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Figure 1: The fourth Laplacian eigenfunction on the elephant (left) is separated into components residing on complementary parts (right)
by the action of a discrete Hamiltonian operator whose step potential has support only on the elephant’s body (i.e. head excluded). The
separation from the Laplacian eigenbasis is the result of continuous perturbations of the potential energy and is captured by Hamiltonian
functional maps, with a bi-diagonal slanted structure. When the potential is low, a Hamiltonian map is simply the identity (bottom left).
Increasing the energy the diagonal separates (center map) and at convergence the bi-diagonal structure emerges (top right).

Abstract

In this paper we develop an in-depth theoretical investigation of the discrete Hamiltonian eigenbasis, which remains quite
unexplored in the geometry processing community. This choice is supported by the fact that Dirichlet eigenfunctions can be
equivalently computed by defining a Hamiltonian operator, whose potential energy and localization region can be controlled
with ease. We vary with continuity the potential energy and study the relationship between the Dirichlet Laplacian and the
Hamiltonian eigenbases with the functional map formalism. We develop a global analysis to capture the asymptotic behavior of
the eigenpairs. We then focus on their local interactions, namely the veering patterns that arise between proximal eigenvalues.
Armed with this knowledge, we are able to track the eigenfunctions in all possible configurations, shedding light on the nature
of the functional maps. We exploit the Hamiltonian-Dirichlet connection in a partial shape matching problem, obtaining state
of the art results, and provide directions where our theoretical findings could be applied in future research.
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1. Introduction

In the last decades, spectral geometry processing has been a
very active field of research in computer graphics. Spectral meth-
ods in shape processing tasks provide a meaningful way to cap-
ture intrinsic geometric information, otherwise difficult to ac-
cess. The discrete Laplace-Beltrami operator plays a major role
in such context, finding countless applications such as shape re-
trieval [RWP06, GMT15], shape compression [KG01], shape re-
construction [BEKB15,CPR∗19], and shape matching [OBCS∗12,
KBB∗13, GCR∗17] to name but a few. More recently, there has
been an increase of attention on topics that deal with partiality
[RCB∗17, CRB∗16, RCL∗17, CRM∗16], where a useful alterna-
tive to the Laplacian has been found in the discrete Hamiltonian
operator [MRCB17, CSBK18, RTO∗19, RLB∗19]. This operator,
whose continuous counterpart is employed extensively in different
branches of physics and chemistry, makes of its localization proper-
ties the principal reason for its introduction in the field. What is still
missing, is an in-depth study on the connection between the Lapla-
cian and Hamiltonian operators and their associated eigenbases.
Providing a solid theoretical framework concerning this relation is
required in order to obtain a broader view on the range of pos-
sible applications in spectral geometry processing. We show that
this connection can indeed be established, through the analysis of
the parametric behavior of the Hamiltonian via continuous spectral
perturbations, both at a local differential level and at an asymptotic
(and thus more global) level, manifested in the functional maps be-
tween the associated eigenbases. Encouraged by these theoretical
results we present a first example of application that reaches results
at the state of the art for the task of partial shape matching.

2. Related work

Shape analysis

The Laplace-Beltrami operator (LBO) is ubiquitous in computer
graphics [GSS99, Tau95, Lev06] and has been employed in many
applications such as shape retrieval [RWP06,GMT15], shape com-
pression [KG01], and shape matching [OBCS∗12, KBB∗13]. The
first examples of localized harmonics in shape analysis have been
obtained through compressed manifold modes [OLCO13,NVT∗14,
KGB16], a construction of local orthogonal bases that approxi-
mately diagonalize the Laplacian.

More recently, the Hamiltonian operator has been introduced
in the shape analysis community by [MRCB17, CSBK18], where
the authors analyze it for the first time from a discrete geometric
point of view. The Hamiltonian has the unique property of localiz-
ing harmonics on arbitrary subsets of manifolds by exploiting step
potential functions defined on the domain. Potential functions are
employed also in [LJC17] to account for boundary conditions of
Dirac eigenfunctions. [RTO∗19] exploited the Hamiltonian oper-
ator to perform region localization without the need to explicitly
seek for a map.

We rely on these preliminary results, and further extend the
theoretical knowledge by studying the parametric behavior of the
Hamiltonian operator, while relating its eigenfunctions to those
of the Laplace-Beltrami operator. In addition, we provide some
mathematical results that can clarify its precise behavior, especially

when the discrete setting limits the behavior of its continuous coun-
terpart.

Functional maps

The functional map formalism was introduced in [OBCS∗12]
to find correspondences between near-isometric manifolds. The
framework exploits linear maps between functional spaces, where
typically Laplacian eigenbases are used to represent functions.

In the partial setting, the relationship between Laplacian eigen-
functions on a full shape and harmonics on isometrically deformed
subsets has been investigated in [RCB∗17] using Neumann bound-
ary conditions. The analysis was performed using perturbation
analysis on a block-diagonal Laplacian matrix. The relationship is
given by a functional map represented by a slanted-diagonal matrix,
relating its slope to the area of the submanifold. This information
was used as a prior in order to extend the functional maps pipeline
and perform partial shape matching. Differently, here we investi-
gate the functional relationship between the Hamiltonian eigenba-
sis and the LBO eigenbasis, defined with Dirichlet boundary condi-
tions, and advocate its use in geometry processing tasks. Along this
line, we build a new pipeline for partial shape matching obtaining
results that are in line with the state of the art. This underlines the
fact that the Neumann basis is not the only possible choice for this
type of task.

Structural mechanics

Mechanical engineering has long been a source of inspiration for
researchers in shape analysis. The most important tool borrowed
from this field is certainly the Finite Element Method [ZTZ13],
used for obtaining linear algebraic discretizations of continuous
differential equations efficiently. Modern shape analysis employs
spectral methods for a wide range of tasks, and since spectral quan-
tities are central to the study of dynamical systems and vibrating
phenomena, there is a rich interaction between the two fields.

In the proposed theoretical analysis, we will investigate how
eigenpairs (otherwise called modes) evolve when varying the step
potential parameter τ in the Hamiltonian with continuity. There
exists a vast literature in the structural mechanics field that stud-
ies modal interactions. The first experimental observations in the
1960s were related to simple vibrating objects such as cantilever
plates [CT62]. Perkins and Mote [PM86] used perturbation anal-
ysis on linear operators to explain different types of modal in-
teractions in a general continuous setting, proving that this be-
havior is not a discretization byproduct. An important type of
modal interaction studied in these papers is the veering interac-
tion [dBAL09, DBAL07], characteristic of self-adjoint operators
(operators that possess an orthonormal basis and a real valued spec-
trum). A quantitative criterion called veering index (V I) was de-
veloped in [BAL11] for estimating when veering occurs between
different modes. These notions are an integral part of our mathe-
matical toolset throughout this paper.

3. Contribution

In this work we consider the eigenbasis {ψi} of a discrete step
Hamiltonian operator of high potential energy like the one depicted
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Figure 2: Top row: The first few eigenfunctions of the Laplace-Beltrami operator. Bottom row: the first few Hamiltonian harmonics localized
on the right side of the body with potential energy τ = 5000. The high potential area is displayed in red on the bottom right shape. The
relationship between eigenfunctions in the two bases is not evident as in the Neumann case, since eigenfunctions defined with Neumann
boundary conditions are less deformed by partiality, being possibly different from zero on the boundary. To understand the relationship
between the two eigenbases we can compute the functional map C = ΦΦΦ

>AΨΨΨ, where A is the mass matrix. The structure of C truncated to
k = 50 is shown in the upper right matrix. Laplacian and Hamiltonian eigenfunctions are associated to rows and columns respectively. We
notice a slanted diagonal similar to the one observed with Neumann functional maps [RCB∗17].

in Figure 2. We aim to study the relationship between this basis and
the standard Laplace-Beltrami eigenbasis {φi}. The functional map
formalism is best suited to analyze this kind of relationship, and
in this context we refer to the correspondence C between the two
sets of eigenfunctions as a Hamiltonian functional map. The map
C truncated to the first k harmonics localized on the low potential
region, is equivalent to the functional map between the Laplacian
on the full shape and the Dirichlet Laplacian on the partial shape
(Figure 2, top right).

