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Figure 1: Our optimization finds hidden supports to hold rigid objects (green) in their locations despite gravity. Rods (orange) resist tension,
compression and bending, while wires (black) resist tension. Supports connect between objects or to the input support surface (blue). Rods
are hidden behind occlusions in the scene for a possibly disconnected distribution of viewpoints (red) provided by the user. Here, a collection
of space-themed objects seemingly hover in the corner of a room. The supporting truss is hidden from the front and through the window.

Abstract
We propose a novel algorithm to efficiently generate hidden structures to support arrangements of floating rigid objects. Our
optimization finds a small set of rods and wires between objects and each other or a supporting surface (e.g., wall or ceiling)
that hold all objects in force and torque equilibrium. Our objective function includes a sparsity inducing total volume term and
a linear visibility term based on efficiently pre-computed Monte-Carlo integration, to encourage solutions that are as-hidden-
as-possible. The resulting optimization is convex and the global optimum can be efficiently recovered via a linear program. Our
representation allows for a user-controllable mixture of tension-, compression-, and shear-resistant rods or tension-only wires.
We explore applications to theatre set design, museum exhibit curation, and other artistic endeavours.

1. Introduction

wires

rods

Figure 2: The skeleton of a
blue whale levitates with the
support of wires from above
and internal rods.

Levitating objects are visually
compelling and commonly found
in artistic sculptures, film and
theatre set design, promotional
displays, and museum exhibits
(see Figure 2 and Figure 4). This
effect is especially impressive if
the support structure can be hid-
den from the observer, removing
its unsightly distraction and per-
haps even giving the impression
that the objects in the arrange-
ment are magically floating in space (see Figure 1). Achieving this
is a non-trivial task. Physical stability requires a balance of force
and torque for each rigid component of the scene. This is read-
ily achieved using many strong, thick struts, but their geometry
and scene placement is likely to compete for visual attention with
scene objects, or worse, visually obscure objects in the scene (see

Figure 3). Hiding these supports by removing or thinning too many
struts, on the other hand, will sacrifice physical stability. Thin wires
can sometimes be used to hang objects, but wires only resist ten-
sion so they alone can not handle situations that are not supported
purely from above.

Expected views of supports without visibility consideration

Figure 3: Without our visibility term, optimal rods may be an un-
sightly distraction.© 2021 The Author(s)
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Figure 4: Levitating objects have inspired such artworks as a
sculpture of border guard Conrad Schumann jumping (left), an
enormous stage display of playing cards by Es Devlin for the Bre-
genz Festival (middle), and Chiharu Shiota’s installation where
white dresses float overhead (right).

In this paper, we propose modeling the problem of hidden sup-
port structure generation for levitating objects as a form of topol-
ogy optimization. We present a novel convex optimization based
on the well-established ground structure method from architecture
and engineering. The input to our method is an arrangement of ob-
jects in their desired locations and orientations and the distribution
of views from which the scene will likely be observed. Our out-
put is a collection of rods and wires, described by their required
thicknesses and attachment points on the input rigid objects, and
the supporting structural element (e.g., wall or ceiling). Our rods
model tension, compression and bending resistant materials (e.g.,
wooden dowel rods or steel beams). Our wires model tension only
(e.g., fishing line or steel cables).

Unlike Computer Graphics or Virtual Reality where physical
laws can be bent or broken, support structures in real scenes are
only meaningful if physically valid. Therefore, we enforce physi-
cal validity in our optimization as a hard constraint: namely that the
rigid objects should achieve force and torque equilibrium and that
stresses on rods and wires do not exceed material-dependent yield
limits. For ease of assembly, cost of manufacturing, and visibility
considerations, we prefer support structures composed of a small
number of thin, less visible supports. We model these criteria with
a sparsity-inducing cost function defined as a sum over a densely
connected graph of edges (i.e., the ground structure).

Treating the cross-sectional area of each edge as the primary op-
timization variable, the traditional ground structure method opti-
mizes the total volume (linear in the areas since lengths are prede-
termined) and enforces force balance at point loads, by measuring
linearized axial tension and compression forces from each rod, sub-
ject to yield limits, expressed as linear inequalities in the unknown
cross-section areas and axial stresses of the rods. The result is a
linear program whose solution — like many L1 or Lasso problems
— is sparse (most areas are exactly zero), and often agrees exactly
with the NP-hard selection problem (picking the smallest valid sub-
set of edges).

