = (xb,yb) =

(
xa +2

u−F (xa)

f (xa)
,0
)
. (11)
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As a result, this partitioning maps an infinitesimal vertical slice of
area du in the uniform distribution to an infinitesimal slice of the
same area under the curve of f , as shown in Figure 3-(b).

(a) sampling g (b) error on f (c) triangle cut

u 1−u

xa = G−1 (u)

y = g(x)

X

Y

u+ ε 1−u− ε

xa = G−1 (u)

y = f (x)

X

Y

u ε 1−u− ε

xaxb

y = f (x)

X

Y

Figure 4: The triangle cut. We generate sample xa using an ap-
proximate density g. While xa perfectly partitions the region under
the curve of g, it produces an error under the curve of f . This error
can be interpreted as an excess or loss of area ε. Our idea is to fix
the partition by cutting out a triangle of the same area.

Infinitesimal thickness of the partitioning segment. The next
step consists of sampling a point on the partitioning segment with
the second random number v, as illustrated in Figure 3-(c). To ob-
tain an area-preserving parameterization, we partition the infinites-
imal region of area du swept by the segment when u increases by
du. In contrast to the inverse-CDF parameterization, where the in-
finitesimal thickness is distributed uniformly along the segment, in
this case the infinitesimal region is shaped as a convex quadrilateral
(see Figure 5). The thickness of a convex quadrilateral is distributed
proportionally to an affine function that interpolates the infinitesi-
mal thicknesses at the end points [AN07]. The thicknesses at the
end points Pa and Pb are defined by the dot products of the deriva-
tives of the end points:

∂xa

∂u
=

1
g(xa)

, (12)

∂ya

∂u
=

f ′ (xa)

g(xa)
, (13)

∂xb
∂u

=
1

g(xa)
+2

(g(xa)− f (xa)) f (xa)− f ′ (xa) (u−F (xa))

f (xa)
2 g(xa)

,

(14)

∂yb
∂u

= 0, (15)

with the normal of the segment N = (nx,ny):

(nx,ny) =
(ya− yb,xb− xa)

‖(ya− yb,xb− xa)‖
=

(
f (xa),2

(u−F(xa))
f (xa)

)
∥∥∥( f (xa),2

(u−F(xa))
f (xa)

)∥∥∥ . (16)

By expanding and simplifying the dot products

wa = (nx,ny) ·
(

∂xa

∂u
,

∂ya

∂u

)
, (17)

wb = (nx,ny) ·
(

∂xb
∂u

,
∂yb
∂u

)
, (18)

we obtain the infinitesimal thicknesses

wa ∝ f (xa)
2 +2 (u−F (xa)) f ′(xa), (19)

wb ∝ 2 f (xa) g(xa)−
[

f (xa)
2 +2 (u−F (xa)) f ′(xa)

]
, (20)

whose proportionality factor is the same and cancels out in the
affine thickness density function shown in Figure 5-(right):

w(t) = 2
t wa +(1− t) wb

wa +wb
with t ∈ [0,1]. (21)

An important condition to note is that the thicknesses should be
non-negative: wa,wb ≥ 0. Intuitively, this means that the segment
should always move forward and never backward. This is the sec-
ond condition to be verified by g that we present in Section 3.2.

(1− v)du

vdu

dPa

Pa

dPb
Pb

wa

wb

N

T

v 1− v

2 wb
wa+wb

2 wa
wa+wb

0 1t =W−1 (v)

w(t)

Figure 5: Infinitesimal thickness of the partitioning segment. This
is the partitioning segment of Figure 3-(c). The infinitesimal thick-
ness of the moving partitioning segment is an affine function defined
by the thicknesses at the end points. They are the dot products of the
derivatives of the end points and the normal of the segment.

Sampling the thickness density. We use the inverse CDF of w
to sample t using the second random number v. This requires in-
verting a second-order polynomial. Muller’s formulation provides
a numerically stable solution to this problem [Mul56]:

t =W−1 (v) =
v (wa +wb)

wb +
√

(1− v)w2
b + vw2

a

. (22)

Sampling the partitioning segment. Finally, we obtain the target
point (x,y)=Φtri (u,v) on the partitioning segment by interpolating
Pa and Pb with t:

Φtri (u,v) = t Pa +(1− t) Pb, (23)

which concludes the derivation of the triangle-cut parameterization
illustrated in Figure 3-(e).

