
Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson
(Guest Editors)

Volume 39 (2020), Number 5

Anderson Acceleration for Nonconvex ADMM
Based on Douglas-Rachford Splitting

Wenqing Ouyang1 Yue Peng1,2 Yuxin Yao1 Juyong Zhang1† Bailin Deng2

1University of Science and Technology of China 2Cardiff University

Abstract
The alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that
can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a
solution of high-accuracy. Previously, Anderson acceleration has been applied to ADMM, by treating it as a fixed-point iteration
for the concatenation of the dual variables and a subset of the primal variables. In this paper, we note that the equivalence
between ADMM and Douglas-Rachford splitting reveals that ADMM is in fact a fixed-point iteration in a lower-dimensional
space. By applying Anderson acceleration to such lower-dimensional fixed-point iteration, we obtain a more effective approach
for accelerating ADMM. We analyze the convergence of the proposed acceleration method on nonconvex problems, and verify its
effectiveness on a variety of computer graphics including geometry processing and physical simulation.

CCS Concepts
•Mathematics of computing → Solvers; Mathematical optimization; Numerical analysis;

1. Introduction

Numerical optimization is commonly used in computer graphics,
and finding a suitable solver is often instrumental to the performance
of the algorithm. For an unconstrained problem with a simple
smooth target function, gradient-based solvers such as gradient
descent or the Newton method are popular choices [NW06]. On
the other hand, for more complex problems, such as those with a
nonsmooth target function or with nonlinear hard constraints, it is
often necessary to employ more sophisticated optimization solvers
to achieve the desired performance. For example, proximal splitting
methods [CP11] are often used to handle nonsmooth optimization
problems with or without constraints. The basic idea is to introduce
auxiliary variables to replace some of the original variables in the
target function, while enforcing consistency between the original
variables and the auxiliary variables with a soft or hard constraint.
This often allows to problem to be solved via alternating update
of the variables, which reduces to simple sub-problems that can be
solved efficiently. One example of such proximal splitting methods is
the local-global solvers commonly used for geometry processing and
physical simulation [SA07, LZX∗08, BDS∗12, LBOK13, BML∗14].

Another popular type of proximal splitting methods, the alternat-
ing direction method of multipliers (ADMM) [BPC∗11], is designed

† Corresponding author: juyong@ustc.edu.cn (Juyong Zhang)

for the following form of optimization:

min
x,z

Φ(x,z) s.t. Ax−Bz = c, (1)

where x,z are the original variable and the auxiliary variable, and
the linear hard constraint Ax−Bz = c enforces their compatibility.
ADMM computes a stationary point of the augmented Lagrangian
function L(x,z,y) =Φ(x,z)+〈βy,Ax−Bz−c〉+ β

2 ‖Ax−Bz−c‖2 via
the following iterations [BPC∗11]:

zk+1 = argmin
z

L(xk,z,yk), (2)

xk+1 = argmin
x

L(x,zk+1,yk), (3)

yk+1 = yk + Axk+1 −Bzk+1 − c, (4)

where y is the dual variable, and β ∈ R+ is a penalty parameter.
This formulation is general enough to represent a large variety of
optimization problems. For example, any additional hard constraint
can be incorporated into the target function using an indicator
function that vanishes if the constraint is satisfied and has value +∞

otherwise. The above iteration often has a low computational cost,
where each sub-problem can be solved in parallel and/or in a closed
form. The solver can handle nonsmooth problems, and typically
converges to an approximate solution in a small number of itera-
tions [BPC∗11]. Moreover, although ADMM was initially designed
for convex problems, it has proved to be also effective for many
noncovex problems [WYZ19]. Such properties make it a popular
solver for large-scale optimization in computer graphics [NVW∗13,

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI:10.1111/cgf.14081

https://diglib.eg.orghttps://www.eg.org

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

NVT∗14, OBLN17], computer vision [LFYL18, WG19], and image
processing [FB10, AF13, HDN∗16].

Despite its popularity, a major drawback of ADMM is that it
can take a long time to converge to a solution of high accuracy.
This limitation has motivated various work on accelerating ADMM
with a focus on convex problem [GOSB14, KCSB15, ZW18]. For
nonconvex ADMM, an acceleration technique was proposed recently
in [ZPOD19]. By treating the steps (2)–(4) as a fixed-point iteration
of the variables (x,y) , it speeds up the convergence using Anderson
acceleration [And65], a well-known acceleration technique for fixed-
point iterations. It is also shown in [ZPOD19] that for problems with
a separable target function that satisfies certain assumptions, ADMM
can be treated as a fixed-point iteration on a reduced set of variables,
which further reduces the overhead of Anderson acceleration.

In this paper, we propose a novel acceleration technique for
nonconvex ADMM from a different perspective. We note that if
the target function is separable in x and z, then ADMM is equivalent
to Douglas-Rachford (DR) splitting [DR56], a classical proximal
splitting method. Such equivalence enables us to interpret ADMM
using its equivalent DR splitting form, which turns out to be a fixed-
point iteration for a linear transformation of the ADMM variables,
with the same dimensionality as the dual variable y. As a result,
we can apply Anderson acceleration to such alternative form of
fixed-point iteration, often with a much lower dimensionality than
the fixed-point iteration of (x,y) that is utilized in [ZPOD19] for the
general case and with a lower computational overhead. Moreover,
compared to the other acceleration techniques in [ZPOD19] based
on reduced variables, our new approach has the same dimensionality
for the fixed-point iteration but requires a much weaker assumption
on the optimization problem. To achieve stability of the Ander-
son acceleration, we propose two merit functions for determining
whether an accelerated iterate can be accepted: 1) the DR envelope,
with a strong guarantee for global convergence of the accelerated
solver, and 2) the primal residual norm, which provides fewer
theoretical guarantees but incurs lower computational overhead.
As far as we are aware of, this is the first global convergence proof
for Anderson acceleration on nonconvex ADMM. We evaluate our
method on a variety of nonconvex ADMM solvers used in computer
graphics and other domains. Thanks to its low dimensionality and
strong theoretical guarantee, our method achieves more effective
acceleration than [ZPOD19] on many of the experiments.

To summarize, our main contributions include:

• We propose an acceleration technique for nonconvex ADMM
solvers, by utilizing their equivalence to DR splitting and applying
Anderson acceleration to the fixed-point iteration form of DR
splitting. We also propose two types of merit functions that can
be used to verify the effectiveness of an accelerated iterate, as well
as acceptance criteria for the iterate based on the merit functions.

• We prove the convergence of our accelerated solver under appro-
priate assumptions on the problem and the algorithm parameters.

2. Related Works

ADMM. ADMM is a variant of the augmented Lagrangian scheme
that uses partial updates for the dual variables, and is commonly
used for optimization problems with separable target functions and

linear side constraints [BPC∗11]. Its ability to handle nonsmooth
and constrained problems and its fast convergence to an approximate
solution makes it a popular choice for large-scale optimization in var-
ious problem domains. In computer graphics, ADMM has been ap-
plied for geometry processing [BTP13, NVW∗13, ZDL∗14, XZZ∗14,
NVT∗14], image processing [HDN∗16], computational photogra-
phy [WFDH18], and physical simulation [GITH14,PM17,OBLN17].
It is well known that ADMM suffers from slow convergence to a
high-accuracy solution, and different strategies have been proposed
in the past to speed up its convergence, e.g., using Nesterov’s
acceleration [GOSB14, KCSB15] or GMRES [ZW18]. However,
these acceleration methods focus on convex problems, while many
problems in computer graphics are nonconvex.

Anderson Acceleration. Anderson acceleration [And65, WN11]
is an established method for accelerating fixed-point iterations,
and has been applied successfully to numerical solvers in different
domains, such as numerical linear algebra [Ste12, PSP16, SPP19],
computational physics [LSV13, WTK14, AJW17, MST∗18], and
robotics [POD∗18]. The key idea of Anderson acceleration is to
utilize m previous iterates to construct a new iterate that converges
faster to the fixed point. It has been noted that such an approach is
indeed a quasi-Newton method [Eye96,FS09,RS11]. Other research
works have investigated its local convergence [TK15, TEE∗17] as
well as its effectiveness in acceleration [EPRX20]. Recently, it has
been applied in [PDZ∗18a] to improve the convergence of local-
global solvers in computer graphics. Later, Zhang et al. [ZPOD19]
proposed to speed up the convergence of nonconvex ADMM solvers
in computer graphics using Anderson acceleration.

DR Splitting. DR splitting was originally proposed in [DR56]
to solve differential equations for heat conduction problems, and
has been primarily used for solving separable convex problems. In
recent years, there is a growing research interest in its application
on nonconvex problems [ABT14, LP16, Pha16, HL13, HLN14]. The
convergence of DR splitting in such scenarios has only been studied
very recently [LP16, TP20]. In this paper, we will work with the
same assumption as in [TP20] to analyze the convergence of our
algorithm.

Similar to ADMM, DR splitting also needs a large number of
iterations to converge to a solution of high accuracy [FZB19]. This
has motivated research works on acceleration techniques for DR
splitting, such as adaptive synchronization [BKW∗19] and momen-
tum acceleration [ZUMJ19]. Anderson acceleration and similar
adaptive acceleration strategies have also been used to accelerate
DR splitting [FZB19, PL19]. However, these works consider convex
problems only, and their convergence proofs rely heavily on the
convexity. Thus they are not applicable to the nonconvex problems
considered in this paper.

The equivalence between ADMM and DR splitting is well known
for convex problems [Glo83]. Some existing methods utilize this
connection to accelerate ADMM [PJ16, PL19], but they are only
applicable to convex problems. Our method is based on the equiva-
lence between ADMM and DR splitting for nonconvex problems,
which has only been established very recently [BK15,YY16,TP20].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

222

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

3. Algorithm

In this section, we first introduce the background for ADMM, DR
splitting, and Anderson acceleration. Then we discuss the equiva-
lence between ADMM and DR splitting on nonconvex problems,
and derive an Anderson acceleration technique for ADMM based
on its equivalent DR splitting form.

3.1. Preliminary

ADMM. In this paper, we focus on ADMM for the following
optimization problem with a separable target function:

min
x,z

f (x) + g(z) s.t. Ax−Bz = c, (5)

with the ADMM steps given by:

xk+1 = argmin
x

(
f (x) +

β

2
‖Ax−Bzk + yk − c‖2

)
, (6)

yk+1 = yk + Axk+1 −Bzk − c, (7)

zk+1 = argmin
z

(
g(z) +

β

2
‖Axk+1 −Bz + yk+1 − c‖2

)
, (8)

Throughout this paper, we assume that the solutions to sub-
problems (6) and (8) always exist. Note that for each sub-problem,
it is possible that there exist multiple solutions. Like [ZPOD19], we
assume that the solver for each sub-problem is deterministic and
always returns the same solution if given the same input, so that
the operator argmin is single-valued. Although the order of steps
here appears different from the standard scheme in Eqs. (3)–(4),
they are actually equivalent since they have the same relative order
between the steps. We adopt this notation instead of the standard
scheme, because it facilitates our discussion about the equivalence
with DR splitting. A commonly used convergence criterion for
ADMM is that both the primal residual rk

p and the dual residual rk
d

vanish [BPC∗11]:

rk
p = Axk −Bzk−1 − c, rk

d = βBT A(xk −xk−1). (9)

The primal and dual residuals measure the violation of the linear side
constraint and the dual feasibility condition of problem (5), respec-
tively [BPC∗11]. An alternative criterion is a vanishing combined
residual [GOSB14]:

rk
c = β‖Axk −Bzk−1 − c‖2 +β‖A(xk −xk−1)‖2, (10)

which is a sufficient condition for vanishing primal and dual residu-
als. Moreover, the combined residual decreases monotonically for
convex problems [GOSB14].

DR splitting. DR splitting has been used to solve optimization
problems of the following form:

min
u

ϕ1(u) +ϕ2(u), (11)

with an iteration scheme:

sk+1 = sk + vk −uk, (12)

uk+1 = proxγϕ1
(sk+1), (13)

vk+1 = proxγϕ2
(2uk+1 − sk+1), (14)

where γ ∈ R+ is a constant and proxh denotes the proximal mapping
of function h, i.e.,

proxh(x) := argmin
y∈Rn

(
h(y) +

1
2
‖x−y‖2

)
. (15)

Similar to our treatment of ADMM, we assume that there always
exists a solution to the minimization problem above, and its solver
always return the same result if given the same input, so that the
proximal operator is single-valued. Although DR splitting has been
primarily used on convex optimization, recent results show that it is
also effective for noncovex problems [LP16]. Later in Section 3.2,
we will show that the ADMM steps (6)–(8) are equivalent to the DR
splitting scheme (12)–(14) for two functions ϕ1,ϕ2 derived from the
target function and the linear constraint in Eq. (5).