We augment the traditional ground structure method to support
embedded rigid objects (via linear static equilibrium equations) and
account for bending resistance of rods (via a simple linear shearing
model derived from proportionality assumptions). We introduce a
visibility objective function that is also linear in the unknown edge
areas and relies on efficient Monte-Carlo based precomputation.
Thus, the optimization remains a (convex) linear program and so-
lutions can be extracted efficiently (in usually less than a minute).

Our experiments satisfyingly confirm that under many condi-
tions structurally valid supports are lurking just out of sight: the
space of physically valid supports is vast and finding a completely
occluded arrangement is often possible. We demonstrate the effec-
tiveness of our method across a wide variety of test scenes and pro-
totypical use cases.

2. Related Work

Our work sits within the larger literature of computational fabrica-
tion, construction and assembly. These subfields are rich and vast,
so we focus on previous works most similar in methodology or ap-
plication.

Previous algorithms exist to make objects stand [PWLS13;
VHWP12], spin [BWBS14] or hang from wires [MML16]. These
works modify the input objects by redistributing mass or changing
their shape to achieve the desired goal. In this paper, we explore
a complementary contract with the user — how to anchor objects
in the environment without changing the objects themselves. We do
not assume that objects were fabricated in a particular manner (e.g.,
3D printing).

Our approach may be categorized with other structural optimiza-
tions for a prescribed static load scenario (i.e., ignoring inertial
forces). Recent works increase the stability of fragile objects by
adding new structural elements [ZPZ13; SVB*12; CZT16]. For ex-
ample, Stava et al. add struts to 3D printed objects one-by-one as
part of a large optimization loop and use a volumetric simulation
as validation. Their strut selection includes an ambient occlusion
visibility term, but they do not consider the problem of selecting an
optimal set of supports for rigid objects under prescribed viewing
conditions. Other methods have considered the interactive design
of rod-structures [PTC*15; KSW*17; CZS*19; Jac19] with vary-
ing degrees of physical feasibility checking or optimization in the
system.

We model the problem of hiding support structures as a form
of topology optimization [LGC*18]. The general idea of topology
optimization is to prune away material from the volume around the
input objects or load conditions. The resulting geometries typically
have interesting topologies/connectivities that would have been dif-
ficult to determine a priori. Methods that determine the material
occupancy of each voxel in a dense grid are well suited for 3D
printing and milling (e.g., [WDW16]), but will in general produce
geometries composed curved and varying thickness elements. Our
method instead belongs to the class of ground structure methods
[Dor64], which output a discrete collection of (straight) elements
from an initial over-connected graph of candidates (see Figure 9).
Methodologically we follow most closely the stress-based formula-
tion of Zegard et al. [ZP15], and utilize the thesis of Freund [Fre04]
as a reference. Ground structure-like methods have been applied
for designing everything from buildings [ZHMB20] and glass shell
structures [FLM*20] to construction supports [DPW*14] to 3D
printable models [WWY*13; JTSW17; HZH*16] to cable-driven
automata [MKS*17]. The standard ground structure method con-
siders only axial forces. These methods have been applied for
rigid structural elements and adapted to special cases like tensegri-
ties [PTV*17; CW96].

© 2021 The Author(s)
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Figure 5: The input to our method is a scene composed of many levitating rigid objects. The output of our method is a collection of rods
tucked away behind object occlusions, holding each object in force and torque equilibrium under gravity.

We use a ground structure approach to model the novel prob-
lem of creating hidden structural supports from complex view-
point distributions. Crucially, our method supports structural ele-
ments that resist compression, tension and bending forces, as well
as wires, without resorting to the nonlinear constitutive models or
volumetric meshing of prior work [SVB*12; PTC*15; HZH*16].
Our method trivially couples the structure to the rigid objects it
supports, correctly accounting for both linear forces and torques,
without resorting to displacement-based mechanical formulations
(e.g., [PTV*17]). This allows us to formulate our problem as a lin-
ear program which can be solved efficiently.

