DOI: 10.1111/cgf. 142648
EUROGRAPHICS 2021 / N. Mitra and I. Viola Volume 40 (2021), Number 2
(Guest Editors)

SnakeBinning: Efficient Temporally Coherent Triangle Packing for
Shading Streaming

J. Hladky 1@ H.P. Seidel '@ M. Steinberger 2

I'Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany
2Graz University of Technology, Austria

SnakeBinning

A

SnakeBinning Atlas

TSS DSSIM

(Ss1) Surueang Surpeyg pajeyassay,

SnakeBinning DSSIM SAS Atlas

SAS DSSIM

(Svs) Surureans sepy Surpeqs

Figure 1: By rendering Potentially Visible Set (PVS) geometry shaded with our Shading Atlas (yellow background) we achieve novel view
extrapolation with near ground-truth quality. The scene triangles are assigned into bins, grouping triangles by similar screen-space footprint
and preserving the primitive ordering. The bins are structured into rectangular superblocks (colorful columns) to efficiently utilize the atlas
space. The gaps in the superblocks allow additional space for the bins to shrink/grow in order to increase temporal coherence. Both Tessellated
Shading Streaming (TSS) [HSS19b] and Shading Atlas Streaming (SAS) [MVD™ 18] capture similar amount of shading atlas samples at slower
speeds and achieve worse novel view quality (last column).

Abstract

Streaming rendering, e.g., rendering in the cloud and streaming via a mobile connection, suffers from increased latency and
unreliable connections. High quality framerate upsampling can hide these issues, especially when capturing shading into an
atlas and transmitting it alongside geometric information. The captured shading information must consider triangle footprints
and temporal stability to ensure efficient video encoding. Previous approaches only consider either temporal stability or sample
distributions, but none focuses on both. With SnakeBinning, we present an efficient triangle packing approach that adjusts
sample distributions and caters for temporal coherence. Using a multi-dimensional binning approach, we enforce tight packing
among triangles while creating optimal sample distributions. Our binning is built on top of hardware supported real-time
rendering where bins are mapped to individual pixels in a virtual framebuffer. Fragment shader interlock and atomic operations
enforce global ordering of triangles within each bin, and thus temporal coherence according to the primitive order is achieved.
Resampling the bin distribution guarantees high occupancy among all bins and a dense atlas packing. Shading samples are
directly captured into the atlas using a rasterization pass, adjusting samples for perspective effects and creating a tight packing.
Comparison to previous atlas packing approaches shows that our approach is faster than previous work and achieves the best
sample distributions while maintaining temporal coherence. In this way, SnakeBinning achieves the highest rendering quality
under equal atlas memory requirements. At the same time, its temporal coherence ensures that we require equal or less bandwidth
than previous state-of-the-art. As SnakeBinning outperforms previous approach in all relevant aspects, it is the preferred choice
for texture-based streaming rendering.

Keywords: texture-space shading, object space shading, shading atlas, streaming, temporal coherence, virtual reality

CCS Concepts
* Computing methodologies — Rendering; Texturing; Virtual reality; Image-based rendering;

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-6231-0202
https://orcid.org/0000-0002-1343-8613
https://orcid.org/0000-0001-5977-8536

476 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

1. Introduction

High-quality, real-time rendering was synonymous with powerful
desktop computers in the past. However, with the rise of multiple
reinforcing factors, the landscape of high quality, real-time render-
ing systems has seen a significant shift over the last years. High
bandwidth, low latency networks and demand driven computing in
the cloud shift execution increasingly to remote locations. Light-
weight devices, such as mobile phones, hand-held gaming devices
and inexpensive laptops, as well as smart television sets, are om-
nipresent and allow for high mobility. Finally, the interest in virtual
reality (VR) and head mounted displays (HMD) has seen a recent
surge with many companies investing in the technology. Combining
these developments, it is not surprising that real-time rendering and
gaming is moving towards the cloud and dedicated servers, while
display and input happens on inexpensive light-weight devices.

The main issue with such streaming rendering solutions is round
trip delay. An input, such as a game control change or a head move-
ment happening on the light-weight client must be sent to server, a
new frame generated and sent back to the client for display. Espe-
cially when using HMDs or when playing highly reactive games,
a low round trip latency is key to generate an overall pleasant ex-
perience, and in the case of HMDs to avoid VR sickness. Current
commercial game streaming systems, simply run a game instance
on the server, capture the output images and transmit an encoded
video stream to the client. To counteract the potentially long round
trip latency, game streaming currently employs edge computing,
providing many game server centers, as close as possible to the
clients. Such an approach obviously increases cost and does not al-
low for on-demand load balancing—one of the major selling points
for cloud computing. However, even when the server and client
are in close proximity, such as a local desktop server and an HMD
connected via WiFi, latency may already be noticeable and a short
WiFi interference may lead to frame drops and VR sickness.

To counteract the latency issue, the client must be able to perform
framerate upsampling and frame extrapolation—a technique even
present for tethered HMDs in the form of asynchronous time warp-
ing (ATW) [Ocul8], where the rendered frame is adjusted for the
current head movement right before display using a homography.
While ATW is simple and can trivially be added after rendering with
an extended field of view, severe artifacts become visible if adjust-
ments are not limited to tiny offsets—as parallax and disocclusion
artifacts become immediately noticeable.

As an alternative, the rendering pipeline can be split and decou-
pled between server and client, as seen in Figure 2.

The server determines all primitives which may become visible
under maximum head/camera movement on the client, computes
shading for these potentially visible primitives, encodes both the
shading and geometry data and sends it to the client. The client
receives and decodes this package containing the geometry and
shading data. The client then renders the received geometry under
the current head/camera movement, shading it with the received
shading data. The client framerate can potentially be significantly
higher than the rate at which server updates are received.

As shading information must include primitives that may only
become visible under movement—and thus are occluded at the

Server
triangles | oo
i Object Space =——> Encoding
camera Shading \\
1 [;
...................................... /.
/ Client

Rendering | =—>
image
movement

Figure 2: Our streaming rendering pipeline. The server identifies
all geometry potentially visible from any view within a supported
range of camera movements and computes shading information
for this geometry. Geometry and shading information are encoded
into a data package and sent to the client, which then uses forward
rendering to display novel views.

current server view—the final rendered image on the server is in no
suitable format for storing and transmitting shading information. As
an alternative, shading can be stored in a texture atlas [MVD* 18,
HSS19b] and transmitted as an atlas video stream.

Previous approaches towards packing shading information into
an atlas serve either of two goals. Shading Atlas Streaming
(SAS) [MVD™ 18] maps patches of one to three triangles into rect-
angular blocks and allocates best fitting rectangles from the tex-
ture atlas. While this allows to keep blocks at the same location
in the atlas for multiple frames, sample distributions are typically
sub-optimal, as they do not consider perspective effects and com-
promises between triangles combined into patches need to be made.
Alternatively, every potentially visible triangle can be mapped sepa-
rately into the shading atlas using Tessellated Shading Streaming
(TSS) [HSS19b]. By employing tessellation and special treatment of
slanted triangles, samples are distributed according to screen-space
shape and perspective effects. However, the special treatment for
slanted triangles becomes prohibitively slow. Even more critical
is that triangle locations in the atlas change every frame and thus
temporal coherency is completely ignored. Thus, although samples
are employed more effectively in TSS than in SAS, both approaches
achieve similar quality when allotted with similar bandwidth.

With SnakeBinning, we address the shortcomings of previous
atlas packing strategies and make the following contributions:

e We provide a unified rendering approach for triangles of all shapes
and distortions into a shading atlas, which is efficient independent
of the triangle size and slantedness.

e We propose a three dimensional binning approach to characterize
triangles according to their shape on screen and organize them in
a texture atlas with little wasted space.

e We establish a complete per-bin ordering of triangles across
frames by exploiting the primitive order established through
hardware-supported real-time rendering and thus create frame-
to-frame coherency in the atlas effectively reducing the required
bandwidth of the atlas stream.

We test our approach on various test scenes for streaming render-
ing, indicating that SnakeBinning outperforms both SAS and TSS
in rendering speed. At the same time, we reduce wasted atlas space

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 477

in comparison to TSS while creating more optimal sample distribu-
tions than both SAS and TSS and thus higher image quality. Finally,
by relying on primitive order to sort triangles within bins and lock-
ing bin locations under small camera offsets, we achieve very high
temporal coherency and thus also reduce bandwidth requirements
compared to SAS and TSS.