Evaluation of the triangle-cut parameterization. The imple-
mentation provided in Listing 1 summarizes the evaluation of
(x,y) = Φtri (u,v). The advantage is that it requires single calls to f ,
F , f ′, g and G−1, which is what makes it competitive compared to
a numerical inverse CDF that requires several calls to a potentially
costly F .
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Listing 1: Implementation of the triangle-cut parameterization.

float f(float x); // target PDF
float F(float x); // target CDF
float fprime(float x); // target PDF derivative
float g(float x); // approximate PDF
float iG(float u); // approximate iCDF

// maps (u,v) uniformly distributed in [0,1]^2 to
// (x,y) uniformly distributed in the region under the curve of f
void trianglecut_param(float u, float v, float& x, float& y)
{

// sample x_a with approximate PDF, Eq. (7)
float x_a = iG(u);

// eval functions at x_a
float f_x_a = f(x_a);
float F_x_a = F(x_a);
float fprime_x_a = fprime(x_a);
float y_a = f_x_a;
float g_x_a = g(x_a);

// compute x_b with triangle cut, Eq. (9)
float x_b = x_a + 2.0*(u-F_x_a)/f_x_a;
float y_b = 0;

// compute infinitesimal thicknesses, Eq. (19) and (20)
float w_a = f_x_a*f_x_a + 2.0*(u-F_x_a)*fprime_x_a;
float w_b = 2.0*f_x_a*g_x_a - w_a;

// sample thickness density, Eq. (22)
float t = v*(w_a+w_b)/(w_b + sqrt((1-v)*w_b*w_b + v*w_a*w_a));

// interpolate (x_a,y_a) and (x_b,y_b), Eq. (23)
x = x_a * t + x_b * (1-t);
y = y_a * t + y_b * (1-t);

}

g1 = f f valid

g2 f valid

g3 f valid

Figure 6: Valid triangle-cut parameterizations. The cruder the ap-
proximation, the more the parameterization is tilted to compensate
for the error. If g = f , the triangle-cut parameterization is exactly
the inverse-CDF parameterization, which is axis aligned.

g4 f

invalid
(border crossing)

g5 f

invalid
(segment crossing)

Figure 7: Invalid triangle-cut parameterizations. If the approxi-
mate density g is not a reasonable approximation of the target den-
sity f , the triangle-cut parameterization is invalid. The invalidity
can be visualized as the partitioning segments crossing each other
or crossing the border of the region under the curve. Note that in
the two invalid cases, the parameterization misses a part of the re-
gion under the curve (in red). Indeed, since the parameterization is
area preserving, the area lost in the overlap or outside the border
is also missing somewhere in the region under the curve.

3.2. Validity of the Triangle-Cut Parameterization

Figures 6 and 7 show that not every approximate density yields a
valid triangle-cut parameterization. We provide two conditions to
verify when choosing g, and we prove that the resulting parameter-
ization is valid if they are met.

Condition 1: no border crossing. We expect the parameteriza-
tion to remain inside the region under the curve (the regions where
f returns 0 should not be sampled at all). In Figure 7, the parame-
terization computed with g4 crosses the border of the region under
the curve. To prevent this, we verify that every point reached by
the parameterization (x(u,v),y(u,v)) = Φtri (u,v) is located in the
region under the curve, i.e. that

y(u,v)≤ f (x (u,v)) for all (u,v) ∈ [0,1]2. (24)

Condition 2: no segment crossing. In Figure 7, the parameteriza-
tion computed with g5 overlaps itself when the partitioning segment
moves backward. This can be visualized as a crossing of its vertical
partitioning segments. As already discussed after Equation (21), to
prevent this we verify that the infinitesimal thicknesses of the seg-
ment are non-negative:

wa (u)≥ 0 and wb (u)≥ 0 for all u ∈ [0,1]. (25)

c© 2020 The Author(s)
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Proof that the parameterization is area preserving. The evalu-
ation presented in Section 3.1 requires Condition 2, as explained
after Equation (21). If this condition is verified, the triangle-cut
parameterization Φtri is area preserving because, by construction,
it maps any infinitesimal domain of area dudv to an infinitesimal
domain of the same area, as shown in Figure 3-(d). To provide a
formal proof of this result, we show that the determinant of the Ja-
cobian matrix of Φtri is 1 everywhere. First, we compute the partial
derivatives of point Φtri(u,v) = t (u,v) Pa (u)+ (1− t (u,v)) Pb (u)
with respect to u and v:

∂Φtri

∂u
= t (u,v)

∂Pa

∂u
(u)+(1− t (u,v))

∂Pb
∂u

(u)

+
∂t
∂u

(u,v) (Pa (u)−Pb (u)) , (26)

∂Φtri

∂v
=

∂t
∂v

(u,v) (Pa (u)−Pb (u)) . (27)

Note that the calculation of the Jacobian is simpler in the basis
(N,T ), where N is the normal of the partitioning segment and T
its tangent. By projecting the partial derivatives in this basis (see
Appendix A for a detailed derivation of these equations),

∂Φtri

∂u
·N = t (u,v) wa (u)+(1− t (u,v)) wb (u) , (28)

∂Φtri

∂u
·T = not required, (29)

∂Φtri

∂v
·N = 0, (30)

∂Φtri

∂v
·T =

1
t (u,v) wa (u)+(1− t (u,v)) wb (u)

, (31)

the determinant of the Jacobian matrix simplifies to

∣∣JΦtri

∣∣= ∣∣∣∣∣
(

∂Φtri
∂u ·N

∂Φtri
∂v ·T

∂Φtri
∂u ·N

∂Φtri
∂v ·T

)∣∣∣∣∣= 1. (32)

Proof that the parameterization remains in the right domain.
This is directly verified by Condition 1.