We draw inspiration from algorithms for appearance-driven op-
timization. For instance, Schuller et al. introduce the problem of
generating appearance mimicking surfaces from a specified view-
point [SPS14]. Several works seek to create 3D shapes that take the
form of a set of 2D shapes from corresponding viewpoints or cast
the 2D image under certain lighting conditions [MP09; HHC18;
STTP14]. Others use viewpoints to create optimal perceptual expe-
riences, for example in 3D printing support structures [ZLP*15] or
in skyscraper design [DFL*15].

3. Method
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The input to our method is a
scene comprised of K rigid ob-
jects oriented and positioned
in space, a fixed support sur-
face (e.g., wall or ceiling),
and a distribution of view-
points (e.g., discrete set of po-
sitions or sample-able proba-
bility density function defined
on a surface) The output of our method is a supporting structure
composed of a small set of rods and wires connecting rigid objects
to each other or the supporting surface. Our method ensures that
this structure holds the input objects in their prescribed positions
and orientations, counter-balancing the force these objects experi-
ence due to gravity. Our method optimizes the size and placement
of the structure to minimize its overall volume and its visibility
with respect to the input viewpoint distribution (see Figure 5). Be-

fore describing our optimization, we define our physical model and
how we measure visibility.

3.1. Rigid Body Equilibrium

The rigid objects in our scenes experience forces from gravity and
at the points of attachment to the supporting structure. To hold a
rigid body at rest, we must maintain force and torque equilibrium:

∑
i∈Vk

fi = mkg, (1)

∑
i∈Vk

(xi−xk)× fi︸ ︷︷ ︸
τi

= 0, (2)

where mk, xk, and Vk are the mass, center of mass, and set of attach-
ment points of the kth object, respectively, and xi, fi,τi are the 3D
position of the ith attachment point and corresponding force and
torque vectors, respectively.

3.2. Rods

We assume our support structure undergoes negligible displace-
ment, affording a linearization of the internal forces at play. For
stiff rods, we follow the linearized tension and compression model
of [ZP15; Fre04], which introduces a signed scalar value per rod
ci j ∈ R with units Newtons describing the force in the axial direc-
tion parallel to the rod. Assigning an arbitrary direction to the rod
i j between endpoint positions xi and x j , then the axial force contri-
bution at endpoints i and j are the product of this scalar ci j by the
rod’s tangent unit direction t̂i j = (xi−x j)/‖xi−x j‖:

fi += ci j t̂i j and f j −= ci j t̂i j. (3)

Previous methods (e.g., [ZP15; Fre04]) rely solely on tension
and compression and ignoring the rods’ resistance to bending. This
is a reasonable assumption in architecture where loads are large rel-
ative to the rod’s bending strength. Ignoring bending requires that
the rods are thicker and thus more visible (see Figure 7). This is at
odds with the intuition that light loads can be held up with a single
bending-resistant rod. In reality, a single rod with finite thickness
can apply a distribution of forces over its non-zero area contact sur-
face. Since the force is applied at more than one point, torque bal-
ance is also possible. Unfortunately, a volumetric rod model cou-
ples the unknown rod diameters and forces non-linearly.

© 2021 The Author(s)
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To maintain the linearity of our system but also account for bend-
ing, we introduce a linearized shearing model to account for resis-
tance in the normal direction.(see Figure 8). For each rod i j, we in-
troduce an arbitrary orthonormal basis Ni j ∈R3×2 for the 2D space
orthogonal to the axial direction. We introduce a two dimensional
parameter qi j ∈ R2 with units Newtons describing the force on the
rod in the two normal basis directions. Shear force contributions
are equal and opposite at either end of each rod:

fi += Ni jqi j and f j −= Ni jqi j. (4)

xi xjt̂ij

tension

shearing

compression

Nij

Following previous methods [ZP15;
Fre04], we model failure catas-
trophically. If the stress due to ten-
sion, compression or bending ex-
ceeds a material-dependent fixed
threshold we declare that the rod
has exploded (or at least moved too
much) and is no longer feasible. These yield stresses can be pre-
scribed for each rod i j and can be related directly to the non-
negative rod cross-sectional area ai j ∈ R≥0 and the force param-
eters introduced above. Namely, we require the following convex
inequalities to hold:

−σ
t
i jai j ≤ ci j ≤ σ

c
i jai j and ‖qi j‖ ≤ σ

s
i jai j, (5)

where σ
t
i j,σ

c
i j,σ

s
i j are the tension, compression, and shearing stress

thresholds, respectively. For common rod materials, we find that
σ

t
i j ≈ σ

c
i j >> σ

s
i j. Although σ

t and σ
c values for specific materials

(e.g., pine wood) can be found in reference books, in our experience
all of these parameters should be empirically estimated, especially
when working with low-end materials from the hardware store.