2. Related work

SnakeBinning touches the areas of texture-space shading, image-
based rendering (IBR), and remote rendering, with a special focus on
atlas-based shading transmission. Commonly, these techniques ex-
plore data representations that strive to enable efficient extrapolation
of high quality novel views.

2.1. Texture-space shading

Texture-space shading, often also referred to as object-space light-
ing or texel shading, stores shading into a texture, rather than
on screen [Bak16]. It allows to exploit temporal and spatial co-
herency [RKLC*11] which is not possible with traditional IBR
methods. Multiple variants of this kind of shading approaches have
been proposed as GPU extensions [BFM10,CTM13,CTH* 14, AH-
TAM14], which have not been realized in practice yet. On cur-
rent hardware, relying on unique UV-mappings shading can be
dynamically baked in texture-space [Bak16]. Similarly, Texel Shad-
ing [HY16] gathers shading into pre-charted mip-mapped textures
only for visible scene portions. Unfortunately, this is not suitable for
streaming as large portions of the textures remain empty.

While relying on designer created UV-layouts may prove difficult
to ensure consistent quality across objects, alternative texture lay-
outs, such as Ptex [BLO8] or Mesh Color Textures [Yukl17], form
a sensible alternative, as they generate samples on a per triangle
bases. This approach has been picked up by TSS [HSS19b] for
non-slanted triangles to effectively pack shading samples. Similar
in spirit, our approach dynamically chooses a sample layout based
on triangles shape and distortion while focusing on each triangle’s
screen projection for efficient packing.

2.2. Image-based rendering

Image-based rendering has been the go-to for various novel-view cre-
ating approaches, including the previously mentioned asynchronous
time warping (ATW) [Ocul8]. As ATW only distorts the last ren-
dered image, disocclusion cannot be revealed and reprojection needs
to find a compromise between the different depths in the scene, lead-
ing to most noticeable artifacts for scenes with large depth disconti-
nuities. Advanced IBR methods may consider the depth or distor-
tion of individual image regions, by viewing samples as individual
3D points [CW93], using a grid [DER*10], a layered depth im-
ages [SGHS98] or a complete unstructured lumigraphs [BBM*01].
Alternatively, the depth buffer can be used for warping, creating a
simple geometric proxy [MMBO97]. Variants of this approach include
the use of an adaptive grid [DRE™*10], bidirectional search [YTS*11]
and iterative search [BMS™12]. Obviously all these approaches are
limited to objects visible in the previously rendered frame and the
available resolution of the image and depth buffer.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

2.3. Remote rendering

The more advanced warping or upsampling technique employed by
a remote rendering system, the more data they also need to trans-
mit [NCOO03, SH15]. At simplest approach obviously only transmits
a video stream and potentially uses ATW. Using color+depth al-
lows for advanced warping techniques [PHE* 11, CG02, SNC12].
As the depth buffer only depends on the rendered image reso-
lution, those IBR techniques are independent of the scene’s ge-
ometric complexity. Alternatively, complete frames can be ren-
dered speculatively [LCC*15] and residual images can be trans-
mitted [YNOO, BG04, CWC*15].

For static scenes, many optimizations are possible, such as us-
ing view-dependent texture maps [COMF99], geometry images
[SMSW11], or impostors [TLO1, BCC16]. Similarly, for static
or rigid objects, a geometric proxy can be used for perspective
texture mapping [RKR*16]. Keeping a simplified or full model
data on the client allows to reduce transmission to images data
only [Lev95,MCO97,CLM*15].

The most related work to ours are split rendering approaches. Ka-
hawai [CWC™15] tries to temporally or spatially augment shading
on a client, which requires a rather complete client and a com-
plicated infrastructure. To keep the client simple, Shading Atlas
Streaming (SAS) [MVD*18] and Tessellated Shading Streaming
(TSS) [HSS19b, HSS19a] perform shading completely on the server
and pack shading into a transmitted atlas. The client renders novel
views relying on straightforward texture mapping from a poten-
tially visible set (PVS) of triangles, which is also transmitted by the
server. An ideal atlas packing often requires long pre-processing
times [LPRMO2]. SAS follows the virtual texture packing of rect-
angular shapes established in Far Cry [Che15], while updating the
packing dynamically. To this end, it manages empty blocks of dif-
ferent sizes in an atlas without block reuse. As the atlas runs full,
the complete atlas memory management is reset and starts anew. In
the time between atlas resets, the atlas video stream is temporally
coherent. At an atlas reset the coherency is destroyed, leading to
spikes in the video bandwidth. TSS addresses the shortcoming of
SAS’s rectangular blocks by individually determining and assigning
samples to triangles. In this way, perspective effects and exact pro-
jected triangle sizes can be considered. However, TSS is not able
to handle slanted triangles efficiently and does not create temporal
coherency in the atlas stream, treating every frame independent of
the last.

Our approach comes with the advantages of both SAS and TSS
and further improves on their respective strengths and performance.
Our SnakeBinning enables ideal sample distributions including per-
spective adjustments. It achieves a tighter packing for slanted tri-
angle bins than TSS while being fully temporally coherent. While
SnakeBinning reduces temporal coherency slightly from frame-to-
frame compared to SAS between atlas resets, our approach seldom
requires global resets and thus achieved better temporal coherency
in the long run.

3. SnakeBinning

In order to achieve high quality novel view generation on the client,
the distribution of shading samples in the atlas should closely follow

478 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

Server Snake Binning

Visibility
Computation

Client pose PVS Bins & Triangles, | Superblock
A ‘Geometry metadata |
||

metadata

Client Framerate
upsampling

o))

Shading H.264 .
Atlas Frame

Pose Update

Figure 3: SnakeBinning integrated into a streaming rendering pipeline. Starting with a PVS of potentially visible triangles, we bin triangles
according to their predicted on screen footprint, optimize the bin setup, dynamically manage memory as superblocks, gather shading samples
and encode the atlas stream for transmission. The client receives the geometry information and the video stream of shading information to
perform framerate upsampling. Blue blocks map traditional rendering stages and green the compute jobs.

sample distribution on the client screen. This is challenging as the
projected triangles constantly change their screenspace footprint.
The sample distribution needs to account for perspective foreshort-
ening and enable efficient sample interpolation. Furthermore, the
triangles should be tightly packed into the atlas to minimize wasted
space as well as reduce the bandwidth load and increases the effi-
ciency of video encoding and decoding of the atlas frames.

To map triangles into an atlas for streaming rendering, we propose
a five stage pipeline outlined in Figure 3. We use three parameters
to describe the screenspace footprint of a triangle and use them
to group triangles of similar shape together into bins. We group
bins into superblocks—rectangular portions of the shading atlas.
As a first step, the server determines triangles, which may become
visible in the near future, a traditional potentially visible set (PVS)
problem on triangles. To this end, one can use view prediction
and sampling [MVD™ 18] or establish visibility in an alternative
space [HSS19a]. Our algorithm starts with the PVS geometry. First,
in the Bin Assignment stage, we use the predicted next client view to
assign the triangles to bins according to their screen-space footprint.
Binning ensures that triangles with similar footprint are combined.
Using a large number of bins ensures a tight packing, however
the number of partially filled bins may be large. To alleviate this
issue, the bin assignment step is periodically followed by a Bin
Mapping step, where we map scarcely populated bins to the nearest
densely populated bin. Afterwards, the bin and triangle metadata
is passed to the Superblock Management stage, which manages the
bin locations in the atlas by allocating and deallocating superblocks,
i.e., rectangles of a fixed height and variable width. Finally, Shading
Gathering creates shading samples for all triangles in the PVS
and stores them in the atlas, before Encoding the atlas frame for
transmission.

3.1. Triangle Footprint

Ideally, every triangle should be sampled exactly the way it will be
sampled on the client display during rendering. Since we do not
know the interactions of the user within the near future, we use
prediction to get an idea about which potential views the user will
most likely take. To this end, we use a standard Kalman filtered
motion prediction [KEP97] and sample prediction frames uniformly
spaced in time. Among the prediction frames, we determine the
largest footprint of each triangle, producing the densest sample

« l ﬁ
b Oﬁ@tﬁf
(a) Longest edge I, triangle height h and

b) Flip al, -axi. -
angles o, describe the triangle footprint. (b) Flip along x-axis pre

serves triangle shape.

Figure 4: To bin triangles, we use the height h on top of the longest
edge | and the angles o and B. Flipping triangles along the x-axis
ensures that all triangles follow the same shape and o > B.

distribution. Without loss of generality, we simply denote the view
which leads to highest density/number of samples the reference view.
For triangles that are not clipped or culled it is typically the view
closest to the triangle.