Proof that the parameterization is injective. This is directly ver-
ified by Condition 2.

Proof that the parameterization is surjective. The parameteriza-
tion is surjective if every point (x,y) in the region under the curve
is mapped by a point (u,v)∈ [0,1]2. This condition is harder to ver-
ify directly than the two previous ones. Fortunately, if Conditions
1 and 2 are met, the parameterization is automatically surjective.
First, if the parameterization is area preserving and injective (no
overlap), it covers a region of area exactly 1. Second, if it remains
inside the region under the curve, it covers a region of area exactly
1 under the curve. Finally, since f is a PDF, the area of the region
under the curve is exactly 1 and is thus entirely covered by the pa-
rameterization. Hence, any point in the region under the curve is
reached by the parameterization.

Validity of the triangle-cut parameterization. In summary, if the
approximate density g is such that Equation (24) and Equation (25)
are verified, the resulting triangle-cut parameterization is valid, i.e.
it is an area-preserving bijection between the unit square and the

region under the curve of f . In many cases, the two conditions are
hard to verify analytically but simple to verify numerically with the
implementation provided in Listing 1.

4. Sampling with the Triangle-Cut Parameterization

In this section, we show how to use the triangle-cut parameteriza-
tion to obtain analytic solutions to sampling problems.

4.1. Sampling 1D Densities

The evaluation of the triangle-cut parameterization yields a
straightforward sampling method for the 1D target density f , as
shown in Figure 8. Indeed, since the parameterization is area pre-
serving, it maps uniform random numbers (u,v) ∈ [0,1] to points
(x,y) uniformly distributed in the region under the curve of f and
the abscissae x of these points are distributed with density f . Note
that this method does not preserve the stratification of the random
numbers because it maps two random numbers to one. It can be
compared to Marsaglia’s method that also uses an approximate
PDF to exactly sample a target PDF whose inverse CDF is not an-
alytic [Mar84]. However, Marsaglia’s method requires a tunable
parameter and is a rejection-based method that uses an unbounded
number of random numbers. In contrast, our method uses only two
random numbers and no tunable parameter.

Φtri (x,y) = Φtri (u,v) histogram of x

Figure 8: Sampling a 1D density with the triangle-cut parameteri-
zation. The area-preserving parameterization uniformly distributes
points in the region under the curve of f and the density of their
abscissae is thus f . In this example, the histogram has 32 bins com-
puted with 65536 random points.

4.2. Stratified Sampling of 2D Densities.

In Section 1, we motivated the research of area-preserving parame-
terizations of the region under the curve of 1D densities by claiming
that in some cases they can be directly used for stratified sampling
of 2D densities. We now explain when this applies and how to use
the triangle-cut parameterization.

Problem statement. Let us consider a 2D density f (x1,x2) that
we would like to sample using two uniform random numbers
(u,v) ∈ [0,1]2. A typical sampling approach consists of sampling
x1 from the marginal density and x2 from the conditional density:

fmarg (x1) =
∫ +∞

−∞
f (x1,x2) dx2, (33)

fcond (x2|x1) =
f (x1,x2)

fmarg (x1)
, (34)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

127



E. Heitz / The Triangle-Cut Parameterization of the Region under the Curve

using their inverse CDF. The typical scenario that we are interested
in is a 2D density with a non-analytic marginal inverse CDF and an
analytic conditional inverse CDF

x1 = F−1
marg (u) , not analytic (35)

x2 = F−1
cond (v | x1) . analytic (36)

This scenario is quite common. Indeed, many 2D distributions en-
countered in practical problems have a difficult marginal CDF but
a simple conditional CDF, or at least can be formulated such that
this is the case, using the appropriate basis, change of variable, etc.

Using the triangle-cut parameterization. Our idea is to define a
triangle-cut parameterization Φtri of the region under the curve of
the marginal distribution fmarg. By computing (x,y) = Φtri (u,v),
we obtain a point whose x component is distributed with target den-
sity fmarg and an interesting property is that the y component can
be converted back to a new uniform random number w ∈ [0,1]:

w =
y

f (x)
(37)

that is independent of x and thus can be used for something else, as
if it were a freshly generated uniform random number. We use w
to sample the conditional distribution analytically. In summary, we
compute

(x1,y1) = Φtri (u,v) , analytic (38)

w =
y1

fmarg (x1)
, analytic (39)

x2 = F−1
cond (w | x1) . analytic (40)

The resulting parameterization maps two random numbers (u,v) to
a unique random 2D point (x1,x2) with density f . We can thus use
this approach for stratified sampling of the 2D density f . We use it
in Sections 5, 6, and 9.

