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Figure 1: Visualizing the commuting traffic flows in the Netherlands. Top-left: A naive visual encoding attempts to convey every piece of
information in the dataset but a viewer can only gain a rough impression about the traffic density. Bottom-left: Filtering and color-encoding
offers some improvement. Right: Our ODDV design space helps us find a design where each edge is drawn from the half-way point towards
the destination, so focussing on the incoming traffic, while the outgoing traffic is summarized with a small doughnut-chart at each origin.
Although it “draws” less information than those on the left, more information can be perceived.

Abstract

Visualization is an essential tool for observing and analyzing origin-destination (OD) data, which encodes flows between
geographic locations, e.g., in applications concerning commuting, migration, and transport of goods. However, depicting OD
data often encounter issues of cluttering and occlusion. To address these issues, many visual designs feature data abstraction
and visual abstraction, such as node aggregation and edge bundling, resulting in information loss. The recent theoretical
and empirical developments in visualization have substantiated the merits of such abstraction, while confirming that viewers’
knowledge can alleviate the negative impact due to information loss. It is thus desirable to map out different ways of losing and
adding information in origin-destination data visualization (ODDV). We therefore formulate a new design space of ODDV based
on the categorization of informative operations on OD data in data abstraction and visual abstraction. We apply this design
space to existing ODDV methods, outline strategies for exploring the design space, and suggest ideas for further exploration.
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1. Introduction

Data visualization methods are useful to analyse flows between ge-
ographic locations, for instance commuting, migration, and trans-
port of goods. The most common visualization technique is the flow
map, which show the movements using edges or arcs on a map.
Flow maps have a long history, starting in the 19th century with
maps by Henry Drury Harness [Rob55] and Charles Joseph Mi-
nard [Rob67]. In the last decades many other techniques have been
proposed, e.g., the OD map, (a grid of nested maps) [WDS10], and
glyph-based visualization [AAFW17, YWZ"19].

Visualizing origin-destination (OD) data is far from trivial. A de
facto standard flow map depicting a network over a geographical
map often result in cluttering and occlusion for any large number
of flows. There are various data processing algorithms for reducing
cluttering and other visual encoding methods for alleviating occlu-
sions. For example, Figure 1 shows three visual representations de-
picting measured OD data of commuting traffic flows among mu-
nicipalities in the Netherlands [Sta21]. The generic visual encod-
ing (top-left) exhibiting cluttering and occlusion. Filtering out some
nodes and introducing colors (bottom left) can help but still make
one wonder if it could be further improved.

Given a new visual design problem, designers of OD data visu-
alization (ODDV) typically gain inspiration from the literature or
rely on their prior knowledge. Analogically, this is like exploring
unorganized data without a map. It is hence desirable to formulate
a design space for ODDV, which can act as such a map, allowing
designers to organize existing ODDV designs and explore new de-
signs systematically.

We noticed that many ODDV methods involve removing and
adding information, e.g., node filtering and edge coloring in the
bottom-left of Figure 1, and geographical deformation and node du-
plication in [WDS10]. As information theory can explain the ben-
efit of informative changes in visualization [CG16], we thus used
different types of informative modification to OD data to structure
a new design space. Using such a design space, we were able to
discover a design option, as shown on the right of Figure 1, for
improving the visual representations on the left of Figure 1. The
new ODDV appears to “draw less information”, e.g., by drawing
each edge from only the half-way point to its destination and by
summarizing the missing information about the outgoing flows as
a small doughnut-chart at each origin. However, it allows viewers
to perceive more information.

Most OD datasets are typically very large. The ODDV design-
ers are constantly looking for means to draw less while preserving
useful information. One novel feature of our design space is to cate-
gorize ways for “drawing less (and sometimes more) information”.
Analogically, like a map, a design space does not tell designers
where to go, but enables them to find the best way as they have the
knowledge about their data, users, and tasks.

2. Related Work

Origin-destination data visualization (ODDV) is an area of geospa-
tial data visualization, which has a relatively long history and ex-
tensive literature. There are many wonderful books, such as those

by Bertin [Ber83], MacEachren [Mac04], and Kraak and Ormel-
ing [KO09], and literature surveys on cartography [Tob04, NK16].
Those particularly relevant to ODDV include surveys by Dodge et
al. [DWLO8], and Chen et al. [CGW15].