Given the largest triangle footprint, we calculate its projection to
the client screen to determine how many samples a triangle should
receive. The projection varies, depending on where on screen a
triangle is—it could even be partially culled or reach behind the
camera. To this end, we set up a virtual camera for each triangle
by rotating the camera such that the triangle is centered and mea-
sure its size, i.e., determine all edge lengths in pixel on the virtual
client view. In some cases the triangle may still reach outside of
the screen or behind the camera—for these cases, we compute a
new camera position that encompasses the whole triangle in its frus-
tum, by moving the camera "backwards"—i.e. in the reverse lookat
direction. According to our tests, while mirroring a spherical projec-
tion to determine the required sample count [MVD™ 18] improves
the measurement of triangles intersecting the frustum, it also tends
to oversample all triangles entirely contained within the frustum.
Moving the virtual camera "backwards" to encompass the whole
triangle corrects frustum-intersecting triangles while handling the
in-frustum triangles correctly. This strategy performs well for most
cases (99.99% of geometry in our tests). However, for the extreme
case when a single triangle covers almost the entire screen after
projection and continues to protrude out of the viewing frustum,
this approach leads to noticeable undersampling. We identify such
cases during the Bin Assignment stage and slice these triangles using
frustum clipping, thus introducing a small number of new geometry.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 479

Block A Block B Block C

Figure 5: A 6-triangle strip, split into 3 blocks - A, B, C. Note that
blocks overlap.

In our tests the pixel coverage was seldom dominated by a hand-
ful of triangles (< 0.01%), therefore we can afford such special
treatment for this corner case.

3.2. 3D Binning

Ideally, we would want to render the triangle exactly as determined
from the footprint, staying true to the triangle edge lengths, area,
angles, and rotation on screen. When rendering the triangle to the
atlas, we also need to consider perspective effects on the sample
distributions to generate shading akin to how the triangle will most
likely be viewed. However, packing arbitrarily shaped triangles
into an atlas is a strongly-NP hard problem, when considering its
relation to the strip packing problem [BCRS80]. To find a solution
to the packing problem that can run in real-time, we simplify the
problem and approximate its solution.

To this end, we reduce the number of different triangle footprints
for packing. First, we eliminate rotation. Any tiny movement on
the client (translation and rotation) easily moves relative sample
locations by half a pixel. Similarly, aligning triangles with pixels in
the atlas or rotating them changes relative sample locations. Thus,
while it is desirable to match the target sampling pattern as close
as possible, rotation or movement in the atlas has little effect on
the final sampling pattern. Thus, we eliminate rotation as a variable
and rotate all triangles in such a way that the longest edge follows
the x-axis, reducing the different shapes of triangles for packing
significantly.

From the rotated triangles, we bin them according to the angles
adjoining the longest edge (o and B) and the pixel height % of the
resulting triangle, as seen in Figure 4a. As mirroring a triangle along
the y-axis does not change its shape, we can constrain o > f§ in all
cases, see Figure 4b. Note that we do not consider the length of
the longest edge for binning, as o, § and / uniquely identify the
pixel length of the longest edge. However, any three parameters
describing a triangle would work. Using o, B and & comes naturally
for our approach, as we combine binned triangles to form snake-
like stripes with a zigzag pattern. To this end, we flip every second
triangle horizontally and vertically to form a stripe of height 4. Thus,
a pair of triangles forms one block within the bin, and neighboring
blocks overlap, as shown in Figure 5.

If binning would only combine triangles of exactly the same
shape, they could be combined to result in zero wasted space in
between triangles and multiple stripes could be stacked on top of
another to fully fill up a texture. Obviously, we need to perform
actual binning of similar triangles as finding triangles of exactly
same size is rather unlikely. To this end, we quantize o, 3 and /& and
map all triangles within a bin to the maximum triangle size supported

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Par——— S3

Figure 6: Lengths so and sg split the longest edge at the projec-
tion of the tip vertex. Padding lengths po and pg due to half-pixel
enlargement are needed to support correct bilinear interpolation
when decoding. Note the tip offset t (red), which is obtained by
intersection of the offset edges.

by the bin. All triangles smaller than the biggest triangle fitting into
the bin will create empty space between triangles. Obviously, the
more similar triangle footprints are captured in a bin, the less space
is wasted in between of triangles.

Additionally, a border between triangles is needed to support
linear interpolation on the client. Thus, we place the lower triangle
edge exactly along the pixel centers and the tip of triangle is only
allowed to reach to the pixel center of the top most pixel within
h. For the side edges, we need to insert padding. The amount of
padding necessary is dependent on o and B and is determined by
moving the triangle edges half a pixel in the normal direction—see
Figure 6—splitting the longest edge into lengths s and sg and
introducing padding lengths po and pg. The length of one block
depicted in Figure 5 is thus 2(so + pa + pg) + sp. Note that even
though enabling conservative rasterization would enlarge the trian-
gle footprint when rasterizing into the shading atlas, we would still
miss samples needed for bilinear interpolation. The more slanted
the triangle footprint, the more samples would be missed despite
the conservative rasterization being enabled. This effect was already
described by [HSS19b] and targeted by their oversampling strategy.
The samples needed for bilinear interpolation—yet missed by con-
servative rasterization—are depicted as green samples in Figure 9
of [HSS19b].

The edge computation is performed in atlas space and can be
computed in the geometry shader. We offset each edge along its
normal and find the intersections of offset 2D lines as depicted in
Figure 6. We consider these steps elementary and thus omit their
mathematical description.

3.3. Temporal Coherent Binning

To support real-time updates of the texture atlas, we need to be
able to update the triangle-to-bin mapping. As rendering happens
on the GPU it is intuitive to also perform the binning on the GPU.
Thus, the binning needs to work ultimately in parallel. Typically one
would use atomic operations to assign triangles to bins. However
this would change the order of triangles in each bin completely
every time binning is executed, even if the camera is still, much like
in [HSS19b]. Obviously, this destroys the temporal coherency when
encoding the atlas as a video frame and thus would strongly increase
bandwidth.

480 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

We want to ensure that the order of triangles in each bin stays
consistent over time. Interestingly, the GPU provides this feature
during rendering through what is known as primitive order, i.e.,
fragments must be blended in the order their generating primitives
were submitted for rendering. To exploit that functionality and im-
plement the entire binning and footprint computation in parallel, we
render all primitives that should be shaded (the PVS geometry) once.
We setup a virtual framebuffer, where every pixel corresponds to
one specific bin. In the geometry shader, we determine the triangle
footprint and bin according to o, B and /& and modify the triangle
such that it exactly covers the pixel associated with its bin. During
fragment shading, we use the fragment-shader interlock extension,
which is supported on all current graphics cards, to employ a critical
section. This critical section is executed in primitive order and we
simply perform an atomic add operation, yielding a unique spot in
the bin, following the primitive order.

By abusing this specific feature of real-time rendering, we end up
with a temporally stable order of primititves in each bin. Addition-
ally, all computations on the primitives themselves, i.e., footprint and
size computations in the geometry shader, are carried out in parallel.
Also the computations on different bins in the fragment shader can
run completely in parallel. Only the atomic operations on the same
bin must be serialized by the GPU. Even in the worst case scenario,
where all triangles end up in the same bin, the geometry shader com-
putations are carried out in parallel and can be load balanced with
the ordering operations. In our experiments on desktop GPUs, we
experienced hardly a performance change when enabling/disabling
the critical section in the fragment shader. Furthermore the entire
process fits perfectly into the traditional rendering pipeline—vertex
shaders are only executed once, even when vertices are shared. Ad-
ditional features such as tessellation can be used and the order of
primitives generated during tessellation will also follow a consistent
order. Finally, mesh-shaders could even be used and only need to
be extended to integrate the binning as a final step before emitting
primitives.

3.4. Bin mapping

Sampling the bin space too scarcely results in triangles of dissimilar
footprints occupying the same bin, thus wasting atlas space. How-
ever, sampling the bin space densely yields many bins with very low
occupancy, resulting in short bins. This is not ideal, as packing the
triangles into bin strips depicted in Figure 5 increases in efficiency
the more triangles end up in a bin, as the blocks overlap and the first
and the last triangle in a row produce most wasted atlas space. Thus,
either upon atlas reset—or periodically—we perform a bin mapping
step, which maps the bins with small occupancy to the nearest bin
that is full enough. Our bin mapping step is a multi-stage parallel al-
gorithm executed as a GPU compute stage. Firstly, we categorize the
bins into Sinks, bins with more than M triangles, Sources, bins with
< M triangles. The Sink bins are usually small in number. Secondly,
each Sink traverses the bin space within a range R and uses atomics
to update the position of every Source it encounters. Thirdly, each
Source is mapped to the closest Sink. If there are Sources that were
not reached by any Sink, they are promoted to Sinks even though
they have less than M triangles. Figure 7 shows the atlas before and
after bin mapping. Algorithm 1 depicts the bin mapping step.