Stratified Sampling of nD densities. This approach can be triv-
ially extended to nD densities so long as the conditional distribution
of the last dimension has an analytic inverse CDF.

5. Application: Stratified Sampling of a Truncated Disk

In this section, we derive a triangle-cut parameterization for a trun-
cated disk, a geometry for which the absence of exact and an-
alytic area-preserving parameterization was recently brought to
light [UnG18, PD19].

Target density. In the configuration of Figure 2, the area of the
truncated disk and its derivative are:

F (θ) = θ− cosθ sinθ, (41)

F ′ (θ) = 2 sin2
θ. (42)

The density is proportional to the derivative and the CDF to the area

f (θ) =
F ′ (θ)
F (θ0)

, (43)

F (θ) =
F (θ)

F (θ0)
. (44)

There is no analytic solution to F (θ) = u, which prevents an ana-
lytic inverse-CDF parameterization.

F (θ0)

θ0

(x,y)

m m m

0 θπ/3 0 θ2π/3 0 θ3π/4

–
–

f (θ)
g(θ)

(θ, w̃)

Figure 9: Truncated disk: triangle-cut parameterization. We plot
the target density f in black and the approximate density g in red,
for different configurations (with plots scaled for consistency). In
each configuration, all the cells of the checker cover the same area.

Approximate density. We need an approximate density g that is
close enough to f . One detail to pay attention to is that f (0) =
f (π) = 0. The triangle-cut method has a singularity when f ap-
proaches zero (because the triangle width is computed by dividing
by f ) and thus it is important to cancel this singularity by ensuring

that lim
θ→0

f (θ)
g(θ)

= constant. Therefore, a good choice is a function g

whose Taylor expansion at 0 (and π) is of the same order as the one
of f . This is why we have chosen an approximation of area F

G (θ) =

{
θ

3

3 if θ ∈ [0, π

2 ],
π

3

12 −
(π−θ)3

3 if θ ∈ ( π

2 ,π].
(45)

that yields the approximate PDF, CDF and iCDF:

g(θ) =
G′ (θ)
G (θ0)

, (46)

G(θ) =
G (θ)
G (θ0)

, (47)

G−1 (u) =

 3
√

3uG (θ0) if U ≤ G(
π

2 )
G(θ0)

,

π− 3
√

π3

4 −3uG (θ0) if θ ∈ ( π

2 ,π].
(48)

We numerically verified that this g satisfies the two conditions of
Section 3.2.

Triangle-cut parameterization. The triangle-cut parameteriza-
tion maps two uniform random numbers (u,v) to an angle θ (the
abscissa) distributed with density f and an ordinate w̃. As explained
in Section 4.2, we remap the ordinate to obtain a second uniform
random number w = w̃/ f (θ), which we use to sample a height y
uniformly in [−sinθ,+sinθ]. In summary:

(θ, w̃) = Φtri (u,v) , analytic (49)

w =
w̃

f (θ)
, analytic (50)

(x,y) = (cosθ,(−1+2w) sinθ) , analytic (51)

where (x,y) is a point uniformly distributed in the truncated disk.
The parameterization is shown in Figure 9.
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6. Application: Stratified Sampling of a Torus

In this section, we derive an area-preserving parameterization for
the surface of a torus.

θ

0c

r

(x,y)

0 πθ

—
—

f (θ)
g(θ)

(θ, w̃)

⇔ (x,y,z)

Figure 10: Torus: derivation of the triangle-cut parameterization.
(Left) The torus is a solid of revolution obtained by rotating a circle.
The density of the points is proportional to their distance to the axis
of rotation. In the remaining figures, we use the torus given by c= 1
and r = 1

2 . (Middle) The target density f , the approximate density
g and the triangle-cut parameterization. (Right) The triangle-cut
parameterization of the torus. All the cells of the checker cover the
same area.

Target density. Figure 10-(left) parameterizes a torus as a solid of
revolution by rotating a circle of center (c,0) and radius r:

P(θ) = (c+ r cosθ,r sinθ) (52)

Since it is a revolution surface, the density of the points on the
surface is proportional to their distance from the axis of rotation,
which in this case is the x–axis. To simplify, we consider only the
upper part of the torus, i.e. for θ ∈ [0,π]:

f (θ) =
(c+ r cosθ)

cπ
, (53)

F (θ) =
(cθ+ r sinθ)

cπ
. (54)

There is no analytic solution to F (θ) = u, which prevents an ana-
lytic inverse-CDF parameterization.