Experimentally, we observe that the full discrete map C (by full
we mean that the matrix size is equal to the number of vertices on
the mesh) exhibits a bi-diagonal structure determined by the poten-
tial energy (Figure 3) and its support region (Figure 4).

The focus of this paper is theoretical, aimed at understanding
rigorously how Hamiltonian functional maps arise from potential
variation in the discrete-geometric case. This investigation devel-
ops as following:

• In Section 4 we introduce the necessary background.
• In Section 5 we present the standard perturbative equations and

use them to answer two questions:

– How eigenvalues and eigenfunctions behave when the poten-
tial energy tends to infinity over a fixed region. In Section 5.1
we clarify this question through an original result (Theorem
3).

– How eigenvalues and eigenfunctions interact when they are
perturbed locally. This fact is explained in Section 5.2, where
we adapt to our case existing results from structural engineer-
ing.

• In Section 6 we analyze the local interactions of Section 5.2 from
a quantitative point of view, looking at concrete examples.
• Finally, in Section 7 we characterize the form of Hamiltonian

functional maps combining the results of Sections 5.1 and 5.2.
We will justify analytically the examples observed in Figures 3
and 4 with a construction based on the asymptotes of the eigen-
values.

In addition, we show in Section 8 how Hamiltonian functional maps
are suited to tackle practical tasks in computer graphics by demon-
strating state of the art results in the partial shape matching setting
with a new algorithm, which exploits the natural relation between
Dirichlet Laplacian and Hamiltonian eigenbases.

4. Background

We model a surface in the continuous setting as a 2-dimensional
Riemannian manifold M with boundary ∂M, equipped with the
area element dx. The space of square integrable functions onM is
denoted with L2(M). The inner product on L2(M) between two
functions f and g is defined as

〈 f ,g〉M =
∫
M

f (x)g(x)dx . (1)

4.1. Differential Operators

4.1.1. Laplacian

The first differential operator that we consider is the standard
Laplace-Beltrami operator ∆M. We recall that the manifold Lapla-
cian is a self-adjoint operator. By the spectral theorem it admits
a countable orthogonal basis {φi}, obtained as the solution to the
eigenvalue equation:

∆Mφi = µiφi . (2)

The elements φi are the eigenfunctions of the Laplacian while µi
are the associated real eigenvalues. We index the eigenvalues in
non-decreasing order {0 ≤ µ1 ≤ µ2 ≤ . . .}.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

105



E. Postolache, M. Fumero, L. Cosmo, E. Rodolà / A parametric analysis of discrete Hamiltonian functional maps

The behavior at the zeroth and first order of the eigenfunctions
on ∂M depends on the chosen boundary conditions. Dirichlet con-
ditions impose φi = 0, while Neumann boundary conditions con-
straint the gradient of φi to be tangent to the boundary. In this paper,
we assume Dirichlet conditions.

4.1.2. Hamiltonian

A Hamiltonian operator HM can be obtained by adding to the
Laplacian a projection operator P that depends on a potential func-
tion defined on the manifold. The simplest potential is a step func-
tion that places τ > 0 energy density on a subsetN ofM and 0 on
the complementN . Formally,

HM,τ = ∆M+ τPN , (3)

with

PN ( f )(x) =

{
f (x) if x ∈N
0 otherwise

. (4)

Since PN is self-adjoint, the resulting Hamiltonian is also self-
adjoint and thus it admits a spectral decomposition:

HM,τψi = λiψi . (5)

As before, eigenvalues are ordered non-decreasingly {0 ≤ λ1 ≤
λ2 ≤ . . .}. Any subsequent indexing of eigenvalues will use this
ordering.

A fundamental result from quantum mechanics [Gri94] relates
the Hamiltonian eigenfunctions to the Dirichlet eigenfunctions of
the Laplacian computed on the complement ofN .

Theorem 1 Let HM,τ be a Hamiltonian operator (Eq. (3)). Its
eigenfunctions ψi with energy λi < τ, vanish for all x ∈ N . It fol-
lows that φi = ψi where φi are the eigenfunctions of ∆N .

4.2. Functional maps

Given two manifolds M and N , a functional correspondence
[OBCS∗12] is modelled as the linear operator T : L2(N ) →
L2(M) which, considering the orthonormal bases

{
ψ j
}

j≥1 and

{φi}i≥1 acting respectively on L2(M) and L2(N ), is defined as

T f = ∑
i, j
〈φi, f 〉N 〈T φi,ψ j〉Mψ j . (6)

4.3. Discretization

In the discrete setting,M is approximated by a triangle mesh with
n vertices vi ∈Vint∪Vbdr, where each edge ei j ∈ Eint∪Ebdr belongs
to at most two triangle faces Fi jk and Fjih. We use the subscripts
int and bdr on vertices and edges to denote interior and boundary,
respectively. The discrete Laplace-Beltrami operator is defined in
terms of two n×n matrices W and A, where A is a diagonal matrix
of local area elements ai and W is a symmetric matrix of edge-wise

τ = 1 τ = 1000 τ = 2000 τ≈+∞

Figure 3: Hamiltonian functional maps computed on the mesh in
Figure 2 for the same potential at increasing values of τ. At conver-
gence, the square matrix splits into two components (separated by
a red line for visualization). In each component, a diagonal struc-
ture is visible. In Section 7 we show analytically how this structure
arises when τ is increased.

Figure 4: Dependency of the structure of Hamiltonian functional
maps with respect to the potential region. Experimentally, we ob-
serve that the width of the left component (separated by the red
line) is proportional to the area of the low potential region.

weights (also known as cotangent formula, see e.g. [MDSB03]):

wi j =


−(cotαi j + cotβi j)/2 ei j ∈ Eint

0 (i 6= j)∧ (i ∈Vbdr∨ j ∈Vbdr)

∑k 6=i(cotαik + cotβik)/2 (i = j)∧ vi ∈Vint

1 (i = j)∧ vi ∈Vbdr
(7)

ai =

{
1
3 ∑ jk:i jk∈F Ai jk vi ∈Vint

0 vi ∈Vbdr
(8)

where Ai jk is the area of triangle Fi jk. In the above formulas the
Dirichlet boundary conditions are imposed accordingly. A gener-
alized eigenproblem WΦΦΦ = AΦΦΦdiag(µµµ) is solved for computing a
vector of the first k eigenvalues µµµ and a matrix containing the first
k eigenvectors ΦΦΦ as its columns.

The Hamiltonian is discretized as H = A−1W + τP with P =
diag(v), where v is an n-dimensional 0-1 (indicator) vector that rep-
resents the step function. The generalized eigenproblem thus takes
the form:

(W+ τAP)ΨΨΨ = AΨΨΨdiag(λλλ) . (9)

As above, we typeset with ΨΨΨ and λλλ the computed eigenquantities.
The eigenfunctions are expressed in the hat basis. If it is required to
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express an eigenfunction or any other function f in the Hamiltonian
basis, the hat notation f̂ will be used.

Functional maps in the discrete setting can be expressed as n×n
matrices (possibly in a truncated basis of the first k eigenfunctions):

Ci j = 〈T φi,ψ j〉M . (10)

We consider a family of functional maps between the Hamiltonian
basis onM and the Laplacian basis onN ⊂M, parameterized by
τ:

Ci j(τ) = 〈T φi,ψ j(τ)〉M , (11)

where ψ j(τ) is the j-th eigenfunction of HM,τ. Examples of such
maps are given in Figures 3 and 4.

5. Spectral analysis

In order to understand C(τ) we focus on the evolution of the Hamil-
tonian spectral quantities with respect to τ. Their dynamic behavior
influences the form of the functional map. We refer to this paramet-
ric study as spectral tracking.