Algorithm 1: Bin Mapping

Sinks,Sources <—categorize (allBins, M);
for P € Sinks do
sourcesInRange <—getBinsInRange (P, R, Sources);
for Q € sourcesInRange do

if 0.m = 0 or dist (P,Q) < dist (Q.m, Q) then

| Q.m<+ P;

end
end
for P € Sources do

if P.m = () then
| promoteToSink (P)

end

(a) before bin mapping

(b) after bin mapping

Figure 7: The bin distribution in superblocks before and after bin
mapping. Note that the bin mapping frees up more than 50% of the
atlas space.

The values of M, R, the time interval of bin mapping and the
number of overall bins are obviously related. In our setup we typ-
ically use about a million bins (1500 for & and 30 for each o and
B) and M = 16. However, results hardly vary for M = 8 or M = 32.
The range R spans 10 x 10 bins in the angular (o) domain and 200
in the & domain. Re-mapping the bin to a different one distorts its
triangles, which potentially leads to undersampling. This is most
severe when bins map to bins with smaller 4. By allowing the bins
to remap only upwards in the /2 dimension we greatly alleviate this
problem.

3.5. Superblock management

As already mentioned, finding the ideal mapping of bins to a rect-
angular texture atlas is an NP-hard problem. We propose simpli-
fications of the problem by packing the bins into superblocks as
depicted in Figure 8. Superblocks are defined as a rectangular area
of the atlas texture that contains bins. Each superblock tracks its
position in the atlas, its size and the occupancy—i.e. the number and
length of bins mapped onto the superblock. The bins are folded into
rows in the superblocks, whereas superblocks have a fixed height
(potentially the entire atlas) and are allocated with dynamic width.
Superblocks are allocated using a simple counter and placed next to
another in memory.

Superblock assignment For each bin that has not been assigned
to a superblock we iterate over existing superblocks and look for
the next one which has enough free space to accommodate the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 481

iSuperblockZS Super- ||Super-
; block 4||block 5| etc.--

Superblock 2

{| Superblock 1

Figure 8: An example of triangle, bin and superblock hierarchy in
our shading atlas. Orange triangles belong to Bin A, blue to Bin B
and green to Bin C. Bins A and B belong to Superblock 1, Bin C to
Superblock 2, Superblocks 3-5 are empty.

bin. Since the number of our superblocks usually stays under 128,
their data footprint is small and thus iterating over them in compute
kernels showed good performance. After being assigned to the bin,
the superblock updates its occupancy info.

Superblock creation If there aren’t any superblocks, or the existing
superblocks are all full, we create a new one. We compute the width
of packing the candidate bin into a square and round to the nearest
block width (block = the pair of triangles within a bin, see Figure 5).

Superblock lifetime If the bins shrink or grow, we update the
occupancy counter of the superblock. If the occupancy drops below
a threshold 7', the superblock collapses and becomes entirely empty,
forcing the remaining bins to look for a new superblock. If the
contained bins outgrow the allocated space in the superblock, they
are removed from the superblock and assigned to a pool of bins
scheduled for new superblock assignment.

Atlas reset The superblocks keep their position within the atlas
and do not move unless the atlas runs out of free space for a new
superblock. Then we perform an atlas reset—all bins are removed
from the superblocks, the superblocks deallocate and cease to exist
and new bin mapping and new superblocks are constructed for the
current frame.

The superblock management stage is depicted in Algorithm 2.

3.6. Additional Temporal Consistency

We employ three strategies to increase the temporal coherency of
our atlas: hysteresis, bin shrinking/growing, and bin freezing.

Using a hysteresis ensures triangles do not jump between bins
too frequently. If a triangle did not change its footprint within a
certain range, i.e., it did not move too far in the bin space, we keep
it in the old bin to increase temporal coherency. Thus, we allow
small distortions, as the triangle is not matched with its perfect bin.
For our typical setup (1500 steps in &, 30 in a, 30 in), we use a

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Algorithm 2: Superblock Management

orphanBins < ;
for B € allBins do
if B.superblock # () then
| B.updateShrinkGrow(B.superblock);
else
for S € superblocks do
if S.freeSpace > B.capacity then
S.bins.insert(B);
B.superblock = S;

break;
end
if B.superblock = () then
| orphanBins.push(B);

end
for S € superblocks do
if S.occupancy < T then
collapse (5);
‘ orphanBins.push(S.bins);

end
if —orphanBins.empty then B < orphanBins.pop();
while —orphanBins.empty and —atlas.isFull do
S <—createSuperblock (B);
do
S.bins.insert(B);
‘ B < orphanBins.pop();
while S. freeSpace > B.capacity and
—orphanBins.empty
end

hysteresis of 30, 5, and 5 bins in &, o, and B, respectively. These
values provided sufficient balance by trading sample distribution for
temporal coherency.

As mentioned in Section 3.5, bins are given a certain capacity
when assigned into a superblock. Upon assignment to the superblock,
the bins are assigned an extra capacity expressed as a percentage of
the capacity requested. For our tests we used 30% extra buffer space.
This gives the bins a space to grow and lowers the number of bin
relocations needed, and thus increases temporal coherency further.
If the bin shrinks below a certain percentage of its capacity (we
used 50%), the capacity of the bin is shrunken and the superblock is
notified that the space is no longer needed.

Finally, we freeze bin setups for a small number of frames if the
camera did not move significantly. As the camera only moves little,
the PVS hardly changes, which allows us to increase temporal co-
herency even further. In these cases (when the PVS change is below
5%), we do not allow triangles to move within bins. We free the bin
setup by not clearing the previous bin setup (bin assignment, atomic
counters and bin locations) and only add newly visible triangles to
the bins. In this way, all previous PVS triangles stay in the atlas
exactly at their previous location and new triangles are added on top.
Note that hysteresis and bin freeze parameters along with view-cell
size can be dynamically adjusted to respond to spikes in network
connection or camera velocity.

482 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

(a) Original shading

)
<
o~
;\‘

(b) Without correction

=

=
@

et

Atlas X >

(¢) With correction

Figure 9: A depiction of 3D space used to determine correct
barycentric coordinate for offset vertex B'. The dimensions are
atlas positions AtlasX, AtlasY and barycentric coordinate v. We
construct a plane p from three points A = [xa Ya 0], C=
[xc Ve O] and By = [xb Vb 1] (depicted in red). Querying
the v coordinate of the plane at position B’ = [x / yb/] yields
the correct barycentric coordinate By for offset vertex B'. This al-
lows the shading to extend with the blowup while preserving the
original shading within the original triangle footprint (yellow). (a)
depicts the original shading and the blowup silhouette. (b) simply
setting B, = 1 results in incorrectly streched shading. (c¢) computing
B, = p(xpr,yp) (and analogically for the other two vertices) results
in correct shading that appears "extended".

3.7. Shading Gathering

After the Superblock management (Section 3.5) stage we rasterize
the triangles directly into the atlas using a standard forward render-
ing pipeline. In the geometry stage we perform a half-pixel blowup
of the edges to achieve good sampling that allows bilinear interpola-
tion when accessing the atlas, as already mentioned in Section 3.2.
In the fragment stage we compute the color of the shading sample.
We use barycentric coordinates [u v 1 —u—v]| to identify the
shading sample location on the surface of the triangle. We assign
the barycentric coordinates to the triangle vertices in the geometry
stage. The built-in parameter interpolation of the standard forward
rendering pipeline ensures that correctly interpolated barycentric
coordinates are assigned to the fragments spawned by the triangle.

By default one would assign the default barycentric coordi-
nates to the vertices, i.e. A = [1 0 O] B = [0 1 O] and
C=1[0 0 1].But due to the offset of vertex position (to do
the half-pixel blowup on the triangle edges), the resulting shading
would simply be stretched to the new footprint (see Figure 9b). To
achieve correct shading sample distribution, we must ensure that
the shading information is correct within the original footprint of
the triangle (see Figure 9c). To this end, we alter the barycentric
coordinates assigned to the vertices in the geometry processing stage
in a way that "extends" the shading rather than stretching it. Let
us consider triangle ABC in atlas space (Figure 9). Its footprint be-
fore the blowup is depicted as the yellow triangle. Without loss of
generality, assume that the barycentric coordinates corresponding
to vertex B are [O 1 O], i.e. u =0 and v = 1. The blowup of
triangle edges by half pixel would offset vertex B by distance pg to
position B’.