Approximate density. We use an affine approximate density that
interpolates the values of f (0) = c+ r and f (π) = c− r:

g(θ) =
θ

π
(c− r)+

(
1− θ

π

)
(c+ r)

cπ
, (55)

G(θ) =

θ
2

2 π
(c− r)+

(
1− θ

2

2 π

)
(c+ r)

cπ
, (56)

G−1 (u) = π

√
(c+ r)2 +u

(
(c− r)2− (c+ r)2

)
− (c+ r)

−2r
.

(57)

We numerically verified that this g satisfies the two conditions of
Section 3.2 for c = 1 and r = 1

2 .

Triangle-cut parameterization. The triangle-cut parameteriza-
tion maps two uniform random numbers (u,v) to an angle θ (the
abscissa) distributed with density f and an ordinate w̃. As explained
in Section 4.2, we remap the ordinate to obtain a second uniform
random number w = w̃/ f (θ), which we use to sample a uniform

rotation φ ∈ [0,2π] around the y–axis. In summary:

(θ, w̃) = Φtri (u,v) , analytic

(58)

w =
w̃

f (θ)
, φ = 2πw, analytic

(59)

(x,y,z) = (t cosφ,r sinθ, t sinφ) , t = (c+ r cosθ), analytic
(60)

where (x,y,z) is a point uniformly distributed on the upper part of
the torus (θ ∈ [0,π]). We can trivially wrap this parameterization to
both parts of the torus (θ ∈ [0,2π]) since they are symmetric. The
parameterization of the full torus is shown in Figure 10-(right).

7. Application: Stratified Sampling of a Polar Shape

We derive a triangle-cut parameterization for the polar shape de-
fined by its radius

r (θ) = 1+
1
8

cos(8θ)+
1

16
cos(16θ) , (61)

as shown in Figure 11. The density associated with the angle of
a polar shape is proportional to the squared radius, i.e. the target
density is

f (θ)∝ r2 (θ) . (62)

The CDF is a sum of products of cosines and sines and a linear
term that cannot be analytically inverted. We compute a triangle-
cut parameterization with an approximate density that is uniform
over [0,2π].

θ

r (θ)

Figure 11: Polar shape: triangle-cut parameterization. The param-
eterization is area preserving, i.e. each cell of the checker has the
same area.

8. Application: Stratified Sampling of a Polynomial Density

We derive a triangle-cut parameterization for the 2D polynomial
density

f (x,y) =

{
120
83

(
1+ x− x2 + x3− x4 + x5

)
y if (x,y) ∈ [0,1],

0 otherwise.
(63)

that is shown in Figure 12. The CDF of the marginal over x is a 6th–
order polynomial and cannot be analytically inverted. We compute
a triangle-cut parameterization with an approximate density that is
uniform over [0,1].
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0

1

1x

y

Figure 12: Polynomial density: triangle-cut parameterization. The
parameterization is integral preserving, i.e. the integral of the den-
sity is the same inside each cell of the checker.

9. Application: Stratified Sampling of Disney’s BSSRDF

In this section, we derive a triangle-cut parameterization for Dis-
ney’s BSSRDF [Bur15]. The original paper claimed that the CDF
is not analytically invertible and the solution remained unknown
for several years until a derivation was recently found [Gol19].
We wrote this section of the paper before Golubev’s blog post was
brought to our attention and our recommendation to today’s practi-
tioners is to use this analytic inverse CDF. Nonetheless, we believe
that it is still a worthwhile exercise to explore how the triangle-cut
parameterization could have been be used as a substitute at the time
when the analytic inverse CDF was still unknown. The point is to
showcase the potential of our approach in general, not to make a
competitive contribution to this specific application.

φ

r

(x,y)

—
—

f (r)
g(r)

0 r

(r, w̃)

⇔
(x,y)

Figure 13: BSSRDF: triangle-cut parameterization. (Left) The ra-
dially symmetric diffusion profile. (Middle) The target density f ,
the approximate density g and the triangle-cut parameterization.
(Right) The triangle-cut parameterization of the BSSRDF. All cells
of the checker cover the same area.

Diffusion profile. Burley uses a radial diffusion profile that is the
sum of two exponential distributions:

Rd (r) =
exp
(
− r

d
)
+ exp

(
− r

3 d
)

8πd r
(64)

It is represented in Figure 13-(left).

Target density. The target density is the radial diffusion profile
multiplied by the radius:

f (r) =
exp
(
− r

d
)
+ exp

(
− r

3 d
)

4d
, (65)

F (r) =
4d−d exp

(
− r

d
)
−3d exp

(
− r

3 d
)

4d
. (66)

Burley claimed that there was no analytic solution to F (r) = u,
which prevented an analytic inverse-CDF parameterization. In the
following, we show how to obtain one in the absence of this ana-
lytic solution.