Anderson Acceleration. Given a fixed-point iteration

xk+1 = G(xk),

Anderson acceleration [And65, WN11] aims at speeding up its
convergence to a fixed point where the residual

F(x) = G(x)−x

vanishes. Its main idea is to use the residuals of the latest step xk
and its previous m steps xk−1, ...,xk−m to find a new step xAA

k+1 with
a small residual. This is achieved via an affine combination of the
images of xk,xk−1, ...,xk−m under the fixed-point mapping G:

xk+1 = G(xk)−
m∑

j=1

θ∗j

(
G(xk− j+1)−G(xk− j)

)
,

where the coefficients are found by solving a least-squares problem:

(θ∗1, . . . , θ
∗
m) = argmin

θ1,...,θm

∥∥∥∥∥∥∥∥F(xk)−
m∑

j=1

θ j
(
F(xk− j+1)−F(xk− j)

)∥∥∥∥∥∥∥∥
2

.

3.2. Anderson Acceleration Based on DR Splitting

The derivation of our acceleration method relies on the equivalence
between ADMM and DR splitting from [TP20], which we will
review in the following. To facilitate the presentation, we first
introduce a notation from [TP20]:
Definition 3.1. Given f : Rn→ R∪{+∞} and A ∈ Rp×n, the image
function fA : Rp→ [−∞,+∞] is defined as

fA(x) =

infy{ f (y) | A(y) = x} if x is in the range of A,
+∞ otherwise.

Note that we adopt a different symbol for image function than the
one used in [TP20] to improve readability. The equivalence between
ADMM and DR splitting is given as follows:
Proposition 3.2. ([TP20, Theorem 5.5]) Suppose (x,y,z) ∈ Rm ×

Rn ×Rp, and let (x+,y+,z+) be generated by the ADMM iteration
(6)–(8) from (x,y,z). Define

s = Ax−y
u = Ax
v = Bz + c

,


s+ = Ax+ −y+

u+ = Ax+

v+ = Bz+ + c
. (16)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

223

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Then we have:

s+ = s + v−u, (17)

u+ = proxγϕ1
(s+), (18)

v+ = proxγϕ2
(2u+ − s+), (19)

where γ = 1/β, and

ϕ1(u) = fA(u), ϕ2(u) = gB(u− c). (20)

Proposition 3.2 shows that for the optimization problem (5), we
can find the functions ϕ1 and ϕ2 in the problem (11) such that the
DR splitting steps (12)–(14) are related to the ADMM steps (6)–(8)
via the transformation defined in Eq. (16).

According to the DR splitting steps (13) and (14), both uk and
vk are functions of sk. Then the step (12) indicates that sk+1 can be
written as a function of sk only:

sk+1 = G(sk) :=
1
2

(
(2proxγϕ2

− I)◦ (2proxγϕ1
− I) + I

)
(sk), (21)

where I denote the identity operator. In other words, the DR splitting
steps can be considered as a fixed-point iteration of s, which is a
transformation of the variables x and y for its equivalent ADMM
solver. Therefore, we can apply Anderson acceleration to the s
variable in DR splitting to speed up the convergence. One tempting
approach is to compute the value of s according to Eq. (16) after
each ADMM iteration and apply Anderson acceleration. This would
not work in general, however, because from an accelerated value of
s we cannot recover the values of x and y to carry on the subsequent
ADMM steps. Instead, we perform Anderson acceleration on DR
splitting, and derive the ADMM solution x,y,z based on the final
values of the DR splitting variables s,u,v. To implement this idea,
we still need to resolve a few problems. First, we need to determine
the specific forms of the proximal operators proxγϕ1

and proxγϕ1

used in DR splitting. Second, similar to [ZPOD19], we need to
define criteria for the acceptance of an accelerated iterate, to improve
the stability of Anderson acceleration. Finally, we need to find a
way to recover the ADMM variables x,y,z after the termination of
DR splitting. These problems will be discussed in the following.

3.2.1. Proximal Operators for γϕ1 and γϕ2

In general, given the functions f and g from the optimization
problem (5), it is difficult to find an explicit formula for the image
functions ϕ1 and ϕ2 given in Eq. (20). On the other hand, the
proximal operators proxγϕ1

and proxγϕ2
have rather simple forms,

as we will show below. Here and in the remaining parts of the paper,
we will make frequent use of the following proposition from [TP20]:
Proposition 3.3. ([TP20, Proposition 5.2]) Let f : Rn→ R∪{+∞}
and A ∈ Rp×n. Suppose that for some β > 0 the set-valued mapping
Xβ(s) := argmin

x∈Rn
{ f (x)+

β
2 ‖Ax− s‖2} is nonempty for all s ∈ Rp. Then

(i) the image function fA is proper;
(ii) fA(Axβ) = f (xβ) for all s ∈ Rp and xβ ∈ Xβ(s);
(iii) prox fA/β = AXβ.

Then from Proposition 3.3, it is easy to derive the following:
Proposition 3.4. The proximal operators proxγϕ1

,proxγϕ2
defined

in Eqs. (18) and (19) can be evaluated as follows:

proxγϕ1
(s) = Ax̄, proxγϕ2

(2u− s) = Bz + c, (22)

where

x̄ = argmin
x

(
f (x) +

1
2γ
‖Ax− s‖2

)
, (23)

z̄ = argmin
z

(
g(z) +

1
2γ
‖Bz + c− (2u− s)‖2

)
. (24)

3.2.2. Criteria for Accepting Accelerated Iterate

Classical Anderson acceleration can be unstable with slow conver-
gence or stagnate at a wrong solution [WN11, PE13, PDZ∗18b]. To
improve stability, in [ZPOD19] an accelerated iterate is accepted
only if it decreases a certain quantity that will converge to zero
with effective iterations, such as the combined residual. Adopting
a similar approach, we define a merit function ψ whose decrease
indicates the effectiveness of an iteration. At the k-th iteration, we
evaluate the un-accelerated iterate G(sk−1) as well as the accelerated
iterate sAA, and evaluate the decrease of the merit function from
sk−1 to sAA:

d = ψ(sAA)−ψ(sk−1).

We choose sAA as the new iterate if d meets a certain criterion, and
revert to the un-accelerated iterate G(sk−1) otherwise.

One choice of the merit function is

ψP(s) := ‖v(s)−u(s)‖, (25)

where u(s) and v(s) denote the u and v values produced by the DR
splitting steps (13) and (14) from s, i.e.,

u(s) = proxγϕ1
(s), v(s) = proxγϕ2

(2u(s)− s). (26)

Note that according to Eq. (12), v(s)− u(s) measures the change
in variable s between two consecutive iterations. Therefore, if s
converges to a value s∗, then ψP(s) must converge to zero. Moreover,
Proposition 3.2 indicates that ‖v − u‖ = ‖Ax −Bz − c‖, which is
the norm of the primal residual for the equivalent ADMM prob-
lem (5) [BPC∗11]. We call ψP(s) the primal residual norm, and
accept an accelerated iterate if its primal residual norm is no larger
than the previous iterate. Thus the decrease criterion is:

d ≤ 0. (27)

An alternative merit function is the DR envelope:

ψE(s) := min
w

(
ϕ1(u(s))+ϕ2(w)+〈∇ϕ1(u(s)),w−u(s)〉+

1
2γ
‖w−u(s)‖2

)
,

(28)
where u(s) is defined in Eq. (26). It is shown in [TP20, Theorem 4.1]
that ψE(s) decreases monotonically during DR splitting iterations
under the following assumptions:

(A.1) ϕ1 is L-smooth, σ-hypoconvex with σ ∈ [−L,L].
(A.2) ϕ2 is lower semicontinuous and proper.
(A.3) Problem (11) has a solution.

Here a function F is said to be L-smooth if it is differentiable and
‖∇F(x)−∇F(y)‖ ≤ L‖x−y‖2 ∀x,y. F is said to be σ-hypoconvex if
it is differentiable and 〈∇F(x)−∇F(y),x−y〉 ≥ σ‖x−y‖2 ∀x,y. F
is said to be lower semicontinuous if liminf

x→x0
F(x) ≥ F(x0) ∀x0. F is

said to be proper if F(x) > −∞ ∀x and F . +∞. Under Assumptions
(A.1)–(A.3), the DR envelope has a more simple form:

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

224

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Proposition 3.5. If Assumptions (A.1)–(A.3) hold, then

ψE(s) = f (x̄) + g(z̄) +
1
γ
〈s−u(s),v(s)−u(s)〉+

1
2γ
‖v(s)−u(s)‖2,

(29)
where x̄, z̄ are defined in (23) and (24) respectively, and u(s),v(s)
are defined in (26).

A proof is given in Appendix B. Note that the values x̄, z̄,u(s),v(s)
are already evaluated during the DR splitting iteration. Therefore, the
actual cost for computing ψE(s) is the evaluation of functions f and
g as well as two inner products, which only incurs a small overhead
in many cases. Using the DR envelope as the merit function, we
can enforce a more sophisticated decrease criterion that provides a
stronger guarantee of convergence. Specifically, we require that sAA
decreases the DR envelope sufficiently compared to sk−1:

d ≤ −ν1‖G(sk−1)− sk−1‖
2 − ν2‖sAA − sk−1‖

2, (30)

where ν1, ν2 are nonnegative constants. The convergence of our
solver using such acceptance criterion is discussed in Theorems 4.4
and 4.6 in Section 4.

In this paper, unless stated otherwise, we use the DR envelope as
the merit function to benefit from its convergence guarantee if the
optimization problem satisfies the conditions given Theorems 4.4 or
4.6, and use the primal residual norm otherwise as it is an effective
heuristic with lower overhead according to our experiments.

3.2.3. Recovery of x,y,z

After the variable s converges to a fixed point s∗ for the mapping G,
it is easy to recover the corresponding stationary point (x∗,y∗,z∗)
for the ADMM problem. Before presenting the method, we first
introduce the definition for the stationary points.
Definition 3.6. (x∗,y∗,z∗) is said to be a stationary point of (5) if

Ax∗ −Bz∗ = c, −βAT y∗ ∈ ∂ f (x∗), βBT y∗ ∈ ∂g(z∗),

where ∂ f and ∂g denote the generalized subdifferentials of f and
g [RW09, Definition 8.3], respectively. Our method for recovering
(x∗,y∗,z∗) is based on the following:
Proposition 3.7. Let s∗ be a fixed point of G. Define

x∗ = argmin
x

(
f (x) +

1
2γ
‖Ax− s∗‖2

)
u∗ = Ax∗,
y∗ = u∗ − s∗,

z∗ = argmin
z

(
g(z) +

1
2γ
‖Bz + c− (2u∗ − s∗)‖2

)
.

Then (x∗,y∗,z∗) is a stationary point of the problem (5).

A proof is given in Appendix C. Note that the evaluation of x∗,z∗
has the same form as the intermediate values x̄, z̄ in Proposition 3.4
for evaluating the proximal operators in DR splitting. Therefore,
during the DR splitting, we store the values of x̄ and z̄ when
evaluating the proximal operators. When the variable s converges,
we simply return the latest values of x̄, z̄ as the solution to the
ADMM problem. Algorithm 1 summarizes our acceleration method.

Algorithm 1: Anderson Acceleration for ADMM based on
DR splitting.

Data: x0,y0,z0: initial values;
m ∈ N: number of previous iterates used for acceleration;
kmax : maximum number of iterations;
ε: convergence threshold.

1 xdefault = x0; zdefault = z0;
2 s0 = Ax0 −y0; u0 = v0 = 0; sdefault = s0;
3 k = 0; ψprev = r = +∞; reset = TRUE;
4 while TRUE do

// Perform one iteartion of DR splitting to
evaluate merit function for sk

5 x̄ = argminx
(

f (x) + 1
2γ ‖Ax− sk‖

2
)
;

6 ū = Ax̄;
7 z̄ = argminz

(
g(z) + 1

2γ ‖Bz + c− (2ū− s̄)‖2
)
;

8 v̄ = Bz̄ + c;
9 Compute ψ using Eq. (25) (or Eq. (28));

10 d = ψ−ψprev;
// Acceptance check for sk

11 if reset == TRUE OR d satisfies condition (27) (or (30))
then
// Record the accepted iterate

12 xk = xdefault = x̄; zk = zdefault = z̄; uk = udefault = ū;
13 vk = vdefault = v̄; sdefault = sk;
14 ψprev = ψ; reset = FALSE;

// Compute accelerated iterate
15 gk = sk + v̄− ū; fk = gk − sk; r = ‖fk‖; m̄ = min(m,k);

16 (θ∗1, . . . , θ
∗
m̄) = argmin

θ1,...,θm̄

∥∥∥∥fk −
∑m̄

j=1 θ j(fk− j+1 − fk− j)
∥∥∥∥2

;

17 sAA = gk −
∑m̄

j=1 θ
∗
j (gk− j+1 −gk− j);

// Use sAA for next acceptance check
18 sk+1 = sAA; k = k + 1;
19 else

// Revert to last accepted iterate
20 sk = sdefault; uk = udefault; vk = vdefault;
21 xk = xdefault; zk = zdefault; reset = TRUE;
22 end if

// Check convergence
23 if k ≥ kmax OR r < ε then
24 return xdefault, zdefault;
25 end if
26 end while

3.3. Discussion

3.3.1. Choice of Parameter m

As pointed out in [FS09], Anderson acceleration can be considered
as a quasi-Newton method to find the root of the residual function,
utilizing the m previous iterates to approximate the inverse Jaco-
bian. Similar to other Anderson acceleration based methods such
as [HS16, PDZ∗18b, ZPOD19], we observe that a larger m leads to
more reduction in the number of iterations required for convergence,
but also increases the overhead per iteration. We empirically set
m = 6 in all our experiments.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

225

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

3.3.2. Comparison with [ZPOD19]

[ZPOD19] also proposed an Anderson acceleration approach for
ADMM. In the general case, they treat the ADMM iteration (6)–(8)
as a fixed-point iteration of (x,y). In comparison, Proposition 3.2
shows that our approach is based on a fixed-point iteration of
s = Ax− y, with a dimensionality up to 50% lower than (x,y). A
main computational overhead for Anderson acceleration is 2m inner
products between vectors with the same dimensionality as the fixed-
point iteration variables [PDZ∗18a]. Therefore, our approach incurs
a lower overhead per iteration. The lower dimensionality of our
formulation also indicates that it describes the inherent structure of
ADMM in a more essential way. And we observe in experiments
that such lower-dimensional representation can be more effective in
reducing the number of iterations required for convergence. Together
with the lower overhead per iteration, this often leads to faster
convergence than the general approach from [ZPOD19].