In order to compute shading that preserves the original triangle
footprint, we assign barycentric coordinates to B” in such a way that
the fragment landing at position B gets the barycentric coordinates
[0 1 O} assigned to it after the built-in interpolation. To compute
the barycentric coordinate v at position B’, we construct a plane p
in 3D space x,y,v, where x and y are the atlas coordinates and v is
the barycentric coordinate. This plane is defined by three points—A,
C and B,—shown in red in Figure 9. Since barycentric coordinates
of vertices A and C have v = 0, in the x,y, v space the three points
defining the plane are A = [xA VA O} C= [xc yc 0] and B =
[xB VB 1] . The resulting barycentric coordinate v for point B’ is
then obtained by querying the v value on the plane at position xg/ and
yB', i.e. p(xp,yp) = v. Analogically, we proceed for the blown up
vertices A’ and B’. We consider constructing a 3D plane from three
points elementary, as well as providing two coordinates to a 3D plane
and querying the third coordinate from it. Afterwards, the sample
locations are adjusted for perspective foreshortening [MHAMOS].

3.8. Empty Space and Encoding

All figures in this paper and frames in the supplemental video show
colorful backgrounds to better depict the positioning of our su-
perblocks. However, empty space with distinct color is sub optimal
for encoding the atlas in a video stream. In practice, we use the
average triangle color to clear each bin the atlas in every frame.

In order to minimize the wasted atlas space further, we fill up the
empty space in bin stripes by blowing up the triangle even further;
we move the edges out to match the full maximal triangle footprint a
bin can accommodate. This is equivalent to mapping every triangle
to the same footprint in the bin but remapping the insides to match
the target triangle footprint, as mentioned in Section 3.7.

Afterwards, the shading atlas frame is encoded into a video stream
with h.264 and transmitted to the client alongside the PVS geometry.

3.9. Decoding and Rendering on the Client

The client receives the PVS geometry along with the encoded shad-
ing atlas frame. The vertices of the PVS contain texture coordinates
into the atlas. The sample position must be decoded with inverse
perspective projection, exactly as in [HSS19b]. Thus, a correct shad-
ing sample is queried. Note that the positioning of samples in the
atlas allows for correct hardware-accelerated bilinear interpolation.

4. Implementation

We implemented a prototype of the streaming rendering pipeline
depicted in Figure 2, with SnakeBinning (Figure 3) implemented
as a combination of CUDA compute stages and forward OpenGL
rendering and C++. Of course, all stages could also be written in
Vulkan or DirectX.

The Assignment to Bin stage is an OpenGL program that deter-
mines the triangle footprint in the Geometry shader and assigns the
triangles to bins. Hysteresis is also performed at this step. Each
bin is described by its 32-bit id, which uniquely maps to its «.,
B, h range. The metadata furthermore consists of corresponding
superblock id (unsigned 16bit), 2D pixel coordinates within the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 483

superblock (2 x 16bit), triangle occupancy and maximum capacity
(2 x 32bit). We also position the triangles in a virtual framebuffer
to the fragment corresponding to the assigned bin. This is followed
by a Fragment shader, where we implement the critical section us-
ing fragment shader interlock and obtain the triangle order within
its assigned bin that follows the primitive order. For each triangle
we track the following metadata: bin id, triangle order within bin,
angles o,beta (4 x 32bit). Triangle height / is represented as with
31bit precision, and the 32nd bit tells us whether the triangle is
flipped within the bin. For the perspective correction described in
Section 3.7 we also need to track the view-space vertex depth as
seen from the server camera. We also track the new bin id (32bit)
obtained after hysteresis and/or bin-mapping.

The following stage, Bin Mapping, is implemented as a series of
consecutive CUDA kernel executions. The first kernel categorizes
all bins into Sinks and Sources (Section 3.4). Then we launch a
parallel reduction kernel to construct a hierarchy in the bin space,
i.e. an octree. Starting from each Sink and Source, we traverse the
bin space neighborhood within range R. Moving up the hierarchy,
Sources are propagated up the hierarchy. If multiple Sources meet
in one node, the one closest to the center is chosen. If only Sinks
meet, we propagate the Sink which is most central to the supported
region of R, i.e., the one that is closest to the center that is reached
when ending at the highest level of the constructed hierarchy. If the
top level of the constructed hierarchy, i.e., which corresponds to a
footprint of R, only contains Sinks, we choose the central Sink as
Source.

In a second pass, we traverse the hierarchy bottom up for each
Sink, mapping to the first Source stored in the hierarchy. In this way,
we perform an efficient search and map to a plausible close Source.
Note that due to the way the hierarchy is built, Sinks do not always
find the closest Source, as the search is essentially limited within
an R-sized grid cell. However, an exhaustive search in the complete
neighborhood of each Sink would be too costly.

Superblock Management is also realized as a CUDA compute
kernel. The metadata for each superblock consist of its pixel size
(2 x 16bit), the height of the free spot (16bit), position within the
atlas (2 x 16bit) and an index of the starting bin (32bit). With this
info we can perform all the superblock operations from Section 3.5.
We first perform the bin shrinking, thus freeing space in the su-
perblocks, potentially collapsing superblocks that end up scarcely
populated after the shrinking. The bins from deallocated superblocks
join the pool of bins yet unassigned to any superblock. The bin as-
signment follows, potentially creating new superblocks. The bins
assigned to the superblock are constructing a linked list, allowing
us to efficiently traverse the bins within superblock and perform the
shrink/grow operations.

The Shading gathering is an OpenGL rendering stage with the
shading atlas texture bound to draw framebuffer. In geometry pro-
cessing, we perform the edge blowup and barycentric coordinates
computation and in fragment processing we correct for perspective
effects of the sample locations and compute the final shading sample
color and store it into the atlas.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

(a) Viking Village (4.6M triangles)

(b) Robot Lab (472k triangles)

Figure 10: Frames from the tested scenes, lit with deferred shading,
PCF shadow maps, environment-map lighting and tone mapping.
There are three PCF shadowmaps of 3000 x 3000 resolution in
Robot Lab and one in Viking Village.

Table 1: We tested three PVS configurations with increasing transla-
tion buffer (size in centimeters) and rotation buffer (horizontal field
of view degrees) for camera movements. The last two columns show
the triangle count of the PVS, averaged over the whole walkthrough
(660 frames).

Transl. FOV Robot Lab Viking Village
PVS1 10cm 90° 63.86 k 107.63 k
PVS2 20cm 125° 82.57k 131.30 k
PVS3 30cm 160° 84.46 k 13343k

5. Evaluation

To evaluate our method, we tested two scenes also used in previous
work on streaming rendering: RobotLab (RL) and VikingVillage
(VV), shown in Figure 10. We at first evaluate the internals and
parameters of SnakeBinning, before comparing it to Shading Atlas
Streaming (SAS) [MVD*18] and Tessellated Shading Streaming
(TSS) [HSS19b]. The evaluation was run on a Intel Xeon-E5 2643
CPU with 32 GB RAM and an NVIDIA TITAN RTX as server. For
atlas encoding we use the nvenc encoder creating an h.264 stream.
All approaches are similar in terms of client complexity—rendering
the same geometry with simple bi-linear texture lookups. The client
sides of all approaches run at 120+Hz on current mobile chips, such
as the Oculus Quest 2. Our tests consist of gathering frames along
a camera path that simulates a walk through the scene and natural
interaction with the surroundings. We ran our tests for three PVS
configurations for each scene described in Table 1, with increasing
rotation and translation buffer (i.e. supported viewcell size).

5.1. Internal Workings

We tested for different sampling of the bin space. Due to our def-
initions, B < oo < 'y, Y being the third angle in the triangle. As vy is
opposite of the longest edge, it must also have the largest angle. The
possible range for B is thus 0...60 and for a 0...90. Note that the
smallest angle in a triangle is always < 60deg, as the sum of all an-
gles is 180deg and thus the extreme is reached o = =y = 60deg.
Similarly, the second largest angle is bounded by 90deg, as the
extreme is reached with o = y=90deg, B = 0. Thus we can limit
the bin ranges accordingly. However, we limit the range of o further
to avoid extremely slithery triangles, with long / and small 4. Such
triangles pose a problem since their block width (Figure 5) tends

484 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

to exceed the size of the atlas. Thus, we decided to clip the atlas
footprints to a certain supported range. We use 15deg < a0 < 90deg
and Odeg < B < 60deg.