3.3. Wires

Model from BartW under CC-BY 4.0

Figure 6: Wire-only
solutions require sup-
port from above the ar-
rangement’s center of
mass.

A special case of our model is a wire,
which can be thought of as a tension-
only rod. A wire i j has zero resis-
tance to bending and compression
(i.e., σ

c
i j = σ

s
i j = 0) and very high re-

sistance to tension (i.e., σ
t
i j >> 0).

Wires made of strong material such
as braided steel can be very thin
(near invisible) while maintaining
high strength. Our method will allow
a mixture of tension-compression-
bending rods (e.g., wooden dowels)
and tension-only wires (steel wires),
see Figure 10. As special case, we
can limit our optimization to consider
only wires, resulting in a hanging op-
timization (see Figures 6,14).

3.4. Visibility

We define the expected visibility of a rod as function of the input
viewpoint distribution, occlusions due to the scene, the rod’s posi-
tion and orientation and its unknown cross-sectional area. For a rod

Without bending With bending

Figure 7: The addition of our linearized bending term yields
sparser, less visible support structures by more accurately mod-
elling the strength of the rods. Rods can also connect between ob-
jects rather than just to the support surface.

Tension/compression Bending only*Added bending

Model from ericsoj under CC-BY 4.0

Figure 8: An enormous turkey levitates between two buildings us-
ing tension and compression resistant rods (left). Adding bending
resistance affords a less voluminous solution (middle). Restricting
the ground structure to only include edges perfectly intersecting the
center of mass (∗) admits a bending only solution (right).

i j, its expected visibility vi j is:

vi j =
∫
E

p(e)
∫

Ci j

r(e,x) dΩ de, (6)

where

r(e,x) =

{
0 if the segment ex intersects the scene,
1 otherwise,

e

xw

r=0

r=1
x x

where E defines the set of view-
points and p(e) is the probabil-
ity density associated with the
point e ∈ E , and Ci j is the surface
of the cylindrical rod with cross-
sectional area ai j connecting end-
points xi and x j , and dΩ is the dif-
ferential solid angle at the corre-
sponding integration point x sub-
tended at the viewpoint e. Measur-
ing visibility according to solid angle correctly matches the intu-
ition that the same size rod farther away from an observer is less
visible.

The outer integral is immediately recognizable as a soft-shadow
or area-light source evaluation common in rendering. We can ap-
proximate this well by Monte-Carlo importance sampling over the
viewpoint distribution. An analytic expression for the inner integral
becomes unwieldy, so we instead opt for a simple approximation

© 2021 The Author(s)
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6-rod solution23600 edges Pruned to 3586 expected view Fabricated solution

Figure 9: Our method constructs a over-connected ground structure of candidate edges (left) then immediately prunes edges that intersect
the scene (middle) and finally extracts a small number of hidden rods. Savings from pruning can produce 10× performance improvements.

based on uniform quadrature, accounting for the orientation of the
rod resulting in foreshortened projection. Rods are thin relative to
the scene and spread of the viewpoint distributions, therefore we
assume visibility to be constant in the normal directions of the rod.
Our discrete approximation of the expected visibility is thus a dou-
ble sum over nu points sampled according to the input probability
density function and ni j points sampled along the rod:

vi j ≈
√

ai j
1

nu
√

2π

nu

∑
u=1

cos−1
(
(xi− eu) · (x j− eu)

‖xi− eu‖‖x j− eu‖

) ni j

∑
w=1

r(eu,xw)︸ ︷︷ ︸
gi j

,

where we collect the terms that do not depend on ai j into a single
non-negative scalar per-rod, gi j ∈R≥0. In this way, the squared vis-
ibility of each rod becomes a linear function of the cross-sectional
area: ai jg2

i j. Because wires are so thin compared to rods, we hap-
pily set gi j = 0 for wires and avoid their visibility precomputation.
To generate the ni j samples on edge i j, we subdivide the edge until
all segments are less than a given scene-dependent length threshold
(e.g., 0.1 meters for the bedroom scene in Figure 1) and then use
the segment barycenters as samples (typically 10-100 samples per
edge). Segment queries can be computed in parallel.