The de facto standard ODDV method is the flow map, with
(directed) edges between origins and destinations. There are
many variations for drawing the edges (e.g., straight lines vs.
curved lines). Jenny et al. compared three pairs of design op-
tions [JSM*16]. Flow maps are effective for a small OD dataset.
Otherwise, occlusion will be a major problem. A common solution
is to group nodes and edges clusters (e.g., [LBR*16]). Edge routing
techniques are introduced to enable semantically-meaningful clus-
tering. While Minard handcrafted the routes of the edges, a few al-
gorithmic methods have been proposed [PXY*05, VBS11,NB13].

When geospatial information is not the focus, an adjacency ma-
trix (OD matrix) offers a compact visual representation of the flow
network. Spatial clustering techniques have been used to order the
rows (origins) and columns (destinations) [GuoO7, LCvL17]. The
OD map [WDS10, SKDW 12, SKD14] provides matrix representa-
tions with some geospatial information by relating to the position of
matrix cells coarsely, and often hierarchically, to the corresponding
geographical locations.

Glyph-based visualization has been used to convey summary
statistics about the flows related to individual locations. Glyphs can
be placed on the exact geographic locations on a map [AAFW17]
or spatially-deformed positions on a grid layout [YWZ*19]. When
OD data features temporal changes, some ODDV methods use
one spatial dimension for time. In a few designs, a 2D location is
mapped radially on to an angular coordinate, while temporal data
is depicted as small statistical charts placed along the polar axis
(e.g., [DBS*11, LWLY15]). Many ODDV methods make use of
different visual representations though multiple or composite views
(e.g., [BBBL11,YDGM17])).

3. Origin-Destination Data Visualization (ODDV)

Origin-destination (OD) data describe the movements from ori-
gins to destinations. Many OD studies are about movements of hu-
mans, e.g., migration [Rob67,PXY*05, Tob87, SKDW 12, SKD14,
NB13,AS14,BBBL11,VBS11] and passenger transport [LWLY 15,
YWZ*19,LCvL17,LBR* 16, AAFW17]. Other types of movements
have also been studied, e.g., the export of goods [Rob67], the move-
ment of animals [SPR* 18], and the spreading of diseases [Guo07].
The focus of OD studies lies on the amount of flow that moves from
an origin to a destination. The routes and times of the movements
are of lesser importance in most OD studies.

A typical OD dataset is visualized in Figure 1. The dataset con-
tains 11,577 commuting flows between 355 Dutch municipalities.
For each pair of municipalities (A, B), the flow represents the num-
ber of people who commute from municipality A to municipality
B. Strictly speaking these flow counts are numbers of employee
jobs [Sta21], but for the sake of convenience we regard them as
numbers of commuters henceforth.

It is worth noting that when one talks about OD data of count-
able flows, one usually refers to processed (i.e., aggregated) data
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where the raw data describes movements on individual level. The
Dutch Commuting dataset is an example of such processed data,
where the raw data consists of a record per commuter with coor-
dinates for both home and work address. The processing steps in-
clude: grouping origins and destinations by municipalities, and for
each pair of municipalities (A, B), counting the number of people
who commute from A to B. Finally, in order to make sure individ-
ual persons cannot be identified by the data, edges with a very few
number of commuters have been filtered out.

Figure 1(top-left) is an example of commonly used ODDV de-
sign. Origins and destinations have been drawn as dots on a base
map. An edge between two dots represents a flow between them,
where the line width encodes the amount of flow. The native
method would be to draw straight arrows from origins to destina-
tions. Since arrow heads would cause serious occlusion and each
arrow would overlap its opposite arrow, edges are often drawn as
curved lines without arrow heads.

In order to tackle occlusion, nodes and edges are often filtered
or grouped. How this is done depends on the domain knowledge
of the user and on the task at hand. In Figure 1(bottom-left), only
flows with 500 commuters or more are depicted. In order to im-
prove readability of the ODDV even more, the incoming flows for
the four major Dutch cities (which are also municipalities) have
been colored. With their knowledge, Dutch people can immediately
recognize these cities.

Figure 1(right) is an example of a new ODDV design that was
found by exploring the design space introduced in this paper. The
edges are drawn from the half-way point to the destination, focus-
ing on the incoming flows and preventing a significant amount of
mutual occlusion of different color lines as in Figure 1(bottom-
left). The outgoing flows are summarized by using small doughnut-
charts, which are drawn instead of dots. The size of the charts rep-
resents the amount of outgoing flow, with a lower bound (in this
case, 500). The colors indicate the proportion of people who com-
mute to each of the four colored cities, with blue being used for
people who commute to other municipalities and grey for people
who work in their home municipality.