In order to assist the bin mapping step in reducing the amount
of scarcely populated bins we decided to sample the bin space
with logarithmic scale. For our test scenes this step resulted in
a significant improvement of the bin occupancy, as the triangle
distributions are typically skewed towards smaller triangles. For
example, in Robot Lab there are a few large wall and floor triangles
and a very large number of small triangles which make up all the
other details in the scene.

5.2. Competing Methods

Our implementation of SAS and TSS uses exactly the same shading
model, PVS, camera path, server framerate, atlas size, and camera
parameters as our method does i.e., we only change the allocation
into the atlas.

To evaluate the quality of the novel view extrapolation, we
used three metrics: DSSIM [LMCBO06], IW-SSIM [WL10] and
FLIP [ANA*20], for which we generate a single representative
value by averaging the per-pixel response. Running our tests at
100% shading rate resulted in very good DSSIM of under 0.01, but
it ran up to 40% slower than TSS and SAS, and captured approx-
imately 40% more shading samples. Both SAS and TSS focus on
keeping the number of shading samples low to stay closer to the
number of samples required by the original image. SAS uses a bias
during the allocation to enforce this setup and TSS is constrained
by the tessellation patterns for their L-packing strategy (which ad-
ditionally often produces a sub-optimal sample count). To ensure a
fair comparison targeting a similarly constrained atlas, we adjusted
SnakeBinning to reduce the number of overall gathered samples. To
this end, we multiply / with a constant factor of 0.7 before binning,
reducing the memory footprint and sample count of all triangles
equally. This showed little influence on image quality (increasing
DSSIM by 0.04 on average) while significantly increasing speed and
reducing memory requirements. Our image quality measurements
can be seen in Table 3 and in Figures 11 and 12.

Our timings and sample count measurements can be seen in Ta-
ble 2. The execution of our method is clearly dominated by the
Shading gathering stage, which computes the final position of a tri-
angle within the assigned bin and performs the blowup (Section 3.2)
and barycentric coordinate computation (Section 3.7). The timings
of all other stages of our SnakeBinning pipeline are summed up in
the Struct manage entry in Table 2 and take approximately 4ms on
average. Overall, we achieve the fastest server running times fol-
lowed by SAS and TSS being further behind. TSS gathers shading
samples by explicit execution of tessellation evaluation shaders and
complex thread ID computation, which lowers their speed. SAS
slightly falls behind for VV, which has smaller geometry and thus
they spend more time on memory allocations compared to the raw
sample counts. SnakeBinning remains mostly unaffected by triangle
sizes as all stages are well parallelized and execute efficiently.

TSS achieves the fastest client rendering times. We attribute this
to the fact that TSS has the smallest memory footprint of the client
vertex metadata. However, all three methods show very fast client

speeds, sufficient for high-resolution high-framerate rendering on
thin mobile devices. Both our approach and SAS show similar timing
of shading sample gathering. TSS takes nearly twice the runtime for
PVS1 and PVS2 and is similar in time for PVS3.

Also, the amount of shading samples gathered is similar for Snake-
Binning and SAS in Robot Lab. TSS gathers significantly more
samples for PVS1 and PVS2, but drops the number of samples for
PVS3. This is due to the fact that they sample the triangle under
server camera projection, which has a large FOV that distorts space.
This also explains the speed improvement observed for TSS PVS3,
as gathering fewer samples leads to faster execution times.

Comparing the quality (Table 3) indicates that SnakeBinning is
slightly better than SAS, whereas TSS is clearly worse. Inspecting
example images in Figure 11 shows that SnakeBinning reduces
quality uniformly with little to no artifacts that catch the attention.
SAS however, shows good quality where patches in the atlas match
the project size in the client view, but bad quality where this is
not the case. TSS clearly shows aliasing artifacts due to missing
mipmapping during shading gathering in tessellation, which does
not support mipmapping.

For Viking Village—which is a more challenging and a more
realistic testcase—performance is clearly different. Runtimes indi-
cate that SnakeBinning is clearly faster than both TSS (1.5 —2.0x)
and SAS (2.0 —3.5x%). TSS gathers the lowest number of samples,
followed by SnakeBinning and SAS. Clearly, SnakeBinning uses
these samples in the best way, showing significantly better image
metrics than TSS and SAS. An inspection of views in Figure 11
again confirms that SnakeBinning achieves a uniform quality and
sample distribution while SAS shows spurious artifacts and overall
blurry appearance due to wide FOV of the server view and block-
size limitations, which were set to 256x256 in our test cases. We
attribute the clear drop of SAS between RL and V'V to the fact that
RL has many rectangular structures which also project upright on
screen and thus naturally map to the SAS atlas structure. VV on the
other hand, has more natural and less regular primitives, reducing
the quality with such a fixed packing strategy. SnakeBinning on the
other hand, does not favor any triangle shape and thus achieves high
quality throughout.

While overall all methods achieve good quality (see quality met-
rics above), our approach still outperforms the others as it is more
consistent and avoids artifacts where other methods are limited by
their predefined atlas shapes. Figure 11 shows frames where SAS
and TSS artifacts are apparent.

Note that the original SAS and TSS papers report slightly dif-
ferent run times and quality metrics than us, which is likely due
to different camera paths, shading setups, or scene preprocessing.
For all our comparisons we use unaltered versions of RoboLab and
VikingVillage and identical shading parameters for all methods. Pre-
processing of the scene to adjust triangle sizes may reduce some
of the issues for SAS [MVD*18]. However, static preprocessing
cannot consider all potential views on a triangle (closeups, views
with skewed angles, etc) and thus it remains questionable how pre-
processing should exactly be carried out for SAS, especially as there
is no public source code available.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 485

Shading

Atlas Streaming Tessellated Shading Streaming

Ours

Novel View

4
<

ITUNEE W

Novel View

Figure 11: Selected frames from our walkthroughs. Robot Lab uses an 8k X 8k atlas, Viking Village 8k x 4k. SAS suffers from undersampling
artifacts when squares are too big to fit into the fixed block size, while TSS suffers from the lack of mip-maps in the tessellation stage. Our
method outperforms them by capturing comparable amount of samples faster and distributing them more optimally.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

486

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

Table 2: The measurements of our method, averaged over 660 frames in a walkthrough. Structs entails the bin assignment, mapping and
superblock management stages. Gathering time is the atlas mapping, triangle blowup and rasterizing the shading into the atlas. Server is the
total server time. We outperform the competition in most PVS configurations, often being faster and using fewer shading samples. Further
discussion and explanation of the measurements can be found in Section 5.2.

Scene SnakeBinning Tessellated Shading Streaming Shading Atlas Streaming
and PVS Structs Gathering Server Samples Client Server Samples Client Server Samples Client
RL-PVS1T 346ms 2937ms 32.83ms 866 M 023ms 79.63ms 23.56M 0.18 ms 37.6ms 743M 0.52ms
RL-PVS2 476ms 3878ms 43.54ms 11.68M 0.25ms 80.68ms 2243M 0.20 ms 40.65ms 821 M 0.56 ms
RL-PVS3 542ms 41.69ms 47.11ms 1245M 0.26ms 56.55ms 1342M 0.17 ms 532ms 13.11M 0.50 ms
VV-PVS1 340ms 636ms 976ms 11.48M 022ms 1591 ms 8.68M 0.09 ms 26.37ms 11.39M 0.38 ms
VV-PVS2 389ms 7.59ms 11.48ms 1445M 022ms 19.85ms 10.35M 0.15ms 31.05ms 19.15M 0.37 ms
VV-PVS3 383ms 7.66ms 1148ms 1466 M 023ms 1638ms 7.04 M 0.17 ms 38.96 ms 20.64 M 0.38 ms

. Lo
! 4 a ,"‘ -
PATS L NN
, e
(a) Ours

(a) Ours

(b) SAS () 7SS
Figure 12: The FLIP metric color mapped frames from Figure 11.
Top row: Robot Lab, bottom row: Viking Village. Please zoom in for
details. We used the color scale from FLIP [ANA*20].

Table 3: Image quality measurements using three metrics. Val-
ues are averaged over 660 frames produced in a walkthrough at
1920x 1080 resolution. DSSIM and FLIP - lower is better, IW-SSIM
- higher is better. SB stands for SnakeBinning - our method.