Approximate density. We need an approximate density g that is
close enough to f . One detail to pay attention to is that lim

r→∞
f (r) =

0 and thus it is important to cancel this singularity by ensuring that

lim
r→∞

f (θ)
g(θ)

= constant. Therefore, a good choice is a function g

whose convergence is the same order as the one of f , which is why
we choose the widest exponential distribution of the sum:

g(r) =
exp
(
− r

3 d
)

3d
, (67)

G(r) = 1− exp
(
− r

3d

)
, (68)

G−1 (r) = 3d log(1−u) . (69)

We numerically verified that this g satisfies the two conditions of
Section 3.2.

Triangle-cut parameterization. The triangle-cut parameteriza-
tion maps two uniform random numbers (u,v) to a radius r (the
abscissa) distributed with density f and an ordinate w̃. As explained
in Section 4.2, we remap the ordinate to obtain a second uniform
random number w = w̃/ f (r), which we use to sample a uniform
azimuthal angle φ ∈ [0,2π]. In summary:

(r, w̃) = Φtri (u,v) , analytic (70)

w =
w̃

f (r)
, φ = 2πw, analytic (71)

(x,y) = (r cosφ,r sinφ) , analytic (72)

where (x,y) is a point distributed with the diffusion profile. The
parameterization is shown in Figure 13-(right).

Convergence analysis. An important criterion for Monte Carlo
rendering is whether the stratification allows for taking ad-
vantage of quasi-random low-discrepancy sequences such as
Sobol’s [Sob67]. In Figure 14, we render the diffusion of a laser
beam in a slab with different integration techniques:

INDEPENDENT: we sample the diffusion profile with independent
uniform random numbers. The convergence is the same regardless
of the parameterization.

SOBOL + RANDOM LOBE: we use quasi-random 3D points
(u,v,w) ∈ [0,1]3 of the Sobol sequence. We use u to randomly
choose the exponential lobe (d′ = d or d′ = 3d) and we sample
this lobe with (v,w) using the analytic inverse-CDF parameteriza-
tion. This is the sampling technique proposed by Burley [Bur15].

SOBOL + ICDF: we use quasi-random 2D points (u,v) ∈ [0,1]2 of
the Sobol sequence and we map them to the diffusion profile with
the inverse-CDF parameterization ΦF−1 using a numerical inver-
sion for F−1.

SOBOL + TRIANGLE CUT: we use quasi-random 2D points (u,v)∈
[0,1]2 of the Sobol sequence and we map them to the diffusion
profile with the triangle-cut parameterization Φtri.
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We compare the convergence of the techniques in Figure 15. As
expected, the variance decreases linearly with independent random
numbers. The convergence speed-up expected from the Sobol se-
quence is suboptimal with the random-lobe technique. This is be-
cause the two lobes overlap each other and thus the stratification
is not preserved. The usage of the Sobol sequence is optimal with
2D area-preserving parameterizations that make stratified sampling
possible. The convergence with the inverse CDF and the triangle-
cut parameterizations are equivalent.

INDEPENDENT SOBOL + RANDOM LOBE SOBOL + ICDF SOBOL + TRIANGLE CUT

•
•

•
•

•
•

•
•

Figure 14: BSSRDF: visualization of the diffusion on a slab lit
by a laser beam. The reference image is the laser beam footprint (a
uniform disk) convolved with the BSSRDF diffusion profile shown
in Figure 13. For each pixel, we sample the diffusion profile. If the
samples are located inside the laser beam, they add energy to the
pixel estimate. These images are rendered at 512 spp, and the con-
vergence curves of the two marked pixels are shown in Figure 15.

100 101 102 103

10−3

10−2

10−1

100

101 independent
Sobol + random lobe
Sobol + iCDF
Sobol + triangle cut

100 101 102 103

10−3

10−2

10−1

100

101

independent
Sobol + random lobe
Sobol + iCDF
Sobol + triangle cut

INDEPENDENT

SOBOL + RANDOM LOBE

SOBOL + ICDF

SOBOL + TRIANGLE CUT

INDEPENDENT

SOBOL + RANDOM LOBE

SOBOL + ICDF

SOBOL + TRIANGLE CUT

Figure 15: BSSRDF: convergence analysis of the different sam-
pling techniques. We compare the variance of the different tech-
niques as a function of the number of samples, for the two marked
pixels in Figure 14.

Performance. In Table 1, we compare the accuracy and the com-
putational time of the inverse CDF and the triangle-cut parameter-
izations, which have the same convergence. We compute the nu-
merical inverse CDF by starting from a first guess (obtained with
G−1 for a fair comparison) and refined using Newton iterations.
For each generated sample r ≈ F−1(u), we average the absolute
error |u−F (r) | over u ∈ [0,1]. The more iterations, the more the
error decreases but the costlier the inversion becomes. Meanwhile,
the triangle cut is error free (at least within the bounds of floating
point precision).