The analysis develops first at a global scale and later focuses
on the local interactions. We employ discrete equations given our
setting. As we shall see, at a global scale this choice yields differ-
ent results from the case in which the function space is infinite-
dimensional. At a local scale instead, as proven in [PM86], the re-
sults hold both in the continuous and discrete case. A basic premise
in our analysis is that the starting Laplacian spectrum is non degen-
erate, i.e. µi 6= µ j for all i 6= j.

The basic equations that describe the dynamic behavior of the
analyzed eigensystem are stated.

Theorem 2 Given a Hamiltonian matrix H = A−1W+ τP, the fol-
lowing holds:

d
dτ

λi = ψ
>
i APψi (12)

d2

dτ2 λi = 2 ∑
j 6=i

(ψ>j APψi)
2

λi−λ j
(13)

d
dτ

ψi = ∑
j 6=i

ψ
>
j APψi

λi−λ j
ψ j . (14)

Proof See appendix A.

Eqs. (12)-(14) are obtained by applying the standard perturbative
derivatives [FK68] to our system.

Definition 1 The inner product between eigenfunctions, weighted
by the stiffness derivative, and computed as:

ψ
>
j APψi (15)

is called modal coupling.

Modal coupling is present in each of the equations of Theorem 2
and it measures the influence between different eigenfunctions in a
parametric eigensystem. In our case it is symmetric, since AP is a

diagonal matrix, and since the weighted inner product is symmet-
ric:

ψ
>
j APψi = (Pψi)

>Aψ j = ψ
>
i PAψ j = ψ

>
i APψ j . (16)

We remark that Eq. (14) computes the derivative using the Hamil-
tonian basis. Interestingly, the Fourier coefficient with respect to ψi
is zero, since it does not appear in the sum. The choice for this coef-
ficient is not unique as noted in [Nel76]: eigenvectors are invariant
to scale, so the set of all possible derivatives is a 1-dimensional
affine space. Setting it to zero in a symmetric eigensystem imposes
the orthonormality constraint on the basis across the evolution with
respect to τ.

5.1. Global analysis

Figure 5 plots the first eigenvalues of the Hamiltonian on the human
shape illustrated in Figure 2 as functions of τ. It can be observed
that each eigenvalue curve, called eigenvalue loci, grows as τ is
increased. This fact can be easily proven:

Proposition 1 Consider H1 = A−1W+ τ1P and H2 = A−1W+
τ2P with τ1 ≤ τ2. Let λi1 and λi2 be the i-th eigenvalues of H1 and
H2, respectively. Then λi1 ≤ λi2.

Proof See Appendix A.

Observing the left plot in Figure 5 we notice a structural asymp-
totic behavior. The eigenvalue loci seem to stabilize after τ has
been fairly increased. They do not stabilize gently, but undergo a se-
quence of local bumps, forming patterns that sometimes are clearly
visible, resembling braids. The braids seem to move with constant
first derivative. The following result explains what happens after all
local interactions have ended.

Theorem 3 Let H = A−1W+ τP be a Hamiltonian matrix such
that r components Pk0,k0 of the diagonal of P are equal to zero
and n− r components Pk1,k1 are equal to one. By indexing with
i the first r eigenvalues and with j the subsequent ones, we get:

lim
τ→+∞

λi ∈ [µ1,µn] , (17a)

lim
τ→+∞

d
dτ

λi = 0 , (17b)

lim
τ→+∞

ψik1 = 0 , (17c)

lim
τ→+∞

λ j =+∞ , (17d)

lim
τ→+∞

d
dτ

λ j = 1 , (17e)

lim
τ→+∞

ψ jk0 = 0 . (17f)

Proof See Appendix A. The reader is warmly advised to read the
proof since it is an interesting application of the “eigenvectors from
eigenvalues” formula, recently rediscovered in [DPTZ19].

Eigenvalue asymptotics

Eqs. (17d) and (17a) tell us that the r lowest eigenvalues will sta-
bilize to a finite value (not greater than the maximum Laplacian
eigenvalue) while the other n− r will grow indefinitely. The rate of
growth is governed by Eqs. (17b) and (17e): the lowest eigenvalues
have horizontal asymptotes while the highest have oblique asymp-
totic (with a slope equal to 1). This behavior is expected from the
fact that for large τ, the diagonal component of the Hamiltonian
dominates the Laplacian component. The local interactions origi-
nate for the same reason: an eigenvalue with low index may have
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Figure 5: Left: The first 30 eigenvalue curves (loci) computed on the mesh of Figure 2. The potential energy τ is varied from 0 to 300
by increments of δτ = 1. For each τ the eigenvalues are plotted along the vertical axis, interpolating the discrete points. Higher indexed
curves are colored red while lower indexed curves are colored blue. At a global scale, “braid” patterns can be observed; some of them are
more evident, growing in parallel over the diagonal of the axis. Differently, lower eigenvalue curves tend to stabilize near a constant value.
Center: Restriction to the first 10 eigenvalues of the left plot for τ ∈ [0,100]. At certain values of τ some eigenvalue curves seem to intersect,
for example, the seventh and eight curves (from the bottom) around τ = 24. Right: The intersection is only apparent, since increasing the
resolution we observe a veering interaction. For other values of τ in the central plot, curves veer "at a distance" , for example eigenvalues
λ6 and λ7 near τ = 16. In both cases, there seems to be an exchange in first derivative between proximal curves.

a high derivative at the start, but in the end its derivative must sta-
bilize at 0. Meanwhile it "bounces" on proximal curves, losing or
gaining velocity at each interaction (this will be formalized bet-
ter in the next Subsection). The derivative information transfers
to higher indexed eigenvalues escaping from the interacting phase
with a value approximately equal to 1.

Eigenfunction asymptotics

Eqs. (17c) and (17f) explain formally the well known localization
property of the eigenfunctions. As expected from Theorem 1, the
lower indexed eigenfunctions localize on the low potential region
N , since the components associated to the high potential area N
tend to zero.

However, differently from the continuous setting, the higher in-
dexed eigenfunctions localize on the high potential area. At the
limit, the eigenfunctions span two orthogonal eigenspaces Ker(P)
and Ker(P)⊥. We show in Figure 1 this complementary localization
on the body and the head of the elephant.

This analysis is valid for the discrete setting, but the continuous
setting can be recovered by replacing the finite eigenvectors ψi,ψ j
and the finite matrices with infinite counterparts. The main differ-
ence is that, in the continuous setting, the local interactions keep
going on indefinitely so each eigenvalue must stabilize at a finite
value, with derivative equal to zero. Consequently, for each τ, an
eigenfunction that stabilizes on the high potential area cannot exist
as in the discrete case.

5.2. Local analysis

We now concentrate on the local interactions that we observe in
Figure 5. These types of interactions are not specific to the Hamil-
tonian case, and can be encountered in a wide range of parametric
eigensystems. Given their generality there exists a wide literature,

especially in engineering, that studies the topic. We draw on this
literature, especially on [PM86] and [BAL11]. The local behavior
of generalized Hermitian eigensystems like ours stems from the re-
sults in Theorem 2. These equations, however, are too complex to
use directly given the summations in Eqs. (13) and (14), therefore
useful approximations are employed.

Eigenvalue interactions

Let us begin with the interactions between eigenvalues. Suppose
that at a certain point τ0 > 0, two eigenvalues λi and λ j are such
that |λi−λ j|= mink 6=l |λk−λl |. It is clear that i and j must be con-
secutive numbers since other pairs do not minimize the difference.
W.l.o.g. let j = i+ 1. Using Eq. (13), the second order derivative
can be approximated with:

d2

dτ2 λi ≈ 2
(ψ>j APψi)

2

λi−λ j
, (18)

d2

dτ2 λ j ≈ 2
(ψ>i APψ j)

2

λ j−λi
. (19)

The estimation holds because the differences between the other
eigenvalue pairs have a small influence on the total derivative.