3.5. Ground Structure

The space of physically feasible supporting structures is high-
dimensional and a mixture of discrete variables (e.g., how many
rods? connecting between which objects?) and continuous vari-
ables (e.g., where rods attach to each object? what are the rod thick-
nesses?). Navigating this space to find a globally optimal solution
is difficult. In response, the ground structure method (e.g., [Dor64;
Ped93; ZP15; Fre04] makes the problem tractable by rephrasing the
problem into selecting a discrete subset of support elements from
an intentionally dense yet finite set of candidate elements. This can-
didate set is referred to as the “ground structure.”

In our case, we generate a ground structure of candidate rod
and wire elements by Poisson disk sampling [Yuk15] all rigid ob-
jects and the support surface and then connecting all possible pairs
of points from different sources (e.g, for a single rigid object this
forms a bipartite graph with the supporting surface, see Figure 9).
For each edge in this graph, we label it as a “rod” or “wire” (and
possibly create duplicate copies so edges appear as both types). We
can discard a bad edge i j if its attachment angle is self-penetrating
or too obtuse (by checking if the rod vector dotted with the sur-
face normal is below a threshold; t̂i j · n̂i < cosθmax), if it intersects
objects in the scene (by ray casting), or if its computed visibility

coefficient is exceptionally high (gi j > gmax). We refer to the result
as the pruned ground structure G.

3.6. Sparse Optimization

The beauty of the ground structure method is that once the candi-
date set has been chosen, selecting the globally optimal subset can
be phrased as an efficient convex optimization, in particular a linear
program. In the classic method, the cost function to be minimized
is the total volume of material spent on the support structure. Since
all edge lengths are known once the candidate set is selected, this
cost is a linear function of the yet unknown edge cross-sectional ar-
eas. It is important that this cost function is the unsquared volume,
which can be thought of as the L1-norm of the vector of edge areas
(weighted by edge-lengths), as opposed to the sum of squared per-
edge volumes, analogous to the L2-norm. The L1-norm is sparsity
inducing and under mild conditions will agree with the optimal so-
lution of the selection problem, analogous to the L0-pseudonorm
[CWB08; FMP*13]. As a result, the vast majority of edges in the

solution will have exactly zero area.

In our case, we augment the total volume cost function with
a least-squares visibility term to penalize choosing highly visible
rods. Because our per-edge visibility measurement in Eq. 7 is lin-
ear in the square-root of the rod areas, this least-squares energy
becomes linear in the areas.

The areas of the rods and wires are the primary unknowns. We
introduce auxiliary variables ci j and qi j as described in Sec. 3.2
to facilitate writing our force and torque balance constraints (see
Sec. 3.1). These variables are then coupled to the areas via the yield
stress inequalities (see Eq. 5).

Our optimized supports

157 wires

187 rods 57 objects

Rods highlighted Painted Rods

Model from geolab.unilasalle 
under CC-BY 4.0

Figure 10: We show the rods in orange to demonstrate how hidden
they are. But we show that the rods connecting the smaller parts
(middle) can be painted to blend in with the ceiling (right).

© 2021 The Author(s)
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Scene K FULL m TIME R W

Parade Float 1 20K 10K 0.14 0 12
“Koons” Display 1 154K 22K 4.90 2 4
Ghost With Tail 1 11K 1K 5.01 5 0
Bunny/Teapot/Rocker 3 150K 21K 2.04 16 0
Bedroom 13 490K 46K 35.87 41 35
Zoetrope (1 frame) 1 469K 51K 33.77 4 0
Pterosaurus 57 10M 785K 608.01 187 157

Table 1: Timings in seconds (TIME) and numbers of rods (R) and
wires (W) for each result with K objects. FULL and m are edges
in the original and pruned ground structures, respectively. The
“Pterosaurus” and “Parade Float” examples do not include the
time for computing visibility, as it was not used in the LP objective.