Summary. The triangle-cut parameterization provides the same
convergence as the inverse-CDF parameterization with quasi-
random numbers but without the cost of a high-quality numerical
inversion and with the guarantee that the result is error free. Hence,
before the recent introduction of the analytic form of the inverse
CDF [Gol19], the triangle-cut parameterization would have been
the best option.

Table 1: BSSRDF: performance comparison. We compare the er-
rors and the timings of the triangle-cut parameterization to a nu-
merical inverse CDF with Newton iterations. The timings are pro-
vided for the generation of 107 samples on an Intel i7-5960X CPU.

iCDF iCDF iCDF iCDF triangle cut
iterations 0 1 2 3 n/a

performance 0.11s 0.42s 0.78s 1.26s 0.61s
av. abs. error 6.2e-2 8.5e-3 1.4e-4 7e-8 n/a

10. Conclusion

The goal of this paper was to overcome the problem posed by non-
analytically invertible CDFs. We have introduced an alternative pa-
rameterization, which we call triangle cut, that can be analytically
evaluated, and we have proven that, under certain conditions, it is a
valid area-preserving bijection of the region under the curve of the
target density. We have shown, through different examples, how
to apply it to sampling 1D densities, to stratified sampling of 2D
shapes, and to densities with non-analytic marginal inverse CDFs
and analytic conditional inverse CDFs. In the example of Sec. 9, we
have seen that 2D stratified sampling with the triangle-cut parame-
terization has similar convergence properties to the classic inverse-
CDF approach but with a fully analytic solution and guaranteed
bias-free result.

The immediate potential impact of the triangle-cut parameteri-
zation is that it might allow us to revisit countless classic sampling
problems from different fields that currently lack analytic solutions.
We have seen that, in some cases, successfully using the triangle-
cut parameterization requires some crafting. The main difficulty is
in finding an approximate density that satisfies the two mandatory
conditions. In Sec. 5, we crafted an approximation that has the same
Taylor expansion as the target density where it evaluates to 0. In
Sec. 9, we crafted an approximation that has the same convergence
towards 0 in the limit to +∞ as the target density.

Finally, we believe that the most important takeaway is that the
world of analytic sampling techniques is not tied to the inverse
CDF. The triangle cut is just one parameterization among an in-
finity of alternatives, and we hope that it will inspire the research
of original approaches to analytic sampling.

Acknowledgements

This paper was written during an intensive and weird work-from-
home period due to COVID-19. I spare a thought for people who
did a job more important and more dangerous than nerding a
sampling paper in a safe environment. Special thanks to Sabrina
for supporting me during this period and an affectionate thought
for Babs who passed away. Thanks to Laurent Belcour, Jonathan
Dupuy, Kenneth Vanhoey and Stephen Hill for their help and feed-
back. Thanks also to the reviewers for their valuable suggestions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

131



E. Heitz / The Triangle-Cut Parameterization of the Region under the Curve

References
[AN07] ARVO J., NOVINS K.: Stratified sampling of convex quadrilat-

erals. J. Graphics Tools 12 (01 2007), 1–12. 2, 5

[Arv95] ARVO J.: Stratified sampling of spherical triangles. In Proceed-
ings of the 22nd Annual Conference on Computer Graphics and Interac-
tive Techniques (1995), SIGGRAPH 1995, pp. 437–438. 2

[Arv01] ARVO J.: Stratified sampling of 2-manifolds. In State of the Art
in Monte Carlo Ray Tracing for Realistic Image Synthesis. ACM SIG-
GRAPH Courses (2001). 2

[Bur15] BURLEY B.: Extending the disney BRDF to a BSDF with inte-
grated subsurface scattering. In Physically Based Shading in Theory and
Practice. ACM SIGGRAPH Courses (2015). 10

[Dev86] DEVROYE L.: Non-Uniform Random Variate Generation.
Springer, 1986. 1

[Gam16] GAMITO M. N.: Solid angle sampling of disk and cylinder
lights. Computer Graphics Forum 35, 4 (2016), 25–36. 2

[Gol19] GOLUBEV E.: Sampling Burley’s Normalized Diffusion Profiles.
blog post, 2019. URL: https://zero-radiance.github.io/
post/sampling-diffusion/. 10, 11

[GUnK∗17] GUILLÉN I., UREÑA C., KING A., FAJARDO M.,
GEORGIEV I., LÓPEZ-MORENO J., JARABO A.: Area-preserving pa-
rameterizations for spherical ellipses. Computer Graphics Forum 36, 4
(2017), 179–187. 2

[Hd14] HEITZ E., D’EON E.: Importance sampling microfacet-based
BSDFs using the distribution of visible normals. Computer Graphics
Forum 33, 4 (2014). 2