Comparing Eqs. (18) and (19) and using Eq. (16), it can be no-
ticed that the approximations of the second eigenvalue derivatives
have the same absolute value and different signs (given by the in-
verted denominators). Under the assumption that the modal cou-
plings are different from zero, this translates into opposite curva-
tures of the respective loci during the interaction. This means that
the two curves repel one another with an intensity proportional to
their distance. We will refer to this kind of interactions between
eigenvalues as veering interactions. In the ideal case where the ap-
proximations become equalities, we will talk about ideal veering
interactions.
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Given the symmetry of the interaction, the first derivatives are
exchanged when veering ends. This explains the progressive loss
of first derivative of a loci at a global scale. In a general setting,
modal couplings could be zero and non parallel loci would cross.

Eigenfunction interactions

We now consider the eigenfunctions and study how they transform
while the associated eigenvalues perform a veering interaction. Let
ψ

0
i and ψ

0
j be two eigenfunctions of H = A−1W+ τ0P with asso-

ciated eigenvalues λ
0
i and λ

0
j ( j = i+1). Consider that τ0 ∈ [τ1,τ2],

an interval over which an ideal veering interaction occurs between
λi and λ j .

As in the previous case, 1
λ0

i−λ0
k
≈ 0 for k 6= j and 1

λ0
j−λ0

k
≈ 0 for

k 6= i in [τ1,τ2]. The vector representation of the functional deriva-
tives (Eq. 14) can be approximated in the Hamiltonian basis as:

d̂
dτ

ψ0
i ≈

[
0 . . . 0

ψ
0
j
>APψ

0
i

λ0
i−λ0

j
. . . 0

]>
(20)

d̂
dτ

ψ0
j ≈

[
0 . . .

ψ
0
i
>APψ

0
j

λ0
j−λ0

i
0 . . . 0

]>
, (21)

where the nonzero components in d
dτ

ψi and the d
dτ

ψ j are only the
j-th and i-th, respectively (notice the inversion).

These two vectors lie on the 2-dimensional subspace Γ spanned
by the basis vectors ψ

0
i and ψ

0
j . By differentiating Eqs. (20) and

(21) with respect to τ repeatedly, higher order derivatives are ob-
tained. Since differentiating the null components we obtain zeros,

ψ j(τ1)

ψi(τ1)

d
dτ

ψi(τ1)

d
dτ

ψ j(τ1)
ψ j(τ2)

ψi(τ2)

Γ

Figure 6: Geometric interpretation of eigenfunctions rotating on
Γ. Since the mass matrix A is a symmetric matrix, all eigenvec-
tors of A-norm equal to 1 must lie on an ellipse. The interacting
Hamiltonian eigenfunctions ψi and ψ j are rotated by the deriva-
tives d

dτ
ψi and d

dτ
ψ j. At the end of the interaction ψi(τ1) has trans-

formed into ψi(τ2), an eigenvector near the eigenspace spanned
by ψ j(τ1); ψ j(τ1) transforms into ψ j(τ2), an eigenvector close to
ψi(τ1). An approximate exchange is performed at the end of the
interaction in the ideal case. Notice that ψi(τ2) keeps the sign of
ψ j(τ1) while ψ j(τ2) inverts it. The same effect can be observed in
Figures 8 and 9.

these higher order derivatives have only the j-th or i-th components
different from zero, like the first derivatives, so they still belong
to Γ. Now for all τ ∈ [τ1,τ2] we can compute ψi and ψ j with a
Taylor expansion in τ0. The Taylor expansion is an infinite linear
combination of vectors in Γ, so ψi,ψ j ∈ Γ for all τ ∈ [τ1,τ2]. This
means that during an ideal veering interaction, the two eigenfunc-
tions will interact only with each other and transform on a constant
2-dimensional subspace.

From Eqs. (20) and (21) (omitting the indexing since the same
formulas hold for each τ ∈ [τ1,τ2]) we can write:

d
dτ

ψi ≈
ψ
>
j >APψi

λi−λ j
ψ j , (22)

d
dτ

ψ j ≈
ψ
>
i APψ j

λ j−λi
ψi =−

ψ
>
j APψi

λi−λ j
ψi . (23)

Let us assume w.l.o.g. that ψ
>
j APψi > 0. The approximated deriva-

tives have the following properties:

• They are orthogonal(
d
dτ

ψ j

)>
A d

dτ
ψi =−

(
ψ
>
j APψi

λi−λ j

)2

ψ
>
j Aψi = 0 . (24)

• They have the same norm∣∣∣∣∣∣∣∣ d
dτ

ψi

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣ d
dτ

ψ j

∣∣∣∣∣∣∣∣= ∣∣∣∣ψ>j APψi

λi−λ j

∣∣∣∣ . (25)

• d
dτ

ψi has same direction and orientation as ψ j .
• d

dτ
ψ j has the same direction as ψi but opposite orientation.

A dynamical system that satisfies these conditions is a rotation with
variable angular speed (see Figure 6). The angular velocity is di-
rectly proportional to the common norm of the derivatives. It takes
into account the modal coupling |ψ>j APψi| and the difference be-
tween associated eigenvalues |λ j−λi|. It follows that the rotation
has a higher intensity were both 1

|λ j−λi| and the modal coupling are

highest. It is easy to see that 1
|λi−λ j| achieves its highest value at

the point τ
∗ where the eigenvalue loci have maximum curvature,

because |λi−λ j| is smallest.

Interestingly, [BAL11] showed that the modal coupling is also
maximized at the same point τ

∗. Additionally, they proved that
in the ideal veering interaction a rotation about π/2 is performed,
where an angle of π/4 is swept when τ = τ

∗. This means that at
the end of the rotation, eigenfunctions are exchanged: if at the be-
ginning of the rotation λi and λ j are the eigenvalues associated to
ψi(τ1) and ψ j(τ1), respectively, at its end they will be associated
to ψi(τ2) ≈ ψ j(τ1) and ψ j(τ2) ≈ ψi(τ1). More generally, after a
non-ideal interaction, ψi(τ2) (ψ j(τ2)) will be a linear combination
of ψi(τ1) and ψ j(τ1), weighted accordingly. In the case in which
modal dependency with more distanced modes is present, the lin-
ear combination would include contributions of other eigenvectors.
Figure 6 illustrates eigenvector interactions abstractly. In the fol-
lowing section we will look at some concrete example after we
quantify the interactions.
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Figure 7: Veering indices (V Ii, j) computed for the Hamiltonian eigenfunctions in Figure 2 with δτ = 0.5 and an approximating factor k = 25.
The plots are consistent with loci behavior since a bump appears where a veering interaction occurs in Figure 5. Some indices like V I1,2 do
not peak very much but spread across a large area, indicating a blurry transformation between eigenfunctions. Other indices like V I5,6 and
V I6,7 have very high peaks in small neighborhoods of the parameter.

6. Veering index

Observing the local interactions of the eigenfunctions is useful to
understand the way in which Hamiltonian functional maps evolve
at small variations of τ. Until now we have focused on the general
theoretical setting analyzing ideal interactions, but we still do not
have a tool to quantify the occurrence of spectral interactions in real
cases. To this end, we employ a metric developed in [BAL11] that
can be used to quantify objectively veering interactions, or equiva-
lently interactions between eigenfunctions.

Definition 2 The veering index between two Hamiltonian eigen-
pairs of index i and j is defined as:

V Ii, j = MDFi, j×CSQi, j×MDFj,i (26)

where:

CSQi, j =
(ψ>j APψi)

2

(ψ>j APψi)2 +(ψ>i APψi−ψ>j APψ j)2
(27)

ψ6

ψ7

2 2.2 2.4 2.6

·10−2

0

0.5

1

τ

V
I 6
,7

Figure 8: Eigenfunctions exchanging on the bunny. The interaction
takes place between τ1 = 0.018 and τ2 = 0.027 and involves ψ6 and
ψ7. After the interaction has settled, we obtain ψ6(τ2)≈−ψ7(τ1)
(top right) and ψ7(τ2) ≈ ψ6(τ1) (bottom right). The veering in-
dex is plotted between the two sequences. It peaks near τ = 0.023,
where most of the rotation takes place. Where V I6,7 < 0.8 no major
changes occur.