For the design of an ODDV, it is important to know both the
user and task concerned. The ODDV shown in Figure 1(right) was
designed for people who have topographical knowledge about the
Netherlands. Typical use cases of such an ODDV include observ-
ing statistical patterns on commuting in the Netherlands and policy
making regarding the infrastructure of roads and public transporta-
tion. An example of the latter use case is the following. When a
municipality is located near a large city while the majority of peo-
ple commute to another large city that is farther away, this may be
an indication that the public transport facilities to the nearby city
can be improved. The quality of an ODDV is reflected by whether
such tasks can be easily executed.

4. Design Space of ODDV

Design space is multidimensional parametric space, which facil-
itate the registration of existing design options in an organized
manner and enable designers to formulate new design options by
systematically exploring different parametric combinations. In the
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Figure 2: Comparative illustration of taxonomy, ontology, and de-
sign space. A design space can aid the exploration of new designs.

context of visualization, a narrow interpretation of the term focuses
on the parameters within the scope of visual representations. With a
broad interpretation, one may include other parameters (e.g., varia-
tions of data, users, and tasks). While the broad interpretation may
predicate an ideal, comprehensive design space, it will not be at-
tainable easily. Many visualization researchers have constructed
taxonomies, ontologies, and design spaces for different parts of the
broad space, constituting a divide-and-conquer approach. Our work
falls into the narrow interpretation of the term of design space.

Taxonomies, ontologies, and design spaces can all serve the pur-
pose of concept categorization. As illustrated in Figure 2, their
structural differences entail their relative merits in supporting dif-
ferent design tasks. For example, a taxonomy is particularly ef-
fective for categorizing and searching for concepts (e.g., interac-
tion techniques) in a hierarchical and scalable manner. An ontol-
ogy records the relationships among different concepts (e.g., dif-
ferent visualization tasks in a group of workflows), facilitating the
discovery of related concepts from one or more seed locations. In
comparison, a design space enables the comparison of design op-
tions (or concepts in general) in their parameter space, allowing
easy identification of the missing design options.

Since OD datasets are typically large, many ODDV designs
are focused on information loss, e.g. by aggregation. Sometimes
adding previously-unavailable information may also be applied,
e.g. by taking into account routes. If one assumes that the added
information has been available, adding implies reintroducing lost
information selectively, i.e., losing less information. Naturally we
consider the parameters related to information processing can be
used to organize an ODDV design space. According to the latest
information-theoretic explanation about visualization processes,
information loss is a ubiquitous feature of visualization [CG16].
This provides us with the theoretical underpinning to organise a
design space based on how information is lost or reintroduced into
ODDV. We detail this theoretical background in Appendix A.

Some design spaces in visualization literature for other domains
are based on an abstraction of tasks [ENXS20, LJS20]. However,
this is not easy since the choice of design options does not only de-
pend on the task, but also on the user and the data. For instance, an
ODDYV designer may ask a question: what information that is con-
tained in the data is needed for the task at hand taking into account
the domain knowledge of the user? We hence focus on constructing
a design space for design options. Instead of prescribing decision
options based on tasks, we assume that as long as ODDV designers
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have gained adequate understanding of data, users and tasks, they
are able to judge if a design option is appropriate.

We will start with a formal definition of the OD data structure.
This is followed by four subsections detailing the four dimensions
of the proposed design space. The first two dimensions are about
transforming the graph structure of the OD data, with dimension 1
for the node set and dimension 2 for the edge set. Data processing is
mostly associated with these two dimensions. The next two dimen-
sions are about individual elements of the graph, with dimension
3 for nodes, and dimension 4 for edges. Visual mapping is mostly
associated with these two dimensions.

Information theory forms the basis of our design space. When
data is depicted and perceived visually, a certain amount of infor-
mation will be lost, even though a user may not be aware of it. Our
aim is to make explicit which parts of the information are lost and
what the consequences are for the visualization. This will allow
ODDV designers to make an informed choice in conjunction with
their knowledge of the users and the tasks at hand.