Scene DSSIM IW-SSIM FLIP
and PVS SB SAS TSS SB SAS TSS SB SAS TSS

RL-PVS1 .05 .04 .07 .9992 9984 9991 11.54 13.7 18.46
RL-PVS2 .05 .05 .08 .9983 .9979 .9982 13.82 16.74 23.96
RL-PVS3 .05 .06 .09 .9982 .9966 .9949 17.66 22.24 32.59
VV-PVS1 .06 .09 .07 .9993 .9985 .9981 8.12 10.14 15.65
VV-PVS2 .05 .09 .09 .9993 .9985 .9981 8.37 11.03 20.43
VV-PVS3 .06 .08 .10 .9993 .9957 .9908 8.97 17.99 27.76

5.3. Sample distribution

To evaluate the efficiency of the sample distribution in the atlas, we
compare the texture coordinate derivatives between individual pixels
during client projection to the distribution of samples in the atlas
(Figure 13). Ideally, one pixel on the client screen should correspond
to 1 texel in atlas space. SAS tends to undersample or oversample
triangles based on how well they lend themselves to a rectangular
stretch, almost never hitting the perfect 1 to 1 mapping. The fixed
tessellation pattern of triangles taxes TSS; neighboring triangles
often switch between oversampling and undersampling. Our method,

Figure 13: The color mapped discrepancy between texture coor-
dinate derivatives in the client view and in atlas space. Top row
shows dFdx, bottom row dFdy. The camera is identical for all three
methods. TSS suffers from the tessellation pattern, SAS suffers from
packing all shapes into rectangles. Our strategy shows near-ideal
distributions, with outliers stemming from bin mapping distortion.

on the other hand, performs well in all cases, producing uniform
sample distribution. The few outliers are due to the bin mapping,
which enforces minor distortions. Note that the color mapping of
Figure 13 is very strict, as a deviation of only 1 texel from the ideal
is mapped to the corner colors. This shows that most of our samples
exactly match the client sample distribution or deviate by less than
1 texel. Both TSS and SAS show strong temporal coherency in over-
or undersampling, whereas our approach may change the sampling
when bin remapping occurs. While this is strongly visible in the
visualization (in the supplemental video) due to the strictness of our
color mapping, the final imagery does not show any flickering.

5.4. Anisotropic Filtering and MIP Mapping

Since our method positions the shading samples on the surface of a
triangle such that they match the final screen projection, all filtering
considerations can already be applied during shading gathering into
the atlas. This includes both mipmapping and anisotropic filtering.
During generation of the client view, simple bi-linear interpolation
is sufficient and we do not need to generate a texture pyramid.

While other methods do not consider perspective effects or require
severe resampling for the client view generation, SnakeBinning can
avoid those and achieves high image quality on the client as long
as: a) the view stays within the target view cell and b) the view cell

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming 487

Compression ratio - Constant Rate Factor

8.5
2.71
N 187

w
wv

17.27

N
(%)

4.80

B 429

50.25

=
o

12.12
I 128

5 14.66
d 15.19
0 10 20 30 40 50 60 70
TSS MWSAS MOurs Compression ratio (%)

66.51

Constant Rate Factor

Figure 14: The measurements of compression ratio for different
values of Constant Rate Factor (CRF). Our shading atlas shows
similar-or-better performance than SAS, while TSS performs poorly
due to lack of temporal coherency between shading atlas frames.

is not overly large and thus would lead to severe distortions itself.
Both requirements are enforced by the streaming rendering scenario:
when moving outside of the viewcell, one is missing geometry and
thus severe artifacts are generated. If the viewcell is chosen too large,
the amount of geometry (and shading) for transmission and update
become too large.

5.5. Encoding

In order to evaluate the fitness of our approach for streaming the
shading atlas over the network, we evaluate encoding bandwidth
using h264. We fix the image quality via a Constant Rate Factor
(CRF; a meta-parameter which roughly estimates the resulting im-
age quality, ranging from O (original) to 51 (worst).) and measure the
amount of compression gained over streaming just the raw shading
atlas frames. The results in Figure 14 show that for CRF set to 35
and 25 we slightly outperform the compression ratio of SAS and for
CRF 10 and 5 SAS slightly outperforms our method, generally stay-
ing in the same range. TSS has absolutely no temporal coherency
and thus achieves the worst compression ratio. Furthermore, com-
pressing triangular shapes generally results in worse compression
ratios than squares. SAS has a clear advantage, as it distorts the
triangular shapes to fit into perfect rectangles. This test shows that
the temporal coherency of our atlas is on par with SAS, even though
our SnakeBinning triangle strips begin and end with a sharp corner
in the atlas.

Overall, our tests confirm that SnakeBinning is able to balance
number of gathered samples, image quality, and temporal coherency
better than any previous approach. We achieve slightly to signif-
icantly better image quality than SAS and TSS while achieving
compression ratios on-par with SAS, which puts all its emphasize
on temporal coherency. Thus, SnakeBinning is the preferred method
for streaming a shading atlas over bandwidth limited networks for
high quality rendering results.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

6. Conclusion

We introduced SnakeBinning, a method for efficient capture of shad-
ing samples into a texture atlas. We use 3D binning to group triangles
with similar screenspace footprint. By exploiting fragment shader
interlock, we ensure the ordering of triangles in bins follows the
primitive ordering, resulting in temporal coherence. Packing of bins
into rectangular superblocks ensures efficient atlas space utilization.
An optional bin mapping step and sampling the bin space logarith-
mically further improves the packing efficiency. To further improve
temporal coherence, we employ a hysteresis, allocate extra space
for each bin, and manage the lifecycle of superblocks by tracking
the occupied space. We show that this approach gathers shading
samples both ideally and temporally coherent into a shading atlas
for efficient compression as a video stream for streaming rendering.
By comparing to two other state-of-the-art methods for this scenario,
we could clearly demonstrate the advantages of our approach in
both image quality and bandwidth requirements. A parallel GPU
implementations of SnakeBinning achieves real-time speeds.

While SnakeBinning seems to be close to ideal in terms of sam-
ples gathered on a triangle basis, gathering shading for other entities
may still show favorable tradeoffs for the streaming rendering sce-
nario. Looking at streaming rendering as a whole, we have not
addressed the issue of view-dependent shading effects for framerate
upsampling on the client.

Further research is needed in the direction of structures for rep-
resenting view-dependent shading effects and their correct extrap-
olation, potentially incorporating these structures into the encoded
atlas stream.

References

[AHTAM14] ANDERSSON M., HASSELGREN J., TOTH R., AKENINE-
MOILER T.: Adaptive texture space shading for stochastic rendering.
Computer Graphics Forum 33,2 (may 2014), 341-350. 3

[ANA*20] ANDERSSON P., NILSSON J., AKENINE-MOLLER T., Os-
KARSSON M., ASTROM K., FAIRCHILD M. D.: FLIP: A difference
evaluator for alternating images. Proc. ACM Comput. Graph. Interact.
Tech. 3,2 (2020), 15:1-15:23. URL: https://doi.org/10.1145/
3406183,d01:10.1145/3406183. 10,12

[Bak16] BAKER D.: Object space lighting. GDC, 2016. 3

[BBM*01] BUEHLER C., BOSSE M., MCMILLAN L., GORTLER S.,
COHEN M.: Unstructured lumigraph rendering. In Proc. SSIGGRAPH
(2001), pp. 425-432. 3

[BCC16] Boos K., CHU D., CUERVO E.: Flashback: Immersive virtual
reality on mobile devices via rendering memoization. In MobiSys (2016),
pp. 291-304. 3

[BCR80] BAKER B. S., COFFMAN JR E. G., RIVEST R. L.: Orthogonal
packings in two dimensions. SIAM Journal on computing 9, 4 (1980),
846-855. 5

[BEM10] BURNS C. A., FATAHALIAN K., MARK W. R.: A lazy object-
space shading architecture with decoupled sampling. In Proc. HPG
(2010), pp. 19-28. 3

[BG04] BAO P., GOURLAY D.: Remote walkthrough over mobile net-
works using 3-d image warping and streaming. IEE Proceedings - Vision,
Image and Signal Processing 151, 4 (Aug 2004), 329-336. 3

[BLO8] BURLEY B., LACEWELL D.: Ptex: Per-face texture mapping for
production rendering. In EGSR (2008), pp. 1155-1164. 3

https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183

488 J. Hladky, H. P. Seidel, and M. Steinberger / SnakeBinning: Efficient Temporally Coherent Triangle Packing for Shading Streaming