MDFi, j =

ψ
>
j APψi

λi−λ j

∑k 6=i
ψ>k APψi

λi−λk

. (28)

We refer the reader to [BAL11] for an in-depth understanding of
this metric. It suffices to know that it combines two types of factors
in order to give a natural measurement of the veering interaction
between two modes. The first factor is the cross-sensitivity quo-
tient CSQi, j. It measures the intensity of veering between modes
i and j as a quotient between the current modal coupling and the
maximum coupling in τ

∗. The modal dependence factors MDFi, j
and MDFj,i are the quotients between the Fourier coefficients that
appear in Eqs. (20) and (21) and the sum between all the coeffi-
cients of the eigenfunctions derivatives (Eq. (14)). They measure
how much the approximations in Eqs. (20) and (21) hold, attain-
ing maximum value if the rotation between the eigenvectors takes
place on Γ. Since both factors are real values between 0 and 1, the
veering index has the same range.

The veering indices V Ii,i+1 for the Hamiltonian computed on
the human shape in Figure 2 are plotted in Figure 7. Higher dis-
tanced indices Vi,i+d with d = 2,3,4 have been calculated as well
but they were always lower than 0.1. The same has been observed
in other experiments, meaning that proximal interactions are most
frequently encountered. In order to obtain the modal dependence
factors, we have approximated the denominators (the sum of the
coefficients in Eq. (14)) with a sum over the first k modes. An al-
ternative approach is given by Nelson’s method [Nel76] that com-
putes the derivative coefficients by solving a linear system. We have
preferred the choice of the approximations since they are easier to
compute and accurate enough even for small values of k.

A legitimate question that one could ask is how an eigenfunction
ψi transforms when it does not interact with other eigenfunctions,
that is when V Ii,k ≈ 0 for each k. The veering index is zero when
one of the two factors CSQi,k and MDFi,k (MDFk,i) is zero. Both
happen to be null when the modal couplings ψ

>
k APψi are null.

Using this information in conjunction with Eq. (14) we notice that
the derivative is zero in those phases, so the eigenfunction does not
change. In practice, the index could have a small value while being
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Figure 9: Tracking of the Laplacian eigenfunction φ8 = ψ8(0)
from Figure 2. An exchange in sign is present (as seen in Figure
6) in the second interaction. Top row: Evolution path of the eigen-
function on the surface, at increasing values of τ. Bottom row: Cor-
responding veering indices that were used to spot the interactions.

different from zero, so the eigenfunction could still change with
low intensity.

Armed with the veering index we can easily spot when eigen-
functions perform good exchanges, because this happens at values
of τ where V I≈ 1. An example is given in Figure 8, where we show
the evolution of two such eigenfunctions on the bunny model.

Eigenfunction tracking

A first approach to understanding how Hamiltonian functional
maps evolve, is the tracking of individual eigenfunctions by fol-
lowing the peaks of the veering index. Starting from the observation
that the Hamiltonian at τ = 0 corresponds to the Laplacian, we fix
an eigenfunction φi = ψi(0). The idea is to look for the first τ where
V Ii,i+1 ≈ 1 (or V Ii−1,i ≈ 1). After the interaction, a significant
part of ψi (depending on the interaction strength), is transferred to
ψi+1 (or equivalently ψi−1) and becomes associated with λi+1 (or
λi−1). This procedure is repeated until the last eigenvalue λl associ-
ated with the tracked function stabilizes. The tracked eigenfunction
seems to follow a path between exchanging eigenvalue loci. On the
functional map C, the i-th row associated to the eigenfunction φi
should peak at the index l, associated to λl . For Laplacian eigen-
functions with low indices, there are typically a small number of
total interactions and are easier to track.

In Figure 9 we depict the tracking process starting from the

eighth eigenfunction of the example in Figure 2, following the in-
dices computed in Figure 7, reported on the bottom row. Each of
the three interactions is represented by two crossing arrows that
show the exchange between eigenfunctions before and after veer-
ing. The tracking path of φ8 is highlighted by the thick arrows: the
contiguous lines shows the exchange of the tracked eigenfunction
with an eigenfunction of a proximal eigenvalue curve, while the
dashed lines indicate that the function remains relatively constant
on intervals over which the veering index is approximately 0. In
summary, the component on the low potential area of φ8 transfers
to ψ5 at infinity.

7. Hamiltonian functional maps

In this Section we combine the asymptotic information of Theorem
3 with the local behavior investigated in Section 5.2 in order to give
a comprehensive description of the Hamiltonian functional maps.
We mainly seek to characterize the bi-diagonal form of the maps.

7.1. Optimal exchange case

We first put ourselves in the ideal setting where all veering interac-
tions exchange eigenfunctions optimally (V I = 1). The asymptotes
of the eigenvalue curves play a central role in this Section, so we
begin with the following definition.

Definition 3 The i-th support line σi of a Hamiltonian matrix H is
the asymptote (whose existence is guaranteed by Theorem 3) of its
i-th eigenvalue curve λi. Let

d(σi) = lim
τ→+∞

d
dτ

λi ∈ {0,1}. (29)

σi is called an oblique support if d(σi) = 1, while if d(σi) = 0
it is called a horizontal support. The ordered sequence of support
lines will be denoted with Σ. We can label Σ with the sequence of
derivatives:

c = d(σ1), . . . ,d(σn). (30)

Support lines are a useful concept, because they guide the real
eigenvalue curves in the ideal case. To see why this happens, con-
sider the eigenvalue curve λi whose asymptote is σi. W.l.o.g. sup-
pose that σi is an oblique support. This line can either intersect a
horizontal support, or not. In the former case, let us consider the
crossing at the largest τ, denoting with σ j the intersecting horizon-
tal support. At that point, the associated eigenvalue curves λi and λ j
undergo an optimal veering interaction. As argued in Section 5.2,
their first derivative exchanges during the interaction. This means
that at the corresponding τ where the interaction begins, λi will be
associated with σ j and λ j with σi. Applying the same reasoning to
all the other intersections between σi and the horizontal supports
for τ→ 0, we observe that different eigenvalue curves “snap” to σi.
If σi does not intersect other horizontal supports, we have λi = σi
since no modal interactions happen. The behavior we described jus-
tifies the support nature of the asymptotes.

Interestingly, eigenvalue curves would become support lines if
modal interactions are constantly equal to 0, since by Eq. (13) all
second derivatives would cancel out and all veering interactions
would turn to crossing interactions (at the intersections between
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Figure 10: Top: All possible crossing configurations in the 4× 4
case with 2 oblique supports and 2 horizontal supports. Support
lines are plotted in black, while the underlying eigenvalue curves
are dashed. The crossings are displayed in red and the thicker dot
is γ
∗. Bottom: Ideal functional maps associated to each configura-

tion. For τ = 0 we have the identity. For τ =+∞ the maps change
according to the flow of the eigenfunctions along support lines.

support lines). This configuration arises in the ideal non-geometric
case where the Laplacian degenerates to a diagonal matrix, whose
eigenvalues are simply the components of the diagonal. The behav-
ior of such system is equivalent to the one that we are investigating
here, since a perfect veering interaction is equivalent to a crossing
interaction with respect to the eigenfunction exchange. We stress
the importance of this equivalence since it will be useful in the fol-
lowing Subsection, where we will pass to the real case.

A support line is associated to a single eigenfunction for all τ. In
some sense, the eigenfunction “flows” along it. This happens be-
cause at each crossing, the underlying eigenvalue curves exchange
optimally their eigenfunctions.

Let us now consider all possible ways in which support lines can
cross.

Proposition 2 Let Σ be a sequence of support lines and C the set
of all their intersections. If γ1 is the intersection between σi11 and
σi12 and γ2 is the intersection between σi21 and σi22 , we set

γ1 ≤ γ2 ⇐⇒ |i11− i12| ≤ |i21− i22|. (31)

Then 〈C,≤〉 is a preorder with a maximum γ
∗.