[Hei18] HEITZ E.: Sampling the GGX distribution of visible normals.
Journal of Computer Graphics Techniques (JCGT) 7, 4 (November
2018), 1–13. 2

[Hei19] HEITZ E.: A Low-Distortion Map Between Triangle
and Square. technical report, 2019. URL: https://hal.
archives-ouvertes.fr/hal-02073696v2/. 2

[Mar84] MARSAGLIA G.: The exact-approximation method for generat-
ing random variables in a computer. Journal of the American Statistical
Association 79, 385 (1984), 218–221. 7

[MLM18] MARTINO L., LUENGO D., MIGUEZ J.: Independent Random
Sampling Methods. 2018, pp. 65–113. 4

[MMR∗19] MÜLLER T., MCWILLIAMS B., ROUSSELLE F., GROSS M.,
NOVÁK J.: Neural importance sampling. ACM Trans. Graph. 38, 5
(2019). 2

[Mul56] MULLER D. E.: A method for solving algebraic equations using
an automatic computer. Mathematical Tables and Other Aids to Compu-
tation 10, 56 (1956), 208–215. 5

[PD19] PETERS C., DACHSBACHER C.: Sampling projected spherical
caps in real time. Proc. ACM Comput. Graph. Interact. Tech. 2, 1 (2019).
2, 8

[SC97] SHIRLEY P., CHIU K.: A low distortion map between disk and
square. J. Graph. Tools 2, 3 (Dec. 1997), 45–52. 2

[Shi91] SHIRLEY P.: Discrepancy as a Quality Measure for Sample Dis-
tributions. In EG 1991-Technical Papers (1991), Eurographics Associa-
tion. 1

[Sob67] SOBOL I. M.: The distribution of points in a cube and the ap-
proximate evaluation of integrals. In USSR Computational Mathematics
and Mathematical Physics 7 (1967), pp. 86–112. 10

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo tech-
niques for direct lighting calculations. ACM Trans. Graph. 15, 1 (Jan.
1996), 1–36. 2

[Tur90] TURK G.: Generating random points in triangles. In Graphics
Gems (1990), Academic Press, pp. 24–28. 2

[UnFK13] UREÑA C., FAJARDO M., KING A.: An Area-Preserving
Parametrization for Spherical Rectangles. Computer Graphics Forum
(2013). 2

[UnG18] UREÑA C., GEORGIEV I.: Stratified sampling of projected
spherical caps. Computer Graphics Forum 37, 4 (2018), 13–20. 2, 8

[Zha19] ZHANG J.: On sampling of scattering phase functions. Astron-
omy and Computing 29 (2019), 100329. 2

[ZZ19] ZHENG Q., ZWICKER M.: Learning to importance sample in
primary sample space. Comput. Graph. Forum 38 (2019), 169–179. 2

Appendix A: Derivation of the Projected Partial Derivatives

We explain how we obtain Equations (28), (29), (30), and (31). One
of the key simplifications comes from the fact that Pa and Pb are the
end points of the partitioning segment and N and T are its normal
and tangent, respectively (see Figure 5). We thus have

(Pa−Pb) ·N = 0, (73)

(Pa−Pb) ·T = ‖Pa−Pb‖ . (74)

• For Equation (28), we use Equation (73) to remove(
∂t
∂u (u,v) (Pa (u)−Pb (u))

)
·N = 0 and from Equations (17)

and (18), we obtain ∂Pa
∂u ·N = wa and ∂Pb

∂u ·N = wb.

• The result of Equation (29) is not required because in the Jacobian
matrix determinant, ∂Φtri

∂u ·T is multiplied by ∂Φtri
∂v ·N = 0.

• For Equation (30), we use Equation (73).

• For Equation (31), we use Equation (74) to obtain ∂Φtri
∂v · T =

∂t
∂v (u,v) ‖Pa−Pb‖. Second, since t = W−1 (v), its derivative with
respect to v is inversely proportional to the density function w:

∂t
∂v

(u,v) =
1

w(t)
=

wa+wb
2

t wa +(1− t) wb
. (75)

Finally, as shown in Figure 5, the area du of the infinitesimal convex
quadrilateral is

du = segment length
vector1 ·normal+vector2 ·normal

2

= ‖Pa−Pb‖
(dPa ·N +dPb ·N)

2
, (76)

and the length of the segment

‖Pa−Pb‖=
2

dPa
du + dPb

du

=
2

wa +wb
(77)

cancels out in Equation (31):

∂Φtri

∂v
·T =

∂t
∂v

(u,v) ‖Pa−Pb‖ (78)

=
wa+wb

2
t wa +(1− t) wb

1
wa+wb

2
=

1
t wa +(1− t) wb

. (79)
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