The resulting optimization is a linear program over the pruned
ground structure G containing m candidate edges:

min
a,c,q ∑

i j∈G
ai j(`i j +λg2

i j) (7)

s.t. ∑
i j| j∈Vk

ci j t̂i j +Ni jqi j = mkg, ∀ k = 1, . . . ,K (8)

∑
i j| j∈Vk

(ci j t̂i j +Ni jqi j)× (x j−xk) = 0, ∀ k = 1, . . . ,K

−σ
c
i jai j ≤ ci j ≤ σ

t
i jai j, ∀ i j ∈ G (9)

−σ
s
i jai j ≤ qi j ≤ σ

s
i jai j, ∀ i j ∈ G (10)

ai j ≥ 0, ∀ i j ∈ G (11)

where we stack all ai j, ci j, and qi j variables into vectors a ∈ Rm,
c ∈ Rm, and q ∈ R2m, respectively, and we introduce the user-
controllable weighting term λ to balance between preference for
volume and visibility minimization. For all examples shown, we
use λ = 10,000.

We opt to replace the second-order cone constraint for linearized
bending yields in Eq. 5 with the simpler coordinate-wise linear in-
equality in Eq. 10. This can be thought of as a conservative L∞
approximation, and albeit coordinate system dependent, does not
affect results and admits a faster linear program than a conic pro-
gram in our experience.

The linear coefficients in the force/torque balance equations and
linear inequalities (Eqs. 8-10) can be collected in large sparse ma-
trices (see App. 6). Many efficient solvers exist for such large sparse
linear programs; we use MOSEK [AA00].

A solution is a guaranteed to exist as long as force and torque
balance can be achieved. This could fail to happen for very sparse
ground structures (e.g., less than six edges per object) or degenerate
situations (e.g., all edges are parallel). Our very dense ground struc-
ture (hundreds of thousands of edges) enjoys the general position
of its random providence. We never fail to find a feasible solution.

4. Experiments & Results

We implemented our algorithm in MATLAB using GPTOOLBOX

[Jac*18] for geometry processing and MOSEK [AA00] to solve the

...

Figure 11: Our results depend on a randomly generated ground
structure. Changing the random seed affects the precise result, but
not qualitatively.

Single “perfect” wire Our optimized wires

small new force Model from SHREC ‘10

Figure 12: Applying a small new force to the plane held by a single
wire causes undesired behaviour since a single wire attachment
is not enough to balance the torque. Our method gives a 6-wire
solution, exactly the number needed to balance force and torque.

linear program formulated in Section 3.6. Pre-computation of the
integrated visibility, in our input scene is accelerated using the EM-
BREE [WWB*14] ray-tracer as interfaced by LIBIGL [JP*20]. We
report statistics and timings for the results in our paper in Table 1.
All times are reported on a MacBook Pro with 3.5 GHz Intel Core
i7 and 16GB of RAM. Visibility pre-computation is computed in
parallel, but is still typically the bottleneck (≈ 80%).
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Degrees of Freedom

The number of degrees
of freedom in the system is
the size of the ground struc-
ture which generally scales
quadratically in the number
of objects m = O(K2), typi-
cally generated by taking all
inter-object pairs over 10-100 Poisson disk sample points on each
object. The inset graph shows the effect of increasing the degrees
of freedom on Figure 5. While optimization time increases linearly
with degrees of freedom, improvement to the visibility score of the
solution reaches a point of diminishing return.

Starting with a dense ground structure leads to better qualitative
results, but the exact positions of the samples do not drastically
effect the hidden-ness of the result. Figure 11 shows how little the
solution changes as a function of the ground structure sampling.

Pruning often significantly reduces the ground structure size and
consequently, the number of degrees of freedom (see, e.g., Fig-
ure 9). Perhaps unsurprisingly, we typically experience a speedup
the same ratio of original ground structure edges to pruned ground
structure edges. The number of constraints in our optimization is
six times the number of objects K. After pruning, MOSEK finds a
solution for the above problem configuration within a few minutes.

In our accompanying video, we show animations of results
in this paper including traversals of the viewing distributions to
demonstrate the robustness of our methods ability to hide supports.

© 2021 The Author(s)
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Rods only, no visibility term Rods only with visibility term Rods and wires with visibility term

Models from utechlab and Jorge Vásquez Pérez under CC-BY 4.0

Figure 13: Applying the ground structure method to this example of a giant balloon hanging outside of a museum gives sufficient rods to
support it, but they are visible. Using our visibility term in the optimization yields a support structure with rods hidden to the viewpoints.
Allowing wires for tension and rods for compression, the result is a few thick but invisible rods and thin wires which hold the balloon in place.