The possible arrangements of crossings, which form ordered
structures, are determined only by the order in which support lines
of different slopes meet. We show an example of possible config-
urations in Figure 10. It is clear that γ

∗ is the intersection between
the most distanced pair of intersecting horizontal-oblique support
lines.

Ideal Hamiltonian maps

Now we show how an ideal Hamiltonian functional map takes form
as τ→ +∞. In order to have a clear understanding of what is go-
ing on, we encourage the reader to accompany the reading of the
following lines with the diagram presented in Figure 11, which pro-
vides a visual proof of the phenomenon.

Let Σ be a support sequence labeled by c. We can write c =
c0cmc1 where c0 contains only zeros with |c0| = n0, c1 con-
tains only ones, with |c1| = n1 and cm is such that cm1 = 1 and

ψn. . .ψn−n1+1ψn−n1. . .ψr+1ψr. . .ψn0+1ψn0. . .ψ1

φn. . .φn−n1+1φn−n1
. . .φn0+1φn0

. . .φ1

γ
∗

σn−n1σn0+1

. . .

. . .

C1 C2

C

Figure 11: Representation of the ideal Hamiltonian functional
map structure. Support lines are represented as arrows between the
eigenfunctions of the Laplacian basis and of the Hamiltonian basis.
There are four groups: the first group on the left (green matches)
contains the horizontal supports associated with c0 so they match
the eigenfunctions directly. The second group are oblique supports
that cross horizontal supports (blue matches). The third group are
horizontal supports that cross oblique supports (red matches). Fi-
nally, the fourth group are the oblique supports associated to c1
(green matches). For illustration convenience we put all supports
of the third group after the first group, but in general they are in-
terleaved (reference Figure 10). In order to know where the row
index of a Laplacian eigenfunction will match with the column in-
dex of a Hamiltonian eigenfunction, one only needs to follow the
relative support line. These matches are displayed in the resulting
ideal functional map C. We explicitly depict the trivial green cor-
respondences, the matches between φn0+1 and ψr+1 (red square)
and the match between φn−n1 and ψr (blue square). The C1 and C2
components are such that on each row of C the matched column
index belongs to one of them but not to both (differently from the
real case, as we shall see). This results in the bi-diagonal structure
that we observe in Figures 3 and 4, where all the off-diagonal spar-
sity is cancelled. The dependence on the region of the potential is
clear, since the map is divided in the left component of r columns
(associated to zero potential region) and in the right component of
n− r columns (associated to the high potential region).

cmn−n0−n1
= 0. The support lines labeled by c0 and c1 are parallel

so no intersections occur between them, thus we can focus only on
Σm labeled by cm.

The maximum crossing γ
∗ is the intersection between σn0+1 and

σn1−1, the first and the last support line in Σm. Since σn0+1 is the
first oblique support line, and since there are r horizontal support
lines, it must send φn0+1 into ψr+1 and φn0+1 in ψr+1 (the reader
can follow the corresponding arrow in Figure 11).
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Figure 12: Random potentials (left) are associated to dispersed
functional maps. Sharper diagonals are related to regular poten-
tials. The cut region affects the dispersion (compare center to right)
as in the Neumann case [RCB∗17]. Off-diagonal dispersion is dom-
inant in the upper part of each diagonal. The lower part of the diag-
onals tend to be less dispersed because of the localization property
of higher frequency Laplacian eigenfunctions [CH15].

Consider ψi,ψ j with n0 + 1 < i < j < r. It is clear that ψi = φk
and ψ j = φl with k < l. The same is valid for r+1 < i < j < n−n1.
This results in two slanted diagonals C1 and C2.

7.2. Real exchange case

Now let us tackle the general case in which spectral interactions
are not optimal. We can write a Laplacian matrix as L = Ld + Lo,
where Ld = diag(L) and Lo = L−Ld is the off-diagonal compo-
nent. The Hamiltonian is decomposed in the following way:

H = L+ τP = Ld +Lo + τP = (Ld + τP)+Lo . (32)

H is the sum between the matrix Ld +τP, whose loci coincide with
the intersecting support lines (since it corresponds to the degenerate
crossing configuration being diagonal, as explained in the previous
Subsection), and by a constant matrix Lo, which encodes the edge
information on the mesh. By applying Weyl’s inequality (Lemma
1, Appendix A) each eigenvalue λi of H is bounded by the sum
between the i-th ideal eigenvalue δi of Ld + τP and the extremal
eigenvalues ωmin and ωmax of Lo

† (constant for each τ):

δi +ωmin ≤ λi ≤ δi +ωmax . (33)

Being the real eigenvalues bounded to the ideal eigenvalues, the
latter will follow the former with the difference that crossing inter-
actions will be replaced by veering interactions, which in general
are non optimal. Consequently, real Hamiltonian functional maps
follow the structure of the maps in Figure 11, with the difference
that components of an initial eigenfunction will separate on more

† It follows that the eigenvalues λi are bound by spectral norm ||Lo||2. This
bound can be enlarged to ||Lo||1. Since ||Lo||1 is equal to the maximum sum
(in absolute value) over the columns of Lo, the perturbation with respect to
the ideal case depends on geometric information (e.g. the maximum degree
of a vertex). We leave this investigation for future studies.

than one eigenvalue curve (depending on V I at each interaction),
resulting in the spreading pattern of the map. Experimental evi-
dence suggests that random, dispersed potentials, result in func-
tional maps that are fairly spread, as shown in Figure 12.

8. Applications

The theoretical analysis performed in the previous sections pro-
vides a formal framework to understand the parametric family of
Hamiltonian functional maps. Although the Hamiltonian spectrum
has been employed previously in the geometry processing commu-
nity, to our knowledge explicit Hamiltonian functional maps have
not been considered in any geometry processing task before. In the
current Section, we show the practical utility of this formalism to
tackle problems in computer graphics. We present a direct applica-
tion in the context of partial shape matching, for which we obtain
state of the art results. For this task we advocate for the use of
Hamiltonian functional maps to provide a framework which fits in
a natural way to previously existing pipelines.

As stated in the introductory section, partial shape matching
deals with the problem of finding a correspondence between a
deformable shape and a possible deformed subset of it. We set
ourselves in the (nearly) isometric setting. State of the art results
are those of [RCB∗17], where the framework of [OBCS∗12] for
finding a correspondence in the spectral domain of the Laplace-
Beltrami operator is lifted to the partial setting. More recently in
[RTO∗19] the strictly related problem of localization is addressed.
They show that by aligning the spectrum of the Hamiltonian on
the complete shape with the eigenvalues of the Dirichlet Laplacian
on the partial shape, the potential function localizes on the corre-
sponding region. We propose a new pipeline which combines the
two approaches obtaining results at the state of the art.

Our reasoning is based on the simple fact that when consider-
ing the two approaches in a coupled fashion their weaknesses tend
to disappear: namely, a functional map between the two domains
needs a well defined region of potential in order to localize the
eigenfunctions, while the performance of the localization algorithm
heavily depends on the initialization of the potential function, since
the spectra alignment technique alone is not good at escaping local
minima of the highly nonconvex problem.

Leveraging on the natural relation between the two problems,
our algorithm alternates between the optimization for the functional
map and the region localization task, converging to accurate results
in a fully automatic way. In addition, we noticed that the evolu-
tion of the functional map along the optimization problem locally
resembles the behavior encountered in the parametric study of the
step potential in the previous sections.

8.1. Method

More formally, consider two manifoldsM andN , a functional cor-
respondence T : L2(N )→ L2(M), and its matrix representation
C of size n×n, possibly truncated to the first k× k spectral coeffi-
cients. In our approach,M models the complete shape and N the
partial one, ΦΦΦ is the Hamiltonian basis of H = L+ τAP onM and
ΨΨΨ is the Dirichlet basis of L onN .
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Figure 13: Comparison of Intersection over Union scores over the
region identified by the Hamiltonian functional map framework (in
blue) and PFM [RCB∗17] with Dirichlet and Neumann boundary
conditions (respectively in yellow and red).