It is also shown in [ZPOD19] that if there is a special structure in
the problem (5), ADMM can be represented as a fixed-point iteration
of x or y alone, which would have the same dimensionality as the
fixed-point mapping we use in this paper. In this case, besides the
general approach mentioned in the previous paragraph, Anderson
acceleration can also be applied to x or y alone, often with similar
performance to our approach. However, this formulation requires
one of the two target function terms in (5) to be a strongly convex
quadratic function, which is a strong assumption that limits its
applicability. In comparison, our method imposes no special require-
ments on functions f and g, making it a more versatile approach for
effective acceleration.

4. Convergence Analysis

If we utilize the DR envelope as the merit function in Algorithm 1,
and use condition (30) to determine acceptance for an accelerated
iterate, then it can be shown that Algorithm 1 converges to a
stationary point to the optimization problem. In the following, we
will discuss the conditions for such convergence. Unless stated
otherwise, we assume that all the functions are lower semicontinuous
and proper. In contrast to Section 3, we will write ∈ instead of = for
the evaluation of proximal mappings and minimization subproblems,
to indicate that our results are still applicable when these operators
are multi-valued. We first introduce some definitions:
Definition 4.1. A point s∗ is said to be a fixed point of the mapping
G if s∗ ∈ G(s∗).
Definition 4.2. A point u∗ is said to be a stationary point of (11) if

0 ∈ ∂ϕ1(u∗) +∂ϕ2(u∗).

Definition 4.3. A function F is said to be level-bounded if the set
{x : F(x) ≤ α} is bounded for any α ∈ R.

Our first convergence result requires the following assumptions:

(B.1) The constants ν1, ν2 in condition (30) satisfy ν1 > 0, ν2 ≥ 0.
(B.2) ϕ1 +ϕ2 is level-bounded.
(B.3) The constant γ = 1/β satisfies γ < min{ 1

2max{−σ,0} ,
1
L }, where

L and σ are defined in Assumption (A.1).
(B.4) The function g(z) := g(z) +

β
2 ‖Bz + c− s‖2 is level-bounded

and bounded from below for any given s.

Our first convergence result is then given as follows:

Theorem 4.4. Suppose Assumptions (A.1)–(A.3) and (B.1)–(B.3)
hold. Let {(sk,uk,vk)} be the sequence generated by Algorithm 1
using Eq. (30) as the acceptance condition. Then

(a) {ψE(sk)} is monotonically decreasing and ‖vk −uk‖ → 0.
(b) The sequence (sk,uk,vk) is bounded. If any subsequence {ski }

converges to a point s∗, then s∗ is a fixed point of G and
u∗ = proxγϕ1

(s∗) is a stationary point of (11). Moreover, such
a convergent subsequence must exist.

(c) Suppose Assumption (B.4) is also satisfied. For any convergent
subsequence {ski } in (b), let {zki } be the corresponding subse-
quence generated by Algorithm 1, i.e.,

zki ∈ argmin
z

(
g(z) +

1
2γ

∥∥∥Bz + c− (2u(ski)− ski)
∥∥∥2)

.

Then {zki } is bounded. Let z∗ be a cluster point of {zki }, and define

x∗ ∈ argmin
x

f (x) +
β

2
‖Ax− s∗‖2, y∗ = u∗ − s∗.

Then (x∗,y∗,z∗) is a stationary point of (5).

A proof is given in Appendix D.
Remark 4.5. Given a fixed point s∗ of G, we can also compute a
stationary point (5) without the assumptions used in Theorem 4.4.
The reader is referred to Appendix E for further discussion.

Theorem 4.4 shows the subsequence convergence of {(sk,uk,vk)}
to a value corresponding to a stationary point. Next, we consider the
global convergence of the whole sequence. We define

Dγ(s,u,v) = ϕ1(u) +ϕ2(v) +
1
γ
〈s−u,v−u〉+

1
2γ
‖v−u‖2.

Our global convergence results rely on the following assumptions:

(C.1) The constants ν1, ν2 used in condition (30) are positive.
(C.2) FunctionDγ is sub-analytic.

The definition of a sub-analytic function can be found in [XY13].
Then we can show the following:
Theorem 4.6. Suppose assumptions (A.1)–(A.3), (B.1)–(B.3) and
(C.1)–(C.2) hold. Let {(sk,uk,vk)} be the sequence generated by
Algorithm 1 using Eq. (30) as the acceptance condition. Then
{(sk,uk,vk)} converges to (s∗,u∗,v∗), where s∗ is a fixed-point of
G, and v∗ = u∗ = proxγϕ1

(s∗).

A proof is given in Appendix F.
Remark 4.7. A sufficient condition for Assumption (C.2) is that
f and g are both semi-algebraic functions. In this case, ϕ1 and ϕ2
will both be semi-algebraic [TP20], thusDγ is also semi-algebraic.
Since a semi-algebraic function is also sub-analytic [XY13],Dγ will
be a sub-analytic function. As noted in [ZPOD19], a large variety of
functions used in computer graphics are semi-algebraic. Interested
readers are referred to [ZPOD19] and [LP15] for further discussion.
Remark 4.8. If the functions f and g satisfy some further condi-
tions, it can be shown that the convergence rate of (sk,uk,vk) is
r-linear. The discussion relies on the KL property [ABS13] and is
rather technical, so we leave it to Appendix F.
Remark 4.9. Assumption (A.1) requires the function f in (5)
to be globally Lipschitz differentiable. When f is only locally
Lipschitz differentiable, it is still possible to prove the convergence
of Algorithm 1. One such example is given in Appendix (I).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

226

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

4.1. Assumptions on f and g

Assumptions (A.1), (A.2) and (B.2) impose conditions on the func-
tions ϕ1 and ϕ2 in (11). As there is no closed-form expression for
ϕ1 and ϕ2 in general, these conditions can be difficult to verify. For
practical purposes, we provide some conditions on the functions f
and g that can ensure Assumptions (A.1), (A.2) and (B.2). These
conditions are based on the results in [TP20, Section 5.4].
Proposition 4.10. Suppose the problem (5) and the ADMM sub-
problems in (6) and (8) have a solution. Then the following condi-
tions are sufficient for Assumptions (A.1), (A.2) and (B.2):

(D.1) f and g are proper and lower semicontinuous.
(D.2) One of the functions f and g is level-bounded, and the other

is bounded from below.
(D.3) A is surjective.
(D.4) f satisfies one of the following conditions:

1. f is Lipschitz differentiable, and argminx{ f (x) | Ax = s} is
single-valued and Lipschitz continuous;

2. f is Lipschitz differentiable and convex;
3. f is differentiable, and ‖∇ f (x)−∇ f (y)‖ ≤ L‖A(x− y)‖2 for

any x,y if ∇ f (x) and ∇ f (y) are in the range of AT .

(D.5) The function Z(s) := argminz {g(z) | Bz + c = s} is locally
bounded on the set S = {Bz + c | g(z) < +∞}, i.e., for any s ∈ S
there exists a neighborhood O such thatZ is bounded on O.

A proof is given in Appendix G.

5. Numerical Experiments

We apply our method to a variety of problems to validate its
effectiveness, focusing mainly on nonconvex problems in com-
puter graphics. We describe each problem using the same variable
names as in (5), so that its ADMM solver can be described by the
steps (6)–(8). Different solvers are run using the same initialization.
For each problem, we compare the convergence speed between
the original ADMM solver, the accelerated solver (AA-ADMM)
proposed in [ZPOD19], and our method. For each method we plot
the combined residual (10) with respect to the iteration count and
the computational time respectively, where a faster decrease of
the combined residual indicates faster convergence. For ADMM
and AA-ADMM, the combined residual is evaluated according to
Eq. (10). For DR splitting, it can be evaluated using the values
of s,u,v without recovering their corresponding ADMM variables.
Using the notations and results from Proposition 3.2, we have

u+ −v = Ax+ −Bz− c, u+ −u = A(x+ −x).

Therefore, given an DR splitting iterate (sk,uk,vk), we evaluate the
combined residual rk

c by performing a partial iteration

s′ = sk + vk −uk, u′ = proxγϕ1
(s′)

and computing

rk
c =

1
γ

(
‖u′ −vk‖

2 + ‖u′ −uk‖
2
)
.

Similar to [ZPOD19], we normalize all combined residual values as
follows to factor out the influence from the dimensionality and the
value range of the variables:

R =

√
rc / (NA ·a2), (31)

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

Figure 1: Comparison between ADMM, AA-ADMM, and our
method with different merit functions, using the `q-regularized lo-
gistic regression problem (32). The two variants of our method have
similar performance. Both accelerate the convergence of ADMM
and perform better than AA-ADMM.

where NA is the number of rows of matrix A, and a is a scalar
that indicates the typical range of variable values. For both AA-
ADMM and our method, we use m = 6 previous iterates for An-
derson acceleration. We adopt the implementation of Anderson
acceleration from [PDZ∗18a]†. All experiments are run on a desktop
PC with a hexa-core CPU at 3.7GHz and 16GB of RAM. The
source codes for the examples are available at https://github.
com/YuePengUSTC/AADR.

`q-Regularized Logistic Regression. First, we consider a
sparse logistic regression problem from the ADMM demo code
for [WYZ19]‡:

min
x,z

p ·λ ·Ω(z1) +
∑p

i=1
log(1 + exp(−bi(aT

i w + v))) s.t. x = z.
(32)

Here x = (w,v) are the parameters to be optimized, with w ∈ Rn and
v ∈ R. z = (z1,z2) is an auxiliary variable, with z1 ∈ Rn and z2 ∈ R.
{(ai,bi) | i = 1, . . . , p} is a set of input data pairs each consisting of a
feature vector ai ∈ R

n and a label bi ∈ {−1,1}. Ω(z1) =
∑n

i=1 |z
1
i |

1/2

is an `q sparsity regularization term with q = 1
2 . To test the perfor-

mance, we use the data generator in the code to randomly generate
p = 1000 pairs of data with feature vector dimension n = 1000.
We test the problem with a weight parameter λ = 10−4 and a
penalty parameter β = 105. It can be verified that problem (32)
satisfy the assumptions for Theorem 4.6 (see Appendix H). Thus
we use the DR envelope as the merit function for Algorithm 1, with
parameter ν1 = ν2 = 10−3 for the acceptance condition (30). For
comparison, we also run the algorithm using the primal residual
norm as the merit function. We run AA-ADMM using the general
approach in [ZPOD19] that accelerates x and the dual variable y
simultaneously, since the problem does not meet their requirement
for reduced-variable acceleration. Fig. 1 shows the comparison
between the four solvers. We can see that both AA-ADMM and
our methods can accelerate the convergence, while our methods
achieve better performance thanks to the lower dimensionality of its
accelerated variables. In addition, there is no significant difference
between the performance of the two variants of our method, which
verifies the effectiveness of the primal residual norm as the merit
function despite its lack of convergence guarantee in theory.