Model from Poly by Google under CC-BY 3.0

Figure 14: For a wire-only solution, we can save time by forgo-
ing the visibility computation. Using fishing wire, we support the
seagull in mid-air invisibly.

Levitating 3D objects has a wide range of applications includ-
ing scientific visualization, film and theater set design, home decor,
anamorphic 3D art installations, as well as objects for zoetropes
and 3D stop-motion animation. Each application has specific de-
sign requirements, and our algorithm is designed to enable the ex-
ploration of a number of aesthetic and structural parameters and
design choices, which significantly impact the resulting solution.
We elaborate on some of these design use cases.

Both scientific exhibits (see, e.g., Figures 1,2) and illusory art
installations (see Figure 15) require an unobscured view of the lev-
itating objects. While it is feasible for designers to hand-craft sup-
port structures from a single fixed viewpoint, the interplay between
visibility and structural stability is quite complex for mutli-view
distributions. In Figure 1, we show the ability of our algorithm to
adapt its optimal solution to multiple viewpoint distributions.

buoyancy 
force

Our algorithm is able to holis-
tically optimize the support struc-
ture using a mix of rods and wires.
We color our rods bright orange
for evaluation in this paper, but in
practice they can be further cam-
ouflaged by matching their appear-
ance to the background or scene
objects (see Figures 10,16). The
choice of using a rod or wire is both
aesthetic (as determined by a user)
and functional. For example, supporting a levitating object with a
wire would require a potential attachment points on the fixed sur-
face or other levitating objects, to be vertically higher than the given

Figure 15: The model used for support attachments does not have
to be the same one used for visibility. The ghost’s head (green) has
attached supports, while its tail (yellow) hides them.

object (see, e.g., Figure 6). The inset figure shows a parade float
suspended by optimized wires (the net force pointing upward due
to buoyancy). Previous methods have considered hanging objects
[PWLS13] or more generally mobiles [MML16] by placing a single
support “perfectly” placed in alignment above the center of mass.
While this strategy requires the fewest supports, it is an unstable
solution (see Figure 12). Our method relies on random sampling of
points in general position, typically producing multiple wires per
hanging object, but resulting in a more stable configuration. Thus,
in practice, we’ve found both our 3D printed and assembled results
to be quite resilient to outside forces (including those from falls,
heavy winds, and moving from one place to another).

Mounting objects off the side of a support such as a wall is best
achieved with a mixture of wires and rods. Figure 13 shows a gi-
ant promotional display suspended in front of a contemporary art
museum. We provide a symmetric dense ground structure and our
optimization naturally finds a symmetric sparse solution.

The pterosaurus in Figure 10 has 57 separate bones and requires
a complex support structure, acting as a stress test on our optimiza-
tion. In practice, skeleton displays often pre-plaster-fuse bones to
reduce the number of pieces (see spine of whale in Figure 2).

The idea of stop-motion animation and 3D zoetropes is over
a century old [Mar90], with modern examples including “Feral
Fount” by Gregory Barsamian at the Museum of the Moving Image
in Queens and the Toy Story zoetrope featured in Pixar’s Museum
Exhibit. The portrayal of levitating objects in this medium is partic-
ularly challenging. We demonstrate a prototypical result of a back-
flipping boy in Figure 17 by hiding supporting rods out of sight.
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sheep example 
from front

Models from Tomáš Bayer and Cheryl Fong under CC-BY 3.0

Figure 16: By maintaining separate graphs for rods and wires,
we can use differing visibility weights and yield stresses based on
what materials are going to be used in fabrication. Our system can
wisely select which edges should be wires vs rods.

3D zoetrope circa 1887 Our hidden-support 3D zoetrope

Model from CartoonFactory on TurboSquid 

Figure 17: 3D zoetropes are an old idea, but hiding supports for
flying objects is still challenging. We incorporate the centripetal
force due to spinning and hide supports behind a backflipping boy
zoetrope. See accompanying video at 3m35s.

For this example to be structurally stable both at rest and while
spinning, we first find the optimal set of rods for each frame under
gravity and then re-run the linear program on just these rods subject
to centripetal forces. The final rod thickness are the maximum over
the two solves. Incorporating more elaborate multi-load handling
(cf. [Fre04]) is left as future work.