In brief, the problem deals with the identification of a region
S ⊂M, which corresponds to N . To solve it, we aim at finding
the corresponding functional map C and a potential function v over
M corresponding to the missing part. Our approach can be sum-
marized in the following four steps, repeated until convergence:

1. Estimate the map C between ΨΨΨ and ΦΦΦ.
2. Initialize the potential function v by transferring an indicator

function χN via C onM.
3. Optimize v by aligning the spectra of HM and LN .
4. Recompute ΦΦΦ, solving the generalized eigenvalue problem as-

sociated with the potential P = diag(v).

The first step corresponds to the one proposed in [RCB∗17], with
the fundamental difference that the map is between the Hamiltonian
and the Dirichlet bases, rather than using the Neumann basis. The
optimization consists in solving a regularized least squares prob-
lem:

argmin
C
||CA−B||2,1 +ρ(C) , (34)

where B are the spectral coefficients w.r.t ΦΦΦ of some point descrip-
tors onM, and CA are the spectral coefficients of the same kind
of descriptors onN transferred to ΦΦΦ via C, while ρ corresponds to
regularization terms as defined in [RCB∗17]. The third step corre-
sponds to the localization problem in [RTO∗19] where we estimate
v by solving

argmin
v
||λλλ(LM+ τAP)−µµµ(LN )||F , (35)

where λλλ are the eigenvalues of the Hamiltonian, H and µ are the
eigenvalues of the Laplacian on N and || · ||F denotes the Frobe-
nius norm. Steps 2 and 4 act as connecting elements between the
two minimization problems, with the whole process converging to
the alignment of eigenspaces of HS and LN and the identification
of the region itself. Importantly, the map C will tend to be diago-
nal and full rank across the iterations, differently from [RCB∗17]
where the correspondence matrix has a slanted diagonal structure.
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Figure 14: Correspondence quality comparison with PFM using
Dirichlet and Neumann boundary conditions. The error measure is
computed according to the Princeton protocol [KLF11].

Method mean IOU median IOU AUC geod err AUC IoU
Hamiltonian 000...888333777 000...999111444 222111...999555999 000...777444

PFM Neumann 0.829 0.904 21.910 0.72
PFM Dirichlet 0.761 0.829 20.657 0.66

Table 1: Performance scores for SHREC 2016: we reach SOTA
results (in bold) over mean and median IoU’s, and with respect to
the area under the geodesic error curves reported in Figure 14.

This follows from Theorem 1. The algorithm is summarized in Ap-
pendix B.

8.2. Results

We evaluated our approach on the SHREC 2016 Partiality bench-
mark [CRB∗16] on a set of 120 partial shapes corresponding to
nearly-isometric deformations of regions of 8 reference models.

In Figure 14 we plot the Cumulative Match Curve, showing that
our method compares favorably with the state of the art [RCB∗17],
especially in the left part of the curve. This proves that using lo-
calized Hamiltonian basis helps in increasing match accuracy and
improves the region localization as shown by the higher Intersecion
over Union (IoU) curve in Figure 13. In Table 1 we also report com-
parisons with the method of [RCB∗17] in which we just replace
Neumann with Dirichlet boundary conditions, showing the benefits
of adopting the Hamiltonian basis and simultaneously optimizing
the potential and the functional map with the proposed method.

9. Conclusion

In this work we introduced the Hamiltonian functional map formal-
ism and performed a deep theoretical analysis on it to provide a well
founded theory to the geometry processing community. Doing so
we have emphasized how an attentive theoretical analysis of purely
discrete quantities can provide unique insights on the behavior of
observed spectral phenomena, which lack a meaningful explana-
tion from the continuous point of view. We have investigated the
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possibility of tracking the evolution of eigenfunctions by observ-
ing eigenvalue curves (using their veering indices). This allowed us
to understand precisely their local geometric transformations (ap-
proximated rotations), otherwise difficult to access from the global
functional map representation. Paired with the asymptotic behavior,
we used these findings to characterize the double diagonal struc-
ture of the maps, where each diagonal is related to Hamiltonian
eigenfunctions on complementary regions of the mesh that decom-
pose Laplacian eigenfunctions. Additionally, we showed how this
formalism is not just limited to the theoretical setting, but it also
represents a practical tool, allowing to tackle the partial functional
matching problem with a new, unifying approach, which leads to
state of the art results on a challenging dataset.

The theoretical contribution opens up new directions in which
perturbative methods could be employed in the analysis of geomet-
ric optimization algorithms, in settings that could be different from
the one approached in this paper. The parametric study, performed
here in the case of the step potential, could be taken further, in order
to study the behavior of more complex systems such as geometric
flows or continuous deformations of manifolds. Finally, the track-
ing of eigenfunctions along eigenvalue curves using veering indices
leaves many possibilities open for exploration.
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A. Theorem proofs

Lemma 1 (Weyl’s inequality [SS90]) Let X and Y be two real sym-
metric matrices with eigenvalues ξ1 ≤ . . .≤ ξn and υ1 ≤ . . .≤ υn,
respectively. Let Z = X+Y with eigenvalues ζ1 ≤ . . .≤ ζn. Then,
for each i:

ξi +υ1 ≤ ζi ≤ ξi +υn . (36)

Theorem 2 Following [FK68], the derivatives of the eigenvalues
λi and of the eigenvectors ψi in a generalized symmetric eigensys-
tem, with mass matrix A and stiffness matrix K (dependent on a
parameter τ) are given by:

d
dτ

λi = ψ
T
i

(
d
dτ

K−λi
d
dτ

A
)

ψi (37)

d
dτ

ψi =−
ψ

T
i
( d

dτ
A
)
ψi

2
+ ∑

j 6=i

ψ
T
j
( d

dτ
K−λi

d
dτ

A
)
ψi

λi−λ j
ψ j . (38)

In our setting K = W+τAP (reference Eq. (9)). Differentiating the
two matrices we obtain:

d
dτ

K = AP (39)

d
dτ

A = 0 . (40)

Substituting Eqs. (39) and (40) in Eq. (37) we obtain the eigenvalue
derivative:

d
dτ

λi = ψ
T
i APψi . (41)

Substituting Eqs. (39) and (40) in Eq. (38) we obtain the eigenvec-
tor derivative:

d
dτ

ψi = ∑
j 6=i

ψ
T
j APψi

λi−λ j
ψ j . (42)

Now we can compute the second eigenvalue derivative by differen-
tiating Eq. (41) and using Eq. (42):

d2

dτ2 λi = 2∑
j

aii piiψi j
d
dτ

ψi j (43)

= 2
(

d
dτ

ψi

)T

APψi (44)

= 2
(

∑
j 6=i

ψ
T
j

ψ
T
j APψi

λi−λ j

)
APψi (45)

= 2 ∑
j 6=i

(ψT
j APψi)

2

λi−λ j
. (46)

Proposition 1 Let δτ = τ2− τ1. We can write H2 = H1 +δτP. Let
us apply Lemma 1, setting X = H1 and Y = δτP. We get:

λi1 ≤ λi2 ≤ λi1 +δτ . (47)

Theorem 3 The first task is to bound asymptotically the eigenval-
ues of the Hamiltonian matrix using Lemma 1. We set Y = A−1W
and X = τdiag(v) = τP. Since X has the first r eigenvalues equal to
0 and the subsequent ones equal to τ, we get:

µ1 ≤ λi ≤ µn (48)

τ+µ1 ≤ λ j ≤ τ+µn . (49)