† https://github.com/bldeng/AASolver
‡ https://github.com/shifwang/Nonconvex_ADMM_Demos

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

227

https://github.com/YuePengUSTC/AADR
https://github.com/YuePengUSTC/AADR
https://github.com/bldeng/AASolver
https://github.com/shifwang/Nonconvex_ADMM_Demos

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

ADMM AA-ADMM (General) AA-ADMM (Reduced)
Ours (Primal Residual Norm) Ours (DR Envelope)

L-BFGS
Newton

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

R
el

at
iv

e
E

ne
rg

y

Neo-Hookean StVKCorotated

Figure 2: Comparison using (33) for computing a frame in physical
simulation of a stretched elastic bar with 6171 vertices and 25000
tetrahedrons, using three types of hyperelastic energy and a high
stiffness parameter (‘rubber’ in the source code of [OBLN17]). The
normalized combined residual plots (the top two rows) show that
both variants of our method achieve similar acceleration results as
the reduced-variable scheme of AA-ADMM. All three approaches
perform better than the general scheme of AA-ADMM. The bot-
tom two rows plot the relative energy (35) and include a Newton
solver [SB12] and an L-BFGS solver for [LBK17] for comparison.

Physical Simulation. Next, we consider the ADMM solver used
in [OBLN17] for the following optimization for physical simulation:

min
x,z

f (x) + g(z) s.t. W(x−Dz) = 0, (33)

where z is the node positions to be optimized, x is an auxiliary
variable that represents the absolute or relative node positions for
the elements according to the selection matrix D, W is a diagonal
weight matrix, f is an elastic potential energy, and g is a quadratic
momentum energy. In Appendix I, we use the StVK model as an
example to prove the convergence of Algorithm 1 on problem (33).
AA-ADMM can be applied to this problem to accelerate the variable
x alone [ZPOD19], and we include both the general approach and
the reduced-variable approach for comparison. For our method,
we include the implementation using each merit function into the
comparison, and choose parameter ν1 = ν2 = 0 for the acceptance
condition (30). Fig. 2 shows the performance of the five solver

#V:61,372; #F:122,740#V:4,054; #F:8,108

min

max

0

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

Figure 3: Computation of compressed manifold basis via prob-
lem (36). Our method achieves similar reduction of iterations as AA-
ADMM, but outperforms AA-ADMM in computational time thanks
to its lower overhead.

variants on the simulation of a stretched hyperelastic bar with a
high stiffness parameter, using three types of hyperelastic energy.
We adapt the source codes from [OBLN17]§ and [ZPOD19]¶ for
the implementation of ADMM and AA-ADMM, respectively. The
normalized combined residual plots (the top two rows) show that
all accelerated variants achieve better performance than the ADMM
solver. Overall, the general AA-ADMM takes a long time than other
accelerated variants for full convergence, potentially due to the
larger number of variables involved in the fixed-point iteration and
the higher overhead they induce. For a more complete evaluation,
we also compare the solvers with a Newton method [SB12] and an
L-BFGS method [LBK17], neither of which suffers from slow final
convergence. Specifically, we use them to minimize the following
energy equivalent to the target function of (33):

F(z) = f (Dz) + g(z). (34)

In the bottom two rows of Fig. 2, we compare all methods by plotting
their relative energy

E = (F −F∗)/(F0 −F∗), (35)

with respect to the iteration count and computational time, where
F0 and F∗ are the initial value and the minimum of the energy F,
respectively. We can see that although the Newton method requires
the fewest iterations to convergence, it is one of the slowest methods

§ https://github.com/mattoverby/admm-elastic
¶ https://github.com/bldeng/AA-ADMM

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

228

https://github.com/mattoverby/admm-elastic
https://github.com/bldeng/AA-ADMM

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Edge length error
0 0.0006

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

Our method

#V: 230400 #F: 229440

Target Mesh ADMMInitial Mesh AA-ADMM

Figure 4: Comparison between ADMM and accelerated methods on a wire mesh optimization problem (38). The normalized combined
residual plots show faster convergence using the accelerated solvers and better performance with our method. The color-coding visualizes the
edge length error ξ defined in (39) on meshes computed by the three methods within the same computational time (see the bottom-right plot).

in terms of actual computational time, due to its high computational
cost per iteration. L-BFGS achieves the best performance in terms
of computational time, followed by the accelerated ADMM solvers.
Note, however, that classical Newton and L-BFGS are intended for
smooth unconstrained optimization problems, and they are often not
applicable if the problem is nonsmooth or constrained — the type
of problems that ADMM is popular for.

Geometry Processing. Nonconvex ADMM solvers have also been
used in geometry processing. In Fig. 3, we compare the performance
between different methods on the following optimization problem
from [NVT∗14] for compressed manifold modes on a triangle mesh
with N vertices:

min
X,Z

Tr((X1)T LX1) +µ‖X2‖1 + ι(Z) s.t. Z = X1,Z = X2, (36)

where Z ∈ RN×K denotes a set of basis functions to be optimized,
X1,X2 ∈ RN×K are auxiliary variables, L ∈ RN×N is a Laplacian
matrix, and ι is an indicator function of Z for enforcing the orthog-
onality condition if ZT DZ = I with respect to a mass matrix D.
We apply our method with the primal residual norm as the merit
function. We use the source code released by the authors‖ for the
ADMM solver, and modify it to implement AA-ADMM and our
method. We use the general approach of AA-ADMM that accelerates
X together with the dual variable, as the problem does not meet
the requirement for reduced-variable acceleration. Fig. 3 shows the
combined residual plots for the three methods on two models as well
as the parameter settings for each problem instance. Our method
achieves a similar effect in reducing the number of iterations as AA-
ADMM, but outperforms AA-ADMM in terms of computational
time thanks to its lower computational overhead.

We also apply our method to a problem proposed in [DBD∗15]
for optimizing the vertex positions x ∈ R3n of a mesh model subject
to a set of soft constraints Aix ∈ Ci (i ∈ S) and hard constraints
A jx ∈ C j (j ∈ H), where matrices Ai and A j select the relevant

‖ https://github.com/tneumann/cmm

vertices for the constraints and compute their differential coordinates
where appropriate, and Ci and C j represent the feasible sets. This is
formulated in [DBD∗15] as the following optimization:

min
x,z

1
2
‖L(x− x̃)‖2 +

∑
i∈S

(wi

2
‖Aix− zi‖

2 +σCi (zi)
)
+

∑
j∈H

σC j (z j)

s.t. A jx− z j = 0 ∀ j ∈ H . (37)

where zi (i ∈ S) and z j (j ∈ H) are auxiliary variables, σCi and σC j

are indicator functions for the feasible sets, and wi are user-specified
weights. The first term of the target function is an optional Laplacian
smoothness energy, whereas the second term measures the violation
of the soft constraints using the squared Euclidean distance to the
feasible sets. This problem is solved using ADMM and AA-ADMM
in [ZPOD19]. However, since its target function is not separable, our
accelerated ADMM solver is not applicable. To apply our method,
we reformulate the problem as follows:

min
x,z

1
2
‖L(x− x̃)‖2 +

∑
i∈S

wi

2

(
DCi (zi)

)2
+

∑
j∈H

σC j (z j)

s.t. Aix = zi ∀i ∈ S, A jx = z j ∀ j ∈ H , (38)

where DCi (·) denotes the Euclidean distance to Ci. This problem
has a separable target function, and we derive its ADMM solver
in Appendix A. We compare the performance of ADMM, AA-
ADMM and our method on problem (38) for wire mesh optimiza-
tion [GSD∗14]: we optimize a regular quad mesh subject to the
soft constraints that each vertex lies on a target shape, and the hard
constraints that (1) each edge has the same length l and (2) all angles
of each quad face are within the range [π/4,3π/4]. In Fig. 4, We
solve the problem on a mesh with 230K vertices, using L = 0, wi = 1,
and penalty parameter β = 10000. The combined residual plots show
that both AA-ADMM and our method and our method achieve faster
convergence than ADMM, with a slightly better performance from
our method. To illustrate the benefit of such acceleration, we take
the results generated by each method within the same computational
time, and use color-coding to visualize the edge-length error

ξ(e) = |e− l|/l (39)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

229

https://github.com/tneumann/cmm

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Random InitializationSegmentation ResultOriginal

Figure 5: Comparison on the image segmentation problem (40)
with a re-formulated binary constraint. Our method reduces the
iteration count and computational time required for convergence,
while AA-ADMM fails to achieve acceleration.

where e is the actual length for each edge. We can see that the
two accelerated solvers lead to notably smaller edge-length errors
than ADMM within the same computational time. The acceleration
brings significant savings in computational time needed for a high-
accuracy solution, which is required for the physical fabrication of
the design [GSD∗14].

Image Processing. In Fig. 5, we test our method on the non-
convex ADMM solver for the following image segmentation prob-
lem [WG19]:

min
x,z

xT Lx + dT x + ι1(z1) + ι2(z2) s.t. z1 = x, z2 = x, (40)

where x ∈ Rn represents the pixel-wise labels to be optimized, L is
a Laplacian matrix based on the similarity between adjacent pixels,
d is a unary cost vector, and z = (z1,z2) is an auxiliary variable
with z1,z2 ∈ Rn. ι1 and ι2 are indicator functions for the feasible
sets S1 = [0,1]n and S2 = {p ∈ Rn |

∑n
i=1(pi −

1
2)2 = n

4 } respectively,
which together with the linear constraint between x and z induces a
binary constraint for the labels x. Fig. 5 uses the cameraman image
to compare ADMM, AA-ADMM, and our method with the primal
residual norm as the merit function, using the same random initializa-
tion. We use the python source code released by the authors∗∗ for the
ADMM implementation, and modify it to implement AA-ADMM
and our method. We use the general approach of AA-ADMM since
the problem does not meet the reduced-variable conditions. The
released code gradually changes the penalty parameter β, starting
with β = 5 and increasing it by 3% every five iterations until it
reaches the upper bound 1000. Since a different value of β will
lead to a different fixed-point iteration, for both AA-ADMM and our
method we reset the history of Anderon acceleration when β changes.
We observe an interesting behavior of the ADMM solver: initially it
maintains a relatively high value of the combined residual norm until
the variable z converges to its value z∗ in the solution; afterwards,

∗∗ https://github.com/wubaoyuan/Lpbox-ADMM

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

100 Frames

250 Frames

Figure 6: Comparison on a convex problem (41) with λ = 2, for
computing local mesh deformation components from an input mesh
sequence and given weights. The methods are tested using two
mesh sequences constructed from the facial expression dataset
of [RBSB18], with 100 frames and 250 frames, respectively. We
set the penalty parameter to β = 10 for both problem instances. Our
method have similar acceleration performance as AA-ADMM in
reducing the number of iterations, and outperforms AA-ADMM in
actual computational time.

z remains close to z∗, and the ADMM iteration effectively reduces
to an affine transformation for the variables x and y with a rapid
decrease of the combined residual norm. In comparison, our method
shows more oscillation of the combined residual norm in the initial
stage but accelerates the convergence of z towards z∗, followed
by a similar rapid decrease of the combined residual norm, thus
outperforming ADMM in both iteration count and computational
time. On the other hand, AA-ADMM fails to achieve acceleration.

Convex Problems. Although our method is designed with non-
convex problems in mind, it can be naturally applied to convex
problems. In Fig. 6, we apply our method to the ADMM solver
in [NVW∗13] for computing mesh deformation components given a
mesh animation sequence and component weights:

argmin
X,Z

‖V−WZ‖2F +λ ·Ω1(X) s.t. X = Z, (41)

where matrix Z represents the deformation components to be op-
timized, V is the input mesh sequence, W represents the given
weights for the components, X is an auxiliary variable, and Ω1(X)
is a weighted `1/`2-norm to induce local support for the defor-
mation components. In Fig. 7, we accelerate the ADMM solver
in [HDN∗16] for image deconvolution:

argmin
x,z

‖x1 − f‖2 +λ ·Ω2(x2) s.t. Kz = x1, Gz = x2, (42)

where z represents the image to be recovered, x = (x1,x2) are
auxiliary variables, matrix K represents the convolution operator,
G is the image gradient matrix, and Ω2 is the `1/`2-norm for
regularizing the image gradients. Both problems (41) and (42) are
convex, and AA-ADMM can only be applied using the general
approach due to the problem structures. For both problems, we apply

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

230

https://github.com/wubaoyuan/Lpbox-ADMM

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Observation ResultGround truth

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

Figure 7: Comparison on the convex problem (42) for image deconvolution. We choose λ = 400 in problem (42), and set the penalty parameter
to β = 100. ADMM and AA-ADMM have fairly similar performance. Both are outperformed by our method.

our method using the primal residual norm as the merit function. We
use the source codes released by the authors††‡‡ to implement the
ADMM solver and their accelerated versions. For both problems,
our method accelerates the convergence of ADMM and outperforms
AA-ADMM in the computational time.

Limitation. Similar to [ZPOD19], our method may not be effective
for ADMM solvers with very low computational cost per iteration.
Fig. 8 shows the performance of our method and AA-ADMM on the
ADMM solver from [TZD∗19] for recovering a geodesic distance
function on a mesh surface from a unit tangent vector field. The two
methods achieve almost the same effect in reducing the amount of
iterations required for convergence. Our method requires a shorter
computational time than AA-ADMM to achieve the same value of
combined residual, because we can only apply the general approach
of AA-ADMM to this problem and its overhead is higher than our
method. On the other hand, both approaches take a longer time than
the original ADMM solver to achieve convergence, because the very
low computational cost per iteration of the original solver means
high relative overhead for both acceleration techniques.