5. Limitations & Future Work

Our rod model includes linearized tension, compression, and bend-
ing forces. Like many past methods, we do not handle the self-
weight of the rods by assuming that the force of gravity is much
larger than the force of the rods on themselves. This is a trivial
addition of gravity forces on each rod proportional to their length.
Ground structure methods may produce solutions where thickened
rods intersect; ours is no exception. Edges which nearly overlap
with each other appear in the original ground structure and there-
fore may be selected as rods in the solution. However, this has not
caused any fabrication problems in practice. Previous methods have
considered penalty terms or post-pressing to deal with intersecting
(e.g., [JTSW17]). Wire-wire intersections are extremely unlikely
due to the very thin nature of wires. Our visibility model considers
direct line of sight, but not other cues such as reflections or shad-
ows. Transparency of objects is not accounted for. Depending on
the setup of the scene, there may not be a solution invisible to ev-
ery viewpoint (e.g., Figure 18). Since we model physical validity as
a hard constraint, we are still able to find a solution, albeit a visible
one.

Scene setup Expected view
very wide 
viewpoint 

distribution

very small 
object

Outer 20% of points

Figure 18: In the case of a very wide viewpoint distribution and a
small or thin object, there will most likely be viewpoints from which
the supports are visible. The rightmost figure shows the scene from
a viewpoint on the outer 20% of the distribution.

The precise solution depends on the initial ground structure. In
general, denser ground structures produce higher quality solutions
— both in terms of total structure volume and hidden-ness — with
diminishing returns. Rod areas are directly proportional to stress
limits, so acurate fabrication relies on accurate (or at least conser-
vative) material measurement.

Our algorithm assumes that the input is a well-crafted scene to
begin with and leaves it perfectly as inputted. The creative design
process for these scenes is itself non-trivial. In the future, we are
interested in pursuing an interactive design tool which would pro-
vide hints to increase occlusion by applying simple transformations
(translations, rotations and scales) to the objects in the scene or
even provide automatic layout optimizations given the objects and
the viewpoints.

We model the problem of hidden supports as an efficient linear
program that leverages fast ray-casting from computer graphics.
We see an exciting future in combining techniques from render-
ing and geometry processing with structural optimization in archi-
tecture and engineering. We hope this combination of appearance-
driven design will be beneficial to scientific and artistic endeavours.
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Appendix: Matrix Form

Solvers like MOSEK [AA00] expect the problem to be provided
in matrix form. We spell out the coefficients of the relevant sparse
matrices implementing the linear program in Eq. 8.

For our pruned ground structure with m candidate edges con-
necting N vertices, introduce a unit-less sparse matrix C ∈ R3N×m

where:

C jl =


t̂i j if rod i j points toward x j

−t̂i j if rod i j points away from x j

0 otherwise.

(12)

Here, j is used to index the 3 rows that correspond to the vertex
x j and l is used to index the column for rod i j.
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Introduce a unit-less sparse matrix Q ∈ R3N×2m where

Q jl =


N̂i j if rod i j points toward x j

−N̂i j if rod i j points away from x j

0 otherwise.

(13)

Introduce a sparse unit-less selection matrix S ∈R3K×3N , where

Sk j =

{
I3 if vertex x j lies on object k
0 otherwise

(14)

Introduce a sparse cross-product matrix D ∈ R3K×3N with units
meters, where

Dk j =

{
[x j−xk]× if vertex x j lies on object k
0 otherwise

(15)

where

[d]× =

 0 −d3 d2
d3 0 −d1
−d2 d1 0

 ∈ R3×3 (16)

Finally, the full linear program in matrix form may be written

min
a,c,q

(`+λg′)
>a (17)

subject to
[

0 SC SQ
0 DC DQ

]a
c
q

=

[
m⊗g

0

]
(18)

and −σtal ≤ cl ≤ alσc,∀l (19)

and −σsal ≤ ql ≤ alσs,∀l. (20)

where g′l = g2
l , ∀l since the squared visibility is linear in the

cross-sectional areas of each rod.

m⊗ g denotes the Kronecker product of the m ∈ RK stacked
vector of object masses and the g ∈ R3×1 gravity vector.
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