Equation (48) tells us that the eigenvalues λi are bounded from
above. Since all eigenvalue curves are increasing (Proposition 1),
λi converges. From Eq. (49) instead we note that λ j diverges. Sim-
ilar inequalities hold for the eigenvalues of the principal minors,
with the only difference being the size of the bound given by the
minimum and maximum eigenvalue of the Laplacian minor. There-
fore, the first r− 1 (if pii = 0) or r (if pii = 1) eigenvalues of
the minors converge while the others diverge. In order to compute
limτ→+∞ d

dτ
λi and limτ→+∞ d

dτ
λ j we use Eq. (41), with A = I

(we are requiring this form since we need unit eigenvectors with
respect to the canonical norm):

d
dτ

λh = ψ
T
h Pψh . (50)

In order to perform the limit on Eq. (50) we should know the
asymptotic behaviour of the eigenvectors. We can use the recently
celebrated result in [DPTZ19] to write the square of the eigenvector
coefficients as a function of the eigenvalues

ψ
2
hk =

∏
n−1
l=1 λh−λ

k
l

∏
n
l 6=h λh−λl

, (51)
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where λ
k
l is the l-th eigenvalue of Hk, the k-th principal minor of

H. First we concentrate on the terms ψik such that Pkk = 1:

ψ
2
ik =

∏
n−1
l=1 λi−λ

k
l

∏
n
l=1,l 6=i λi−λl

(52)

=
∏

n−1
l=1 λi−λ

k
l

∏
r
l=1,l 6=i λi−λl ∏

n
l=r+1 λi−λl

(53)

=
∏

r
l=1 λi−λ

k
l

∏
r
l=1,l 6=i λi−λl

∏
n−1
l=r+1 λi−λ

k
l

∏
n
l=r+1 λi−λl

(54)

=
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r−1
l=1 λi−λ

k
l

∏
r
l=1,l 6=i λi−λl

(λi−λ
k
r)

∏
n−1
l=r+1 λi−λ

k
l

∏
n−1
l=r+1 λi−λl

1
λi−λn

. (55)

In each sum we recognize four terms and λi is present in each of
them. For τ→ +∞, λi tends to a finite value li. Let us take the
limit on each term. The first term is a fraction containing the same
number of factors on the numerator and on the denominator. Both
λ

k
l and λl tend to finite values ll and lk

l . The only problem can arise
if li = ll , when λi−λl → 0. To this end, we make use of Cauchy’s
interlacing inequalities [DPTZ19]:

λi ≤ λ
k
i ≤ λi+1 . (56)

Using this result we have that λi ≤ λ
k
l ≤ λl or λl ≤ λ

k
l ≤ λi. In both

cases it holds:

|λi−λ
k
l | ≤ |λi−λl | , (57)

so

λi−λ
k
l

λi−λl
∈ [−1,1] . (58)

With this, we establish that the first term is bounded. The second
term is bounded as well. The third term has a structure reminiscent
of the first term but now λl and λ

k
l tend to +∞. Using Eq. (49) we

can write each fraction as:

λi−λ
k
l

λi−λl
=

λi− (τ+α1)

λi− (τ+α2)
(59)

for α1,α2 ∈ [µ1,µn] It is clear that each one of these terms con-
verges to 1. Finally, the last term tends to 0. Wrapping it up, the
last zero limit dominates the product so we obtain:

lim
τ→+∞

ψ
2
ik = 0 . (60)

Now we limit the coefficients ψ jk with Pkk = 0. Proceeding as in
Eqs. (52)-(54), we obtain:

ψ
2
jk =

∏
r−1
l=1 λ j−λ

k
l

∏
r−1
l=1 λ j−λl

1
λ j−λr

∏
n−2
l=r λ j−λ

k
l

∏
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l=r+1,l 6= j λ j−λl

(λ j−λ
k
n) . (61)

By Eq. (49) we write λ j = τ+α j, λl = τ+αl for l ≥ r + 1 and
λ

k
l = τ+α

k
l for l ≥ r, with α j,αl ,α

k
l ∈ [µ1,µn]. Rewriting Eq. (61)

ψ
2
jk =

∏
r−1
l=1 τ+α j−λ

k
l

∏
r−1
l=1 τ+α j−λl

1
τ+α j−λr

∏
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(62)

The first term tends to 1, the second term tends to 0, the third term

Ground truth Ours PFM Neumann

0.98 0.85

0.98 0.75

0.95 0.49

Figure 15: Qualitative comparison of the localized region (in red)
on the full shape corresponding to an near-isometric deformation
of the queried partial shape. Left: Ground truth regions and cor-
responding partial shapes. Center: our result computed with algo-
rithm 1. Right: Results of [RCB∗17] with Neumann b.c.. On the top
of each results are reported the IOU scores w.r.t. the ground truth
regions.

can be bounded following Eqs. (56)-(58) (since α j,αl ,α
k
l converge

in [µ1,µn]) while the last term tends to a finite value. We have:

lim
τ→+∞

ψ
2
jk = 0 . (63)

Combining Eqs. (50) and (60),

lim
τ→+∞

d
dτ

λi = lim
τ→+∞

ψ
T
i Pψi = lim

τ→+∞∑
k

ψ
2
ik = 0 . (64)

At the same time, since ψ j is an unit eigenvector,
n

∑
k=1

ψ
2
jk = 1 . (65)

Using Eq. (63),

lim
τ→+∞ ∑

k:Pkk=1
ψ

2
jk = 1 . (66)

We conclude that:

lim
τ→+∞

d
dτ

λ j = lim
τ→+∞

ψ
T
j Pψ j = lim

τ→+∞ ∑
k:Pkk=1

ψ
2
jk = 1 . (67)

Proposition 2 First we need to prove that ≤ is a preorder relation
on C. Thus, the reflexive and transitive properties must hold.

• Reflexivity: γ1 ≤ γ1 ⇐⇒ |i11− i12| ≤ |i11− i12| ⇐⇒ 0≤ 0.

• Transitivity: if γ1 ≤ γ2 and γ2 ≤ γ3 then |i11− i12| ≤ |i21− i22|
and |i21− i22| ≤ |i31− i32|. Combining the two equations we
get γ1 ≤ γ3.

Now we show that a maximum exists. Suppose a maximum does
not exist. There must exist two distinct upper bounds γ1 and γ2 such
that γ1 is the intersection between σ11 and σ12 and γ2 is the inter-
section between σ21 and σ22. Since the bounds are distinct it must
be that σ11 6= σ12 6= σ21 6= σ22. Let i31 = min{i11, i12, i21, i22},
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Algorithm 1 Partial Hamiltonian functional map
Require:
• A complete shapeM
• A partial shape N , s.t. N is an isometric deformation of

some S ⊂M
• A: a set of point descriptors onN
• B: a set of point descriptors onM

1: for k = 1 . . .end do
2: Ck← argminC ||CA−B||F +ρ(C)

3: vinit ← ΦΦΦkCkΨΨΨ
T AN χχχN

4: vk← argminv ||λλλ(LM+ τAP(v))−µµµ(LN )||F
5: ΦΦΦk← (LM+ τAP)ΦΦΦ = ΛΛΛΦΦΦ

6: end for
7: return Cend ,vend

i32 = max{i11, i12, i21, i22} and set γ3 as the intersection between
σ31 and σ32. Now, by construction it holds |i11− i12| ≤ |i31− i32|
and |i21− i22| ≤ |i31− i32|, meaning that γ1 ≤ γ3 and that γ2 ≤ γ3,
proving the thesis by contradiction.

B. Algorithmics

In Algorithm 1 we report our pipeline to tackle partial functional
mapping exploiting the Hamiltonian functional map formalism.
Lines 2 and 4 of the algorithm are computed using standard con-
jugate gradient methods (projected onto the space of positive func-
tions for the latter). Line 3 of the algorithm serves as an initializa-
tion of the non-convex problem on the following line. Termination
criteria are set according to the geodesic error of the current esti-
mate of the map Ck.

In Figure 15 we show a qualitative comparison for the region lo-
calized with Algorithm 1 (the complementary region of the poten-
tial function v): comparing with [RCB∗17] our approach seems to
promote more contiguous regions, obtaining better results in cases
with symmetric sub-matches (e.g. the arms and hands of the human
model in the last row).
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