6. Concluding Remarks

In this paper, we propose an acceleration method for ADMM by
applying Anderson Acceleration on its equivalent DR splitting
formulation. Based on a fixed-point interpretation of DR splitting,
we accelerate one of its variables that is not explicitly available
in ADMM but can be derived from a linear transformation of
the ADMM variables. Our strategy consistently outperforms the
general Anderson acceleration approach in [ZPOD19] due to the
lower dimensionality of the accelerated variable. Compared to the

†† https://github.com/tneumann/splocs
‡‡ https://github.com/comp-imaging/ProxImaL

N
or

m
al

iz
ed

 C
om

bi
ne

d
R

es
id

ua
l

#V:21,168
#F:42,332

Figure 8: Comparison on the ADMM solver in [TZD∗19] for recov-
ering geodesic distance on meshes. Both AA-ADMM and our method
can reduce the number of iterations required for convergence, but
their actual computational time is higher due to the very low
computational cost per iteration for the ADMM solver. Our method
takes a shorter time than AA-ADMM thanks to its lower overhead.

reduced-variable approach in [ZPOD19], our method has the same
dimensionality for the accelerated variable and achieves similar
performance, but imposes no special requirements on the problem
except for the separability of its target function. This makes our
approach applicable to a much wider range of problems. In addition,
we analyze the convergence of the proposed algorithm, and show
that it converges to a stationary point of the ADMM problem under
appropriate assumptions. Various ADMM solvers in computer graph-
ics and other domains have been tested to verify the effectiveness
and efficiency of our algorithm.

There are still some limitations for our approach. First, the
equivalence between ADMM and DR splitting relies on a separable
target function for the ADMM problem. As a result, our method is
not applicable to problems where the target function is not separable.
However, as far as we are aware of, the majority of ADMM problems
in computer graphics, computer vision, and image processing have
a separable target function. Moreover, as shown in the geometry

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

231

https://github.com/tneumann/splocs
https://github.com/comp-imaging/ProxImaL

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

optimization example in Section 5, it is possible to reformulate the
problem to make the target function separable. Therefore, this issue
does not hinder the practical application of our method. Another
limitation is that there is no theoretical guarantee that the method can
always accelerate the convergence even locally. Recently, [EPRX20]
provide theoretical results showing that Anderson Acceleration can
improve the convergence rate, but their proofs require the original
iteration to be contractive or converge q-linearly. For nonconvex DR
splitting, to the best of our knowledge, local q-linear convergence
can only be shown in very special cases that is too restrictive
in practice. Further investigation of the theoretical property of
Anderson Acceleration and nonconvex DR splitting is needed to
provide a theoretical guarantee for acceleration.

Acknowledgements The authors thank Andre Milzarek for proof-
reading the paper and providing valuable comments. The target
model in Figure 4, “Male Torso, Diadumenus Type” by Cosmo
Wenman, is licensed under CC BY 3.0 This research was partially
supported by National Natural Science Foundation of China (No.
61672481), Youth Innovation Promotion Association CAS (No.
2018495), Zhejiang Lab (No. 2019NB0AB03). Wenqing Ouyang’s
work was partly supported by the Shenzhen Research Institute of
Big Data (SRIBD). Yue Peng was supported by China Scholarship
Council (No. 201906340085).

References
[ABS13] Attouch H., Bolte J., Svaiter B. F.: Convergence of descent

methods for semi-algebraic and tame problems: proximal algorithms,
forward-backward splitting, and regularized Gauss-Seidel methods. Math.
Program. 137, 1-2, Ser. A (2013), 91–129. 6, 16

[ABT14] Artacho F. J. A., Borwein J. M., Tam M. K.: Recent results
on Douglas–Rachford methods for combinatorial optimization problems.
Journal of Optimization Theory and Applications 163, 1 (2014), 1–30. 2

[AF13] Almeida M. S. C., Figueiredo M.: Deconvolving images with
unknown boundaries using the alternating direction method of multipliers.
IEEE Transactions on Image Processing 22, 8 (2013), 3074–3086. 2

[AJW17] An H., Jia X., Walker H. F.: Anderson acceleration and applica-
tion to the three-temperature energy equations. Journal of Computational
Physics 347 (2017), 1–19. 2

[And65] Anderson D. G.: Iterative procedures for nonlinear integral
equations. J. ACM 12, 4 (1965), 547–560. 2, 3

[BDS∗12] Bouaziz S., DeussM., Schwartzburg Y., Weise T., PaulyM.:
Shape-up: Shaping discrete geometry with projections. Comput. Graph.
Forum 31, 5 (2012), 1657–1667. 1

[BK15] Bauschke H. H., Koch V. R.: Projection methods: Swiss army
knives for solving feasibility and best approximation problems with
halfspaces. Contemp. Math 636 (2015), 1–40. 2

[BKW∗19] Bansode P., Kosaraju K., Wagh S., Pasumarthy R., Singh N.:
Accelerated distributed primal-dual dynamics using adaptive synchroniza-
tion. IEEE Access 7 (2019), 120424–120440. 2

[BML∗14] Bouaziz S., Martin S., Liu T., Kavan L., PaulyM.: Projective
dynamics: fusing constraint projections for fast simulation. ACM Trans.
Graph. 33, 4 (2014), 154:1–154:11. 1

[BPC∗11] Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., et al.: Dis-
tributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine learning 3,
1 (2011), 1–122. 1, 2, 3, 4

[BST14] Bolte J., Sabach S., TeboulleM.: Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Math. Program.
146, 1-2, Ser. A (2014), 459–494. 16

[BTP13] Bouaziz S., Tagliasacchi A., PaulyM.: Sparse iterative closest
point. Computer Graphics Forum 32, 5 (2013), 113–123. 2

[CP11] Combettes P. L., Pesquet J.-C.: Proximal splitting methods in
signal processing. In Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, Bauschke H. H., Burachik R. S., Combettes
P. L., Elser V., Luke D. R., Wolkowicz H., (Eds.). 2011, pp. 185–212. 1

[DBD∗15] Deng B., Bouaziz S., Deuss M., Kaspar A., Schwartzburg
Y., Pauly M.: Interactive design exploration for constrained meshes.
Computer-Aided Design 61, Supplement C (2015), 13–23. 9

[DR56] Douglas J., Rachford H. H.: On the numerical solution of heat
conduction problems in two and three space variables. Transactions of
the American mathematical Society 82, 2 (1956), 421–439. 2

[EPRX20] Evans C., Pollock S., Rebholz L. G., XiaoM.: A proof that an-
derson acceleration improves the convergence rate in linearly converging
fixed-point methods (but not in those converging quadratically). SIAM
Journal on Numerical Analysis 58, 1 (2020), 788–810. 2, 12

[Eye96] Eyert V.: A comparative study on methods for convergence
acceleration of iterative vector sequences. Journal of Computational
Physics 124, 2 (1996), 271–285. 2

[FB10] FigueiredoM. A. T., Bioucas-Dias J. M.: Restoration of poissonian
images using alternating direction optimization. IEEE Transactions on
Image Processing 19, 12 (2010), 3133–3145. 2

[FS09] Fang H.-r., Saad Y.: Two classes of multisecant methods for
nonlinear acceleration. Numerical Linear Algebra with Applications 16,
3 (2009), 197–221. 2, 5

[FZB19] Fu A., Zhang J., Boyd S.: Anderson accelerated Douglas-
Rachford splitting. arXiv preprint arXiv:1908.11482 (2019). 2

[GITH14] Gregson J., Ihrke I., Thuerey N., HeidrichW.: From capture
to simulation: Connecting forward and inverse problems in fluids. ACM
Trans. Graph. 33, 4 (2014), 139:1–139:11. 2

[Glo83] Glowinski R.: Augmented Lagrangian Methods: Applications to
the numerical solution of boundary-value problems. North-Holland, 1983.
2

[GOSB14] Goldstein T., O’Donoghue B., Setzer S., Baraniuk R.: Fast
alternating direction optimization methods. SIAM Journal on Imaging
Sciences 7, 3 (2014), 1588–1623. 2, 3

[GSD∗14] Garg A., Sageman-Furnas A. O., Deng B., Yue Y., Grinspun
E., PaulyM., WardetzkyM.: Wire mesh design. ACM Trans. Graph. 33,
4 (2014), 66:1–66:12. 9, 10

[HDN∗16] Heide F., Diamond S., NiessnerM., Ragan-Kelley J., Heidrich
W., WetzsteinG.: ProxImaL: Efficient image optimization using proximal
algorithms. ACM Trans. Graph. 35, 4 (2016), 84:1–84:15. 2, 10

[HL13] Hesse R., Luke D. R.: Nonconvex notions of regularity and
convergence of fundamental algorithms for feasibility problems. SIAM
Journal on Optimization 23, 4 (2013), 2397–2419. 2

[HLN14] Hesse R., Luke D. R., Neumann P.: Alternating projections and
Douglas-Rachford for sparse affine feasibility. IEEE Transactions on
Signal Processing 62, 18 (2014), 4868–4881. 2

[HS16] Higham N. J., Strabić N.: Anderson acceleration of the alter-
nating projections method for computing the nearest correlation matrix.
Numerical Algorithms 72, 4 (2016), 1021–1042. 5

[KCSB15] Kadkhodaie M., Christakopoulou K., Sanjabi M., Banerjee
A.: Accelerated alternating direction method of multipliers. KDD ’15,
pp. 497–506. 2

[LBK17] Liu T., Bouaziz S., Kavan L.: Quasi-newton methods for real-
time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3
(2017), 23:1–23:16. 8

[LBOK13] Liu T., BargteilA. W., O’Brien J. F., Kavan L.: Fast simulation
of mass-spring systems. ACM Trans. Graph. 32, 6 (2013), 214:1–214:7.
1

[LFYL18] Lu C., Feng J., Yan S., Lin Z.: A unified alternating direction
method of multipliers by majorization minimization. IEEE Transactions
on Pattern Analysis and Machine Intelligence 40, 3 (2018), 527–541. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

232

https://www.thingiverse.com/thing:146386
https://www.thingiverse.com/CosmoWenman/about
https://www.thingiverse.com/CosmoWenman/about
https://creativecommons.org/licenses/by/3.0/

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

[LP15] Li G., Pong T. K.: Global convergence of splitting methods for
nonconvex composite optimization. SIAM Journal on Optimization 25, 4
(2015), 2434–2460. 6

[LP16] Li G., Pong T. K.: Douglas–Rachford splitting for nonconvex
optimization with application to nonconvex feasibility problems. Mathe-
matical programming 159, 1-2 (2016), 371–401. 2, 3

[LSV13] LipnikovK., SvyatskiyD., VassilevskiY.: Anderson acceleration
for nonlinear finite volume scheme for advection-diffusion problems.
SIAM Journal on Scientific Computing 35, 2 (2013), A1120–A1136. 2

[LZX∗08] Liu L., Zhang L., Xu Y., Gotsman C., Gortler S. J.: A
local/global approach to mesh parameterization. Computer Graphics
Forum 27, 5 (2008), 1495–1504. 1

[MST∗18] Matveev S., Stadnichuk V., Tyrtyshnikov E., Smirnov A.,
Ampilogova N., Brilliantov N. V.: Anderson acceleration method of find-
ing steady-state particle size distribution for a wide class of aggregation–
fragmentation models. Computer Physics Communications 224 (2018),
154–163. 2

[Nes18] Nesterov Y.: Lectures on convex optimization, vol. 137. Springer,
2018. 19

[NVT∗14] Neumann T., Varanasi K., Theobalt C., MagnorM., Wacker
M.: Compressed manifold modes for mesh processing. Computer
Graphics Forum 33, 5 (2014), 35–44. 1, 2, 9

[NVW∗13] Neumann T., Varanasi K., Wenger S., Wacker M., Magnor
M., Theobalt C.: Sparse localized deformation components. ACM Trans.
Graph. 32, 6 (2013), 179:1–179:10. 1, 2, 10

[NW06] Nocedal J., Wright S. J.: Numerical Optimization, 2nd ed.
Springer-Verlag New York, 2006. 1

[OBLN17] Overby M., Brown G. E., Li J., Narain R.: ADMM ⊇ pro-
jective dynamics: Fast simulation of hyperelastic models with dynamic
constraints. IEEE Transactions on Visualization and Computer Graphics
23, 10 (2017), 2222–2234. 1, 2, 8

[PDZ∗18a] Peng Y., Deng B., Zhang J., Geng F., QinW., Liu L.: Anderson
acceleration for geometry optimization and physics simulation. ACM
Trans. Graph. 37, 4 (2018), 42:1–42:14. 2, 6, 7

[PDZ∗18b] Peng Y., Deng B., Zhang J., Geng F., QinW., Liu L.: Anderson
acceleration for geometry optimization and physics simulation. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 42. 4, 5