[BMS*12] BOWLES H., MITCHELL K., SUMNER R. W., MOORE J.,
GROSS M.: Iterative image warping. Computer Graphics Forum 31, 2ptl
(2012), 237-246. 3

[CG02] CHANG C.-F., GER S.-H.: Enhancing 3D Graphics on Mobile
Devices by Image-Based Rendering. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002, pp. 1105-1111. 3

[Chel5] CHEN K.: Adaptive virtual texture rendering in far cry 4. GDC,
March 2015. 3

[CLM*15] CRASSIN C., LUEBKE D., MARA M., MCGUIRE M., OSTER
B., SHIRLEY P., SLOAN P.-P., WYMAN C.: CloudLight: A system for
amortizing indirect lighting in real-time rendering. Journal of Computer
Graphics Techniques (JCGT) 4, 4 (October 2015), 1-27. 3

[COMF99] COHEN-OR D., MANN Y., FLEISHMAN S.: Deep compres-
sion for streaming texture intensive animations. In SSGGRAPH (1999),
pp. 261-267. 3

[CTH*14] CLARBERG P., TOTH R., HASSELGREN J., NILSSON J.,
AKENINE-MOLLER T.: AMFS: Adaptive Multi-Frequency Shading
for Future Graphics Processors. ACM Trans. on Graph. 33,4 (jul 2014),
1-12. 3

[CTM13] CLARBERG P., TOTH R., MUNKBERG J.: A sort-based deferred
shading architecture for decoupled sampling. ACM Trans. on Graph. 32,
4 (jul 2013). 3

[CWO93] CHEN S. E., WILLIAMS L.: View interpolation for image syn-
thesis. In SIGGRAPH (1993), pp. 279-288. 3

[CWC*15] CUERVO E., WOLMANY A., Coxz L. P., LEBECK K.,
RAZEENZ A., SAROIUY S., MUSUVATHI M.: Kahawai: High-quality
mobile gaming using GPU offload. In MobiSys (May 2015), pp. 121-135.
3

[DER*10] DIDYK P., EISEMANN E., RITSCHEL T., MYSZKOWSKI K.,
SEIDEL H.-P.: Perceptually-motivated real-time temporal upsampling of
3D content for high-refresh-rate displays. Computer Graphics Forum 29,
2(2010), 713-722. 3

[DRE*10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Adaptive image-space stereo view synthesis. In /5th
International Workshop on Vision, Modeling and Visualization Workshop
(Siegen, Germany, 2010), pp. 299-306. 3

[HSS19a] HLADKY J., SEIDEL H.-P., STEINBERGER M.: The
camera offset space: Real-time potentially visible set computa-
tions for streaming rendering. ACM Trans. Graph. 38, 6 (Nov.
2019), 231:1-231:14. URL: http://doi.acm.org/10.1145/
3355089.3356530,d01:10.1145/3355089.3356530. 3,4

[HSS19b] HLADKY J., SEIDEL H.-P., STEINBERGER M.: Tessellated
Shading Streaming. Computer Graphics Forum (2019). doi:10.1111/
cgf.13780.1,2,3,5,8,9

[HY16] HILLESLAND K. E., YANG J. C.: Texel shading. In Proc. Euro-
graphics: Short Papers (2016), pp. 73-76. 3

[KEP97] KIRULUTA A., EIZENMAN M., PASUPATHY S.: Predictive head
movement tracking using a kalman filter. JEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 27, 2 (1997), 326-331. 4

[LCC*15] LEE K., CHU D., CUERVO E., KOPF J., DEGTYAREV Y.,
GRIZAN S., WOLMAN A., FLINN J.: Outatime - using speculation to
enable low-latency continuous interaction for mobile cloud gaming. In
Proc. Mobile Systems, Applications, and Services (2015). 3

[Levo5] LEvVOY M.: Polygon-assisted jpeg and mpeg compression of
synthetic images. In SIGGRAPH (1995), pp. 21-28. 3

[LMCB06] LozA A., MIHAYLOVA L., CANAGARAJAH N., BULL D.:
Structural similarity-based object tracking in video sequences. pp. 1 — 6.
doi:10.1109/ICIF.2006.301574. 10

[LPRMO2] LEVY B., PETITIEAN S., RAY N., MAILLOT J.: Least squares
conformal maps for automatic texture atlas generation. ACM Trans. Graph.
21 (07 2002), 362-371. doi1:10.1145/566654.566590. 3

[MCO97] MANN Y., COHEN-OR D.: Selective pixel transmission for
navigating in remote virtual environments. Computer Graphics Forum 16
(1997), C201-C206. 3

[MHAMO08] MUNKBERG J., HASSELGREN J., AKENINE-MOLLER T.:
Non-uniform fractional tessellation. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware (Aire-la-
Ville, Switzerland, Switzerland, 2008), GH ’08, Eurographics Association,
pp. 41-45. 8

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-rendering 3d
warping. In Proc 13D (1997). 3

[MVD*18] MUELLER J. H., VOGLREITER P., DOKTER M., NEFF T.,
MAKAR M., STEINBERGER M., SCHMALSTIEG D.: Shading atlas
streaming. ACM Trans. Graph. 37, 6 (2018), 199:1-199:16. 1, 2, 3, 4,9,
10

[NCO03] NOIMARK Y., COHEN-OR D.: Streaming scenes to mpeg-4
video-enabled devices. IEEE Computer Graphics and Applications 23
(01 2003), 58-64. 3

[Ocul8] OcuLUSVR: Rendering to the oculus rift, 2018. Visited on
March 30, 2018. 2, 3

[PHE*11] PAJAK D., HERZOG R., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Scalable remote rendering with depth and motion-flow
augmented streaming. Computer Graphics Forum 30,2 (2011), 415-424.
3

[RKLC*11] RAGAN-KELLEY J., LEHTINEN J., CHEN J., DOGGETT M.,
DURAND F.: Decoupled sampling for graphics pipelines. ACM Trans. on
Graph. 30, 3 (may 2011), 1-17. 3

[RKR*16] REINERT B., KOPF J., RITSCHEL T., CUERVO E., CHU D.,
SEIDEL H.-P.: Proxy-guided image-based rendering for mobile devices.
Computer Graphics Forum 35, 7 (oct 2016), 353-362. 3

[SGHS98] SHADE J., GORTLER S., HE L.-w., SZELISKI R.: Layered
depth images. In Proc. SIGGRAPH (1998), pp. 231-242. 3

[SH15] SHI S., Hsu C.-H.: A survey of interactive remote rendering
systems. ACM Comput. Surv. 47,4 (May 2015). 3

[SMSWI11] SHENG B., MENG W.-L., SUN H.-Q., WU E.-H.: MCGIM-
based model streaming for realtime progressive rendering. Journal of
Computer Science and Technology 26, 1 (jan 2011), 166-175. 3

[SNCI12] SH1 S., NAHRSTEDT K., CAMPBELL R.: A real-time remote
rendering system for interactive mobile graphics. ACM Trans. Multimedia
Comput. Commun. Appl. 8, 3s (Oct. 2012), 46:1-46:20. 3

[TLO1] TELER E., LISCHINSKI D.: Streaming of complex 3d scenes for
remote walkthroughs. Computer Graphics Forum 20, 3 (2001), 17-25. 3

[WL10] WANG Z., L1 Q.: Information content weighting for perceptual
image quality assessment. ieee image proc. 20(5), 1185-1198. [EEE
transactions on image processing : a publication of the IEEE Signal Pro-
cessing Society 20 (11 2010), 1185-98. doi:10.1109/TIP.2010.
2092435. 10

[YNOO] YoOON I., NEUMANN U.: Web-based remote rendering with
ibrac (image-based rendering acceleration and compression). Computer
Graphics Forum 19, 3 (2000), 321-330. 3

[YTS*11] YANG L., TSE Y.-C., SANDER P. V., LAWRENCE J., NE-
HAB D., HOPPE H., WILKINS C. L.: Image-based bidirectional scene
reprojection. ACM Trans. Graph. 30, 6 (Dec. 2011), 150:1-150:10. 3

[Yuk17] YUKSEL C.: Mesh color textures. In High Performance Graphics
(2017), HPG *17, pp. 17:1-17:11. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/3355089.3356530
http://doi.acm.org/10.1145/3355089.3356530
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1111/cgf.13780
https://doi.org/10.1111/cgf.13780
https://doi.org/10.1109/ICIF.2006.301574
https://doi.org/10.1145/566654.566590
https://doi.org/10.1109/TIP.2010.2092435
https://doi.org/10.1109/TIP.2010.2092435