[PE13] Potra F. A., Engler H.: A characterization of the behavior of
the anderson acceleration on linear problems. Linear Algebra and its
Applications 438, 3 (2013), 1002–1011. 4

[Pha16] PhanH. M.: Linear convergence of the Douglas–Rachford method
for two closed sets. Optimization 65, 2 (2016), 369–385. 2

[PJ16] Pejcic I., Jones C. N.: Accelerated ADMM based on accelerated
Douglas-Rachford splitting. In 2016 European Control Conference (ECC)
(2016), Ieee, pp. 1952–1957. 2

[PL19] Poon C., Liang J.: Trajectory of alternating direction method of
multipliers and adaptive acceleration. In Advances in Neural Information
Processing Systems (2019), pp. 7355–7363. 2

[PM17] Pan Z., Manocha D.: Efficient solver for spacetime control of
smoke. ACM Trans. Graph. 36, 5 (2017). 2

[POD∗18] PavlovA. L., OvchinnikovG. V., DerbyshevD. Y., Tsetserukou
D., Oseledets I. V.: AA-ICP: iterative closest point with anderson
acceleration. In 2018 IEEE International Conference on Robotics and
Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018 (2018),
IEEE, pp. 1–6. 2

[PSP16] Pratapa P. P., Suryanarayana P., Pask J. E.: Anderson acceleration
of the Jacobi iterative method: An efficient alternative to Krylov methods
for large, sparse linear systems. Journal of Computational Physics 306
(2016), 43–54. 2

[RBSB18] Ranjan A., Bolkart T., Sanyal S., BlackM. J.: Generating 3D
faces using convolutional mesh autoencoders. In European Conference
on Computer Vision (ECCV) (2018), Springer International Publishing,
pp. 725–741. 10

[RS11] Rohwedder T., Schneider R.: An analysis for the DIIS acceleration
method used in quantum chemistry calculations. Journal of Mathematical
Chemistry 49, 9 (2011), 1889–1914. 2

[RW09] Rockafellar R. T., Wets R. J.-B.: Variational analysis, vol. 317.
Springer Science & Business Media, 2009. 5, 15, 18

[SA07] Sorkine O., Alexa M.: As-rigid-as-possible surface modeling.
SGP ’07, pp. 109–116. 1

[SB12] Sifakis E., Barbič J.: FEM simulation of 3d deformable solids:
A practitioner’s guide to theory, discretization and model reduction. In
ACM SIGGRAPH 2012 Courses (2012), pp. 20:1–20:50. 8

[SPP19] Suryanarayana P., Pratapa P. P., Pask J. E.: Alternating anderson-
richardson method: An efficient alternative to preconditioned krylov meth-
ods for large, sparse linear systems. Computer Physics Communications
234 (2019), 278–285. 2

[Ste12] Sterck H. D.: A nonlinear GMRES optimization algorithm for
canonical tensor decomposition. SIAM Journal on Scientific Computing
34, 3 (2012), A1351–A1379. 2

[TEE∗17] Toth A., Ellis J. A., Evans T., Hamilton S., Kelley C. T.,
Pawlowski R., Slattery S.: Local improvement results for anderson
acceleration with inaccurate function evaluations. SIAM Journal on
Scientific Computing 39, 5 (2017), S47–S65. 2

[TK15] Toth A., Kelley C. T.: Convergence analysis for anderson accel-
eration. SIAM Journal on Numerical Analysis 53, 2 (2015), 805–819.
2

[TP20] Themelis A., Patrinos P.: Douglas-Rachford splitting and ADMM
for nonconvex optimization: Tight convergence results. SIAM Journal on
Optimization 30, 1 (2020), 149–181. 2, 3, 4, 6, 7, 15, 16, 17, 18, 19

[TZD∗19] Tao J., Zhang J., Deng B., Fang Z., Peng Y., He Y.: Parallel
and scalable heat methods for geodesic distance computation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019). 11

[WCX18] Wang F., CaoW., Xu Z.: Convergence of multi-block bregman
admm for nonconvex composite problems. Science China Information
Sciences 61, 12 (2018), 122101. 18

[WFDH18] Wang C., Fu Q., Dun X., HeidrichW.: Megapixel adaptive op-
tics: Towards correcting large-scale distortions in computational cameras.
ACM Trans. Graph. 37, 4 (2018), 115:1–115:12. 2

[WG19] Wu B., Ghanem B.: `p-box ADMM: A versatile framework
for integer programming. IEEE Transactions on Pattern Analysis and
Machine Intelligence 41, 7 (2019), 1695–1708. 2, 10

[WN11] Walker H. F., Ni P.: Anderson acceleration for fixed-point
iterations. SIAM Journal on Numerical Analysis 49, 4 (2011), 1715–
1735. 2, 3, 4

[WTK14] Willert J., Taitano W. T., Knoll D.: Leveraging Anderson
acceleration for improved convergence of iterative solutions to transport
systems. Journal of Computational Physics 273 (2014), 278–286. 2

[WYZ19] Wang Y., YinW., Zeng J.: Global convergence of ADMM in
nonconvex nonsmooth optimization. Journal of Scientific Computing 78,
1 (2019), 29–63. 1, 7

[XY13] Xu Y., YinW.: A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative tensor
factorization and completion. SIAM Journal on Imaging Sciences 6, 3
(2013), 1758–1789. 6, 18

[XZZ∗14] Xiong S., Zhang J., Zheng J., Cai J., Liu L.: Robust surface
reconstruction via dictionary learning. ACM Trans. Graph. 33, 6 (2014),
201:1–201:12. 2

[YY16] Yan M., Yin W.: Self equivalence of the alternating direction
method of multipliers. In Splitting Methods in Communication, Imaging,
Science, and Engineering. Springer, 2016, pp. 165–194. 2

[ZDL∗14] Zhang J., Deng B., Liu Z., Patanè G., Bouaziz S., Hormann K.,
Liu L.: Local barycentric coordinates. ACM Trans. Graph. 33, 6 (2014),
188:1–188:12. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

233

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

[ZPOD19] Zhang J., Peng Y., OuyangW., Deng B.: Accelerating ADMM
for efficient simulation and optimization. ACM Transactions on Graphics
(TOG) 38, 6 (2019), 1–21. 2, 3, 4, 5, 6, 7, 8, 9, 11, 18, 19

[ZUMJ19] Zhang J., Uribe C. A., Mokhtari A., Jadbabaie A.: Achieving
acceleration in distributed optimization via direct discretization of the
heavy-ball ODE. In 2019 American Control Conference (ACC) (2019),
IEEE, pp. 3408–3413. 2

[ZW18] Zhang R. Y., White J. K.: GMRES-accelerated ADMM for
quadratic objectives. SIAM Journal on Optimization 28, 4 (2018), 3025–
3056. 2

Appendix A: Derivation of ADMM for Problem (38)

In this section, we derive an ADMM solver for the geometry
optimization problem (38) using the scheme (6)–(8). We first write
the problem in matrix form as

min
x,z

1
2
‖L(x− x̃)‖2 +

∑
i∈S

wi

2

(
DCi (zi)

)2
+

∑
j∈H

σC j (z j)

s.t. Ax− z = 0,

where matrix A stacks all matrices {Ai | i ∈ S} and {A j | j ∈ H}. In
the following, y denotes the dual variable that consists of {yi | i ∈ S}
and {y j | j ∈ H} corresponding to the soft constraints S and hard
constraints H , respectively. We will use superscripts to indicate
iteration counts, to avoid conflict with subscripts that indicate the
constraints. Then the step (6) reduces to the problem

min
x

1
2
‖L(x− x̃)‖2 +

β

2
‖Ax− zk + yk‖2, (43)

which can be solved via the linear system

(LT L +βAT A)xk+1 = LT Lx̃ +βAT (zk −yk). (44)

The step (7) is simply written as

yk+1 = yk + Axk+1 − zk. (45)

The step (8) reduces to separable subproblems:

min
zi

wi

2

(
DCi (zi)

)2
+
β

2
‖Aixk+1 − zi + yk+1

i ‖2 for i ∈ S, (46)

min
z j

σC j (z j) +
β

2
‖A jxk+1 − z j + yk+1

j ‖
2 for j ∈ H . (47)

The solution to (47) is

zk+1
j = PC j (A jxk+1 + yk+1

j), (48)

where PC j (·) is a projection operator onto the C j. The solution
to (46) is

zk+1
i =

wi ·PCi (Aixk+1 + yk+1
i) +β · (Aixk+1 + yk+1

i)

wi +β
. (49)

Appendix B: Proof for Proposition 3.5

Proof. By Proposition 3.3 we have

u(s) = Ax̄ = proxγϕ1
(s).

doing a simple change of variables, similar result for v(s) can be
attained as

v(s) = Bz̄ + c = proxγϕ2
(2u(s)− s),

For the expression of DR envelope, we utilize the optimality condi-
tion of proxγϕ1

∇ϕ1(u(s)) +
1
γ

(u(s)− s) = 0 ⇒ 2u(s)− s = u(s)−γ∇ϕ1(u(s)).

(50)

We then rewrite ψE as

ψE(s) = min
w

{
ϕ1(u(s)) +ϕ2(w) +

1
2γ
‖w− (u(s)−γ∇ϕ1(u(s)))‖2

−
1

2γ
‖∇ϕ1(u(s))‖2

}
.

The definition of v(s) indicates that v(s) is the solution of minization
problem in the definition of ψE, so

ψE(s)

= ϕ1(u(s)) +ϕ2(v(s)) + 〈∇ϕ1(u(s)),v(s)−u(s)〉+
1

2γ
‖v(s)−u(s)‖2

= ϕ1(u(s)) +ϕ2(v(s)) +
1
γ
〈s−u(s),v(s)−u(s)〉+

1
2γ
‖v(s)−u(s)‖2.

By Proposition 3.3 we have

ϕ1(u(s)) = f (x̄), ϕ2(v(s)) = g(z̄),

which completes the proof. �

Appendix C: Proof for Proposition 3.7

Proof. By the definition of s∗, we know that for v∗ = Bz∗+ c. The
definition of fixed-point indicates v∗ = u∗. Hence Ax∗ −Bz∗ − c =

0. We then utilize the definitions of x∗ and z∗ and the optimality
conditions of the associated minimization problems:

−
1
γ

AT (Ax∗ − s∗) ∈ ∂ f (x∗),

−
1
γ

BT (Bz∗ + c− (2u∗ − s∗)) ∈ ∂g(z∗).

We note that 1
γ = β, which means

−βAT y∗ =
1
γ

AT (u∗ − s∗) ∈ ∂ f (x∗),

βBT y∗ = −
1
γ

BT (s∗ −u∗) ∈ ∂g(z∗).

This completes the proof. �

Appendix D: Proof for Theorem 4.4

Let us first prove two lemmata:
Lemma D.1. Assume that s∗ is a fixed point of G, ϕ1 is differ-
entiable, and proxγϕ1

is single-valued. Then u∗ = proxγϕ1
(s∗) is a

stationary point of (11).

Proof. By the definition of G

u∗ ∈ proxγϕ2
(2u∗ − s∗).

By the optimality condition of proxγϕ2

1
γ

(u∗ − s∗) ∈ ∂ϕ2(u∗).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

234

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

By the definition of u∗ and the optimality condition of proxγϕ1

0 = ∇ϕ1(u∗) +
1
γ

(u∗ − s∗),

which means 0 ∈ ∇ϕ1(u∗) +∂ϕ2(u∗). �

Lemma D.2. Let s∗ and u∗ be defined in Lemma D.1 and assume
the conditions in Lemma D.1 hold. Moreover, define

Zβ(s) = argmin
z∈Rn

(
g(z) +

β

2
‖Bz + c− s‖2

)
.

If u∗ ∈ BZβ(2u∗ − s∗) + c, and (x∗,y∗,z∗) satisfies

x∗ ∈ argmin
x

f (x) +
β

2
‖Ax− s∗‖2,

y∗ = u∗ − s∗,
u∗ = Bz∗ + c, z∗ ∈ Zβ(2u∗ − s∗),

then (x∗,y∗,z∗) is a stationary point of (5).

Proof. By Proposition 3.3 we have Ax∗ ∈ proxγϕ1
(s∗). Since

proxγϕ1
is single-valued we have u∗ = Ax∗. By (50)

1
γ

(s∗ −u∗) = ∇ϕ1(u∗).

By [TP20, Proposition 5.3] we have

AT∇ϕ1(u∗) = AT ∂̂ϕ1(u∗) ⊂ ∂̂ f (x∗),

where we have ∂̂ϕ1(u∗) = {∇ϕ1(u∗)} by [RW09, Exercis 8.8]. Notice
that β = 1

γ we then have

−βAT y∗ ∈ ∂̂ f (x∗) ⊂ ∂ f (x∗).

Similarly we have

βy∗ =
1
γ

(u∗ − s∗) ∈ ∂̂ϕ2(u∗).

By Proposition 3.3 and [RW09, Exercise 8.8]

βBT y∗ ∈ BT ∂̂ϕ2(u∗) ⊂ ∂̂g(z∗) ⊂ ∂g(z∗).

Finally, we have

Ax∗ = u∗ = Bz∗ + c ⇒ Ax∗ −Bz∗ − c = 0. �

Finally, we give the main proof for Theorem 4.4.

Proof. The proof here is similar to the proof for [TP20, Theorem
4.1]. Let η = min{ν1,

c
(1+γL)2 }, where c is the constant defined in

[TP20, Theorem 4.1], then by algorithmic construction we have

ψE(sk)−ψE(sk+1) ≥ η‖sk −G(sk)‖2 = η‖vk −uk‖
2.

Due to the definition of ψE and the fact that ϕ1,ϕ2 are both proper,
we have ψE(s0) <∞. By Assumption (A.3) we know ϕ = ϕ1 +ϕ2 is
bounded from below and then by [TP20, Proposition 3.4] ψE is also
bounded from below. Hence

η

∞∑
k=0

‖uk −vk‖
2 <∞ ⇒ ‖uk −vk‖ → 0,

which proves (a). For (b) we first note that since γ < 1
L , by [TP20,

Theorem 3.1] ψE is level-bounded provided Assumption (B.2) holds.

So by (a) we know {sk} is bounded. Then by [TP20, Proposition
2.3] we know proxγϕ1

is Lipschitz continuous. Therefore {uk} is
also bounded. The boundedness of {vk} follows from ‖vk −uk‖ →

0. Therefore uki → u∗. Next, to prove that s∗ is a fixed-point of
G, it suffices to show u∗ ∈ proxγϕ2

(2u∗ − s∗). By the continuity of
proxγϕ1

we know uki → u∗. Then since ‖uk − vk‖ → 0, we also
have vki → u∗. Notice that vki ∈ proxγϕ2

(2uki − ski), by Assumption
(B.2) and [RW09, Theorem 1.25] we know that proxγϕ2

is outer
semicontinuous(osc), then by [RW09, Exercise 5.30]

u∗ = lim
i→∞

vki ⊂ limsup
i→∞

proxγϕ2
(2uki − ski) ⊂ proxγϕ2

(2u∗ − s∗),

which proves that s∗ is fixed-point of G. The stationarity of u∗
follows from Lemma D.1.

For (c), notice that if Assumption (B.3) holds, then Zβ is locally
bounded and osc by [RW09, Theorem 1.17]. Since zki ∈ Zγ(2uki −

ski) and 2uki − ski → 2u∗ − s∗, {zki } is bounded. So the cluster point
of {zki }, z∗ must exists. Without loss of generality, we can assume
zki → z∗. By [RW09, Exercise 5.30]

z∗ = lim
i→∞

zki ⊂ limsup
i→∞

Zβ(2uki − ski) ⊂ Zβ(2u∗ − s∗) + c.

Next, push to the limit on both sides of vki = Bzki + c

v∗ = lim
i→∞

vki = lim
i→∞

Bzki + c = Bz∗ + c.

The stationarity of (x∗,y∗,z∗) follows from Lemma D.2. �

Appendix E: Further Discussion for Generating the
Stationary Point of ADMM

For the most general case where proxγϕ1
and proxγϕ2

are both set-
valued, we need much more sophisticated techniques to generate
the stationary point of ADMM.

We note the definition of s∗ ∈ G(s∗) means there exist u∗ such
that u∗ ∈ proxγϕ1

(s∗) and u∗ ∈ proxγϕ2
(2u∗ − s∗). We assume u∗ is

known since u∗ is explicitly available from Algorithm 1. This is
because proximal mapping is outer semi-continuous, which means
if a subsequence ski → s∗, then it suffice to choose a cluster point
of {uki } to generate such a u∗. Our goal is to generate the stationary
point of ADMM from (s∗,u∗).

We first need a technical lemma:
Lemma E.1. Let h : Rn→ R̄ and C ∈ Rp×n. Suppose for some β the
set-valued mapping Xβ(s) := argmin

x∈Rn
{h(x)+

β
2 ‖Cx−s‖2} is nonempty

for any s ∈ Rp. Let γ = 1/β and ϕ = hC. If u∗ ∈ proxγϕ(s∗) and

x∗ ∈ argmin
x∈Rn

{h(x) +
β

2
‖Cx− s∗‖2 +

α

2
‖Cx−u∗‖2},

where α > 0. Then x∗ ∈ Xβ(s∗) and u∗ = Cx∗.

Proof. We first prove Cx∗ = u∗. Let u+ = Cx∗. By the definition of
x∗ we know ∀e ∈ ker(C), we have h(x∗) ≤ h(x∗ + e), which means

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

235

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

ϕ(u+) = h(x∗). Then we have:

ϕ(u+) +
β

2
‖u+ − s∗‖2 +

α

2
‖u+ −u∗‖2

= h(x∗) +
β

2
‖Cx∗ − s∗‖2 +

α

2
‖Cx∗ −u∗‖2

= inf
u
{ inf
x:Cx=u

h(x) +
β

2
‖u− s∗‖2 +

α

2
‖u−u∗‖2}

= inf
u
{ϕ(u) +

β

2
‖u− s∗‖2 +

α

2
‖u−u∗‖2}.

But by the definition of u∗, we know

{u∗} = argmin
u
{ϕ(u) +

β

2
‖u− s∗‖2 +

α

2
‖u−u∗‖2},

which means u+ = u∗ and hence demonstrates that u∗ = Cx∗. Now
assume that x∗ < Xβ(s∗), which means there exists another x+ such
that

h(x+) +
β

2
‖Cx+ − s∗‖2 < h(x∗) +

β

2
‖Cx∗ − s∗‖2.

However, we have

h(x∗) +
β

2
‖Cx∗ − s∗‖2 = ϕ(u∗) +

β

2
‖u∗ − s∗‖2,

≤ ϕ(Cx+) +
β

2
‖Cx+ − s∗‖2,

≤ h(x+) +
β

2
‖Cx+ − s∗‖2,

which yields contradiction. Hence x∗ ∈ Xβ(s∗). �

Then we are able to prove the general transition theorem:
Theorem E.1. Suppose s∗ is the fixed-point of G, and u∗ ∈
proxγϕ1

(s∗)∩proxγϕ2
(2u∗ − s∗). Define:

x∗ ∈ argmin
x

f (x) +
1

2γ
‖Ax− s∗‖2 +

α

2
‖Ax−u∗‖2,

y∗ = s∗ −u∗

z∗ ∈ argmin
z

g(z) +
1

2γ
‖Bz + c− (2u∗ − s∗)‖2 +

α

2
‖Bz + c−u∗‖2,

where α > 0, then (x∗,y∗,z∗) is a stationary point of (5).

Proof. Lemma E.1 means that

u∗ = Ax∗,u∗ = Bz∗ + c,

x∗ ∈ argmin
x

f (x) +
1

2γ
‖Ax− s∗‖2,

z∗ ∈ argmin
z

g(z) +
1

2γ
‖Bz + c− (2u∗ − s∗)‖2.

Next, we utilize the optimality conditions of the proximity operator
proxγϕ1

(s∗)

1
γ

(s∗ −u∗) ∈ ∂̂ϕ1(u∗).

Then by [TP20, Proposition 5.3]

−βAT y∗ =
1
γ

AT (s∗ −u∗) ∈ ∂̂ f (x∗) ∈ ∂ f (x∗).

Similarly we have

βBT y∗ ∈ ∂g(z∗).

The last condition follows from u∗ = Ax∗ = Bz∗ + c. �

Appendix F: Proof for Theorem 4.6 and Remark 4.8

Our proof will utilize the Kurdyka-Łojasiewicz (KL) inequal-
ity [ABS13]. We will introduce several notations for the definition
of KL property. Let Cη be the set consisting of all the concave and
continuous function ρ : [0,η)→ R+ satisfying that

ρ ∈C1((0,η)), ρ(0) = 0, ρ′(x) > 0,∀x ∈ (0,η).

We also consider a subclass of Cη, called Łojasiewicz functions

L := {ρ : R+→ R+,∃ m > 0, θ ∈ [0,1) : ρ(x) = qx1−θ}.

Next we give the definition of the KL property:
Definition F.1. Let ψ be a proper, lower semicontinuous function.
We say that ψ has the KL property at x̄ ∈ dom∂ψ if there exists
η ∈ (0,∞], a neighborhood U of x̄, and a function ρ ∈ Cη such that
for all x ∈U∩{x ∈Rn : 0 < ψ(x)−ψ(x̄) < η} the KL-inequality holds,
i.e.,

ρ′(ψ(x)−ψ(x̄)) ·dist(0,∂ψ(x)) ≥ 1. (51)

If the mapping ρ can be chosen from L and satisfies ρ(x) = qx1−θ

for some q > 0 and θ ∈ [0,1), then we say that ψ has the KL-property
at x̄ with exponent θ.

It is known that a variety of functions, which contains the sub-
analytic function [ABS13], have the KL property. So we will directly
work with the KL property.

We note that by the definition ofDγ it is clear thatDγ(sk,uk,vk) =

ψE(sk).

Assume {sk,uk,vk} is generated by Algorithm 1, then we define
U to be the set consisting of all the cluster points of {sk,uk,vk}.
Several structural properties of U are listed in the next proposition.
Proposition F.2. Assume {sk,uk,vk} is bounded. Then

(a) U is nonempty and compact.
(b) dist((sk,uk,vk),U)→ 0.
(c) If the assumptions in Theorem 4.4 hold, thenDγ is constant and

finite onU.

Proof. For statement (a) and (b), see [BST14, Lemma 5(iii)]. For (c),
by Theorem 4.4 we can assume ψE(sk)→ l∗ where l∗ is finite. Now
assume (s∗,u∗,v∗) ∈ U, then the proof in Theorem 4.4 has already
shown that v∗ = u∗ ∈ proxγϕ2

(2u∗ − s∗). And we clearly have u∗ =

proxγϕ1
(s∗) by the continuity of proxγϕ1

. Hence Dγ(s∗,u∗,v∗) =

ψE(s∗). Notice that ψE is strictly continuous [TP20, Proposition 3.2],
so we have ψE(s∗) = l∗, which completes the proof. �

In the following we provide the main proof of global and r-linear
convergence stated in Theorem 4.6 and Remark 4.8.

Proof. These two conclusions trivially hold if Algorithm 1 ter-
minates after finite steps, so in the rest of the proof we assume
Algorithm 1 generates infintely many steps. Let δ,η be the constants

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

236

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

appearing in the definition of KL property. Choose k′ sufficiently
large such that for any k ≥ k′ we have

dist((sk,uk,vk),U) < δ, 0 <Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄) < η

where (s̄, ū, v̄) ∈ U. Such a k′ exists due to Proposition F.2. Define
δk = ρ(Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄)). For k ≥ k′ we utilize the concav-
ity of ρ

δk −δk+1 ≥ ρ
′(δk)(Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1))

≥
Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1)

dist(0,∂Dγ(sk,uk,vk))
. (52)

Next, we estimate dist(0,∂Dγ(sk,uk,vk)):

∇sDγ(sk,uk,vk) =
1
γ

(vk −uk),

∇uDγ(sk,uk,vk) = ∇ϕ1(uk)−
1
γ

(sk −uk)−
1
γ

(vk −uk) +
1
γ

(uk −vk),

=
2
γ

(uk −vk)

∂vDγ(sk,uk,vk) = ∂ϕ2(vk) +
1
γ

(sk −uk) +
1
γ

(vk −uk) 3 0,

where we have used (50) for the second equality and the optimality
condition of proxγϕ2

for the third equality. These means

dist(0,∂Dγ(sk,uk,vk)) ≤

√
5
γ
‖vk −uk‖. (53)

We now consider the next two cases

Case 1: sk+1 = sAA
k then

Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1) = ψE(sk)−ψE(sk+1)

≥ ν1‖vk −uk‖
2 + ν2‖sk+1 − sk‖

2.

Moreover, by Young’s inequality

2
√
ν1ν2‖sk+1 − sk‖ = 2

√
ν2‖sk+1 − sk‖
√
‖vk −uk‖

√
ν1

√
‖vk −uk‖

≤
ν2‖sk+1 − sk‖

2

‖vk −uk‖
+ ν1‖vk −uk‖.

Then by (52) and (53)

δk −δk+1 ≥
γ
√

5
(
ν2‖sk+1 − sk‖

2

‖vk −uk‖
+ ν1‖vk −uk‖)

≥
2γ
√
ν1ν2
√

5
‖sk+1 − sk‖.

Case 2: sk+1 = G(sk). Then sk+1 − sk = vk −uk and by [TP20, The-
orem 4.1]

Dγ(sk,uk,vk)−Dγ(sk+1,uk+1,vk+1) = ψE(sk)−ψE(sk+1)

≥
c

(1 +γL)2 ‖vk −uk‖
2.

where c is the constant defined in [TP20, Theorem 4.1]. By (52)
and (53)

δk −δk+1 ≥
cγ

√
5(1 +γL)2

‖sk+1 − sk‖.

Let ā = min{ 2γ
√
ν1ν2
√

5
,

cγ
√

5(1+γL)2
}, then we have

δk −δk+1 ≥ ā‖sk+1 − sk‖. (54)

Notice that δk is positive and monotone decreasing, summing (54)
from k′ to∞

δk′ ≥ ā
∞∑

k=k′
‖sk+1 − sk‖. (55)

which means that {sk} is a Cauchy sequence and hence converges
to some point s∗. By the continuity of proxγϕ1

we know uk → u∗ =

proxγϕ1
(s∗). v∗ = u∗ follows from ‖vk−uk‖→ 0. u∗ is fixed-point of

G follows from Theorem 4.4. For Remark 4.8, we need the condition
that Dγ has the KL property at U with exponent θ ∈ (0, 1

2]. Now
assume ρ(x) = qx1−θ. By the definition of KL property (51) and (53)

√
5q(1− θ)
γ

‖vk −uk‖ ≥ q(1− θ)dist(0,∂Dγ(sk,uk,vk))

≥ (Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄))θ.

Hence we have

δk = q(Dγ(sk,uk,vk)−Dγ(s̄, ū, v̄))1−θ ≤ q(

√
5q(1− θ)
γ

‖vk−uk‖)
1−θ
θ .

By elementary calculus, one can show that (
√

5q(1−θ)
γ ‖vk −uk‖)

1−θ
θ

is monotone increasing on θ ∈ (0, 1
2] provided that

√
5q‖vk−uk‖

γ < 1.
Since ‖vk −uk‖ → 0, we can assume that k′ is sufficiently large such

that for any k ≥ k′ we have
√

5q‖vk−uk‖

γ < 1. Then

δk ≤ a1‖vk −uk‖.

where a1 is some constant. Similar to the previous proof, we can
show

δk −δk+1 ≥ a2‖vk −uk‖. (56)

where a2 =
√

5
γ min{ν1,

c
(1+γL)2 }. Summing (56) from k′ to∞

δk′ ≥ a2

∞∑
k=k′
‖vk −uk‖.

Therefore

a1‖vk′ −uk′‖ ≥ a2

∞∑
k=k′
‖vk −uk‖.

Define Hk =
∞∑

i=k
‖vi −ui‖ we have

a1(Hk′ −Hk′+1) ≥ a2Hk′ ⇒ Hk′+1 ≤
a1 −a2

a1
Hk′ .

Similarly, we can show for any l ≥ k′ we have

Hl+1 ≤
a1 −a2

a1
Hl,

which means that {Hk} converges q-linearly and since Hk ≥ ‖vk−uk‖

we get the r-linear convergence of ‖vk −uk‖. Then

a1‖vk −uk‖ ≥ δk ≥ ā
∞∑

i=k

‖si+1 − si‖ ≥ ‖sk+1 − sk‖,

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

237

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

which proves the r-linear convergence of {‖sk+1 − sk‖} and further
implies the r-linear convergence of {sk}. �

Appendix G: Proof for Proposition 4.10

Proof. The properness of ϕ2 are given in Proposition 3.3(i) since
we assume all the ADMM subproblems has solution. The lower
semicontinuity of ϕ2 are given by [TP20, Proposition 5.10] by
assuming (D.4). Hence assumption (A.2) is satisfied. Assumption
(A.1) comes from [TP20, Theorem 5.13] by assuming (D.2) and
(D.3). For Assumption (B.2), without loss of generality, we can
assume f is bounded from below and g is level-bounded. Then it is
clear that ϕ1 is bounded from below and ϕ2 is level-bounded, and
hence ϕ1 +ϕ2 is level-bounded. �

Appendix H: Verification of Assumptions for `q Regularized
Logistic Regression Problem

In this section we will verify Assumption (A.1) to (A.3), (B.2) and
(B.4), (C.2) for the `q regularized logistic regression problem. In
this problem, we have

f (x) =

p∑
i=1

log(1 + exp(−bi(aT
i w + v))),g(z) = p ·λ ·

n∑
i=1

|zi|
q

where x = (w,v) ∈ Rn+1. For this problem matrices A and B are all
identity, so image functions have rather simple form, i.e., ϕ1 = f and
ϕ2 = g. It is well known that f is Lipschitz differentiable, so (A.1) is
satisfied. Moreover, g is continuous and hence lower semicontinuous,
so (A.2) is satisfied. To prove (A.3), since f + g is continuous, it
suffices to show (B.2) hold, because (A.1) then follows by [RW09,
Theorem 1.9]. For the level-boundedness of f + g, we have:
Proposition H.1. Assume bi are not all 1 or −1, then f + g is level-
bounded.

Proof. Without loss of generality, we can assume b1 = 1 and b2 =−1.
Let α ∈R, and S = {x ∈Rn+1 : f (x)+g(x)≤ α}. Since if α≤ 0, then it
is easy to show S is bounded, we assume α > 0 in the following. We
need to prove that S is bounded. Now suppose z = (z1, ...,zn+1) ∈ S ,
since f (z) ≥ 0, we have g(z) ≤ α. Then there exists some constant M
which only depends on α such that ‖w‖ ≤ M, where w = (z1, ...,zn).
Notice that g(z) ≥ 0 and ∀1 ≤ i ≤ p, log(1+exp(−bi(aT

i w+ zn+1))) ≥
0, we have

log(1 + exp(aT
1 w + zn+1)) ≤ α,

log(1 + exp(−aT
2 w− zn+1)) ≤ α.

This means

exp(zn+1) ≤ (exp(α)−1)exp(−aT
1 w) ≤ (exp(α)−1)exp(M‖a1‖),

exp(−zn+1) ≤ (exp(α)−1)exp(aT
2 w) ≤ (exp(α)−1)exp(M‖a2‖),

which proves the boundedness of zn+1 and completes the proof. �

(B.4) comes from the fact that g is bounded from below and B = I.
For (C.2), first by [WCX18, Section 2.2], we know f (u) + g(v) is
subanalytic. Moreover 1

γ 〈s−u,v−u〉+ 1
2γ ‖v−u‖2 is subanalytic and

maps bounded set to bounded set. HenceDγ is subanalytic as the
sum of these two functions by [XY13].

Appendix I: Convergence for Physical Simulation Problem

In this section, we analyze the convergence of Algorithm 1 on the
physical simulation problem (33). In some cases, Assumption (A.1)
would fail to hold. But since (A.1)–(A.3) are only used to prove
the decrease of DR envelope, we would show that DR envelope is
decreasing even if (A.1) is replaced by weaker assumption. Specifi-
cally, it is noted in [ZPOD19] that for physical simulation problem
(33), if g is set to be the hyperelastic energy of StVK material, then
g is only locally Lipschitz differentiable and hence doesn’t satisfy
(A.1). However, due to the monotone decreasing of DR envelope,
we can except that [TP20, Theorem 4.1] still holds in this case, so
that the convergence theorem in this paper remains valid.

In the following, we replace (A.1) by a weaker assumption:

(A.1)’ ϕ1 is Lipschitz differentiable on any bounded set.

Along with this assumption, we further assume:

(A.4) ϕ1 is level-bounded and ϕ2 ≥ 0.

To simplify the notation, we define:
Definition I.1. We define lev≤αϕ to be the set:

lev≤αϕ := {x ∈ Rn : ϕ(x) ≤ α}.

We need the next initial value assumption:

(A.5) Let Ax0 −Bz0 = c. y0 is chosen such that the augmented
Lagrangian function L(x0,z0,y0) = T0 := f (x0) + g(z0) <∞ and
L(x1,z1,y1) ≤ L(x0,z0,y0). Assume s0 = Ax1 −y1.

Moreover, we need γ to be sufficiently small as the next assumption
required:

(A.6) γ is sufficiently small such that c0 ≤ 1, where

c0 = sup
lev≤T0+1ϕ1

γ

2
‖∇ϕ1(x)‖2.

Here we note that such a γ must exist due to (A.4) and the fact that
T0 is independent of the choice of γ. In the following, we assume
L1 to be the Lipschitz modulus of ∇ϕ1 on the convexhull of the set
lev≤T0+1ϕ1.
Lemma I.2. Suppose that (A.5) holds. Then we have ψE(s0) ≤ T0.

Proof. Let u0 = proxγϕ1
(s0), then by the definition of DR envelope

and Proposition 3.2 we can obtain that:

ψE(s0) = L(x1,z1,y1) ≤ T0. �

Lemma I.3. Assume (A.1)’, (A.2)–(A.6) hold and γ < 1
L1

. If it holds
that

ϕ1(uk) ≤ T0 + 1, ϕ1(uk+1) ≤ T0 + 1,

then

‖uk+1−uk‖ ≤
1

1−γL1
‖sk+1− sk‖,‖uk+1−uk‖ ≥

1
1 +γL1

‖sk+1− sk‖.

Proof. By the optimality condition of uk we know

γ∇ϕ1(uk) + uk = sk.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

238

W. Ouyang et al. / Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting

Hence we can infer that

‖sk+1 − sk‖ ≥ ‖uk+1 −uk‖−γ‖∇ϕ1(uk+1)−∇ϕ1(uk)‖,

≥ (1−γL1)‖uk+1 −uk‖,

The proof for second part is similar. This completes the proof. �

Lemma I.4. Assume (A.1)’, (A.2)–(A.6) hold and γ is sufficiently
small. If for sk it holds that:

ψE(sk) ≤ T0, ϕ1(uk) ≤ T0 + 1,

then the it also holds for sk+1.

Proof. Utilizing the definition of uk+1, we obtain that:

ϕ1(uk+1) +
1

2γ
‖uk+1 − sk+1‖

2 ≤ ϕ1(uk) +
1

2γ
‖uk − sk+1‖

2.

By the definition of sk+1 and (A.4) we have:

ϕ1(uk+1) +
1

2γ
‖uk+1 − sk+1‖

2

≤ ϕ1(uk) +ϕ2(vk) +
1

2γ
‖vk − (2uk − sk)‖2,

= ψE(sk) +
1

2γ
‖sk −uk‖

2,

= ψE(sk) +
γ

2
‖∇ϕ1(uk)‖2,

≤ ψE(sk) + c0 ≤ ψE(sk) + 1,

where we have used the definition of ψE for the first equation, the
optimality condition of uk for the second equation, the definition of
c0 for the second inequality. Hence we have proved that

ϕ1(uk+1) ≤ ψE(sk) + 1 ≤ T0 + 1.

For the estimation of ψE(sk+1), we have:

ψE(sk+1)

≤ ϕ1(uk+1) +ϕ2(vk) + 〈∇ϕ1(uk+1),vk −uk+1〉+
1

2γ
‖vk −uk+1‖

2,

where we have used the definition of DR envelope. We then utilize
the definition of L1 and [Nes18, Lemma 1.2.3] to obtain that

ϕ1(uk+1) + 〈∇ϕ1(uk+1),uk −uk+1〉 ≤ ϕ1(uk) +
L1

2
‖uk+1 −uk‖

2.

Moreover, we have:

1
2γ
‖vk −uk+1‖

2

=
1

2γ
(‖vk −uk‖

2 + 2〈vk −uk,uk −uk+1〉+ ‖uk −uk+1‖
2).

Combing all these three estimation together, we can obtain that:

ψE(sk+1) ≤ ψE(sk)− (
1

2γ
−

L1

2
−γL2

1)‖uk+1 −uk‖
2.

If 2γ2L2
1 +γL1 < 1, then we have:

ψE(sk+1) ≤ ψE(sk) ≤ T0 + 1. �

By induction and Lemma I.4 we can prove the next theorem:

Theorem I.5. Assume (A.1)’, (A.2)–(A.6) hold and γ is sufficiently
small. Then we have:

ψE(sk+1) ≤ ψE(sk)−
(
(

1
2γ
−

L1

2
−γL2

1)/(1 + L1γ)
)
‖sk+1 − sk‖

2.

Then all the convergence theorems in this paper can be stated
based on Theorem I.5. We now verify (A.1)’, (A.2)–(A.6) for the
physical simulation problem (33). In this case, ϕ1(x) = fA(x) =

f (W−1x). So for the case where f is the hyperelastic energy of StVK
material, then ϕ1 satisfies (A.1)’ because f satisfies (A.1)’. Notice
that g is bounded from below and level-bounded, so ϕ2 is lsc and
proper by [TP20, Theorem 5.11]. Moreover, it can be verified that
ϕ2 is also level-bounded. So (A.2) is satisfied. (A.3) comes from the
lower semi-continuity and level-boundedness of ϕ. (A.4) is trivial.
(A.5) holds for the choice in [ZPOD19, Assumption 3.5]. (A.6)
holds for for sufficiently small γ. Moreover, the aforementioned
analysis also shows that (B.2) and (B.4) hold. Finally, since f ,g are
polynomial and hence semi-algebraic, soDγ is also semi-algebraic,
and then (C.2) follows from Remark 4.7.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

239