4.1. OD Data Representation
The basic structure of an OD dataset is an enriched graph structure
G=(U,E),

where U = (uy,uy,...,un) denotes the set of nodes (n in total) and
E = (e1,e2,...,e;) denotes the set of edges (k in total).

Because of its geospatial context, each node u € U has geograph-
ical coordinates (x,y) and optional attributes Wi, ys,...:

u= (M%‘I’lﬂl’%m)

Each edge e € E has a starting-point (origin) u € U, an endpoint
v € U, and optional attributes &1,&,, .. .:

e=(uv,81,8,...)

Given an OD dataset, an ODDV process transforms its data rep-
resentation to a visual representation through a series of algorithmic
steps. In abstraction, these algorithmic steps are referred to as trans-
formation functions. Traditionally, these functions may be labelled
as “filtering”, “abstracting”, “visual mapping” and other terms by
considering the ODDV process as a pipeline. In many ODDV im-
plementations, some of these labelled steps are often closely in-
tegrated rather than being neatly separated into preprocessing and
visual encoding. For example, one may consider moving nodes and
edges using a forced-direct layout algorithms as either preprocess-
ing or visual encoding.

We therefore introduce a data-centric classification scheme of
these functions for the design space, which focuses on what kinds
of data in G = (U, E) being transformed. Based on the above def-
inition, we can observe four primary types of transformations, i.e.,
those for a node set U, those for an edge set E, those for a node
u, and those for an edge e. Any complicated transformation can
be decomposed into primitive functions belonging to a single fam-
ily. Considering each primary type as a dimension of the design
space, we can map out a specific ODDV design into these four di-
mensions. In the following two subsections, we examine the two
dimensions for U and E first. After giving some more definitions,
we examine another two dimensions for « and e.

4.2. Dimension 1: Transformation of a Node Set

For this dimension, we consider the transformation of the set of
nodes. Formally, let &/ be the set of all possible node sets. This
dimension consists of a variety of transformation functions in the
form of F; : { — U, such that

U/:{u/laul27"'au:'l'}:Fl({u17u27"'aun}) :FI(U)

where U,U’ € U. We consider the four basic transformation func-
tions filter, group, add, and split, which can be used in combination:

Filter This transformation function filters nodes that meet speci-
fied conditions. Two commonly used conditions are whether the
nodes are located in a specified geographic area and whether the
values of an numeric attribute are higher than a specified thresh-
old value (Figure 3(a) and (b) respectively).

Group This transformation function groups the nodes. Each group
is replaced by a new node. Four commonly used grouping func-
tions are depicted in Figure 3: group by grid cell (e), administra-
tive area (f), cluster (g), and by same coordinates (h).

Add This transformation function adds new nodes. It is only com-
monly used in combination with a group function to represent
empty groups. For instance, when the nodes are grouped by grid
cell as shown in Figure 3(e), additional nodes may be added for
empty grid cells (Figure 3(c)).

Split This transformation function splits a node into multiple new
nodes. This function is not commonly used, but may be use-
ful when nodes have certain weights, where the purpose of the
ODDYV is to show equally weighted nodes. In that case, the nodes
can be split by weight (see Figure 3(d)).

Note that the transformation function F; does not necessarily
have to be applied before F,, the transformation function of the
edges which we will describe in the next section. For instance,
when edges are grouped, the end points of those edges are auto-
matically grouped as well. Note that the original end points can
still be added as new nodes.

4.3. Dimension 2: Transformation of an Edge Set

The transformation of the edge set is similar as the transformation
of the node set. Let £ be the set of all possible edge sets. Then
F, : £ — £ described the transformation function such that

E = {e), b i} = B({ersea...er}) = B2 (E)

where E,E’ € £. Similar to node transformation functions, edge
transformation functions can be categorized as one of the following
basic functions, or a combination of them.

Filter Edges are typically filtered by core visual variables, for in-
stance length or attribute value (Figure 4(a) and (b)).

Group Edges are commonly grouped by core variables, such as
angle of direction or distance (Figure 4(e) and (f)). It is also pos-
sible to group edges that have similar end points (Figure 4(e)),
which is automatically followed by an Fj transformation of
grouping nodes by same coordinates (Figure 3(h)).

Add Edges may be added in order to create a complete graph,
which is a graph that contains an edge between any two nodes in
both directions, as illustrated in Figure 4(c). This is especially
useful for OD matrices, where the rows correspond to origin

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



Martijn Tennekes and Min Chen / Design Space of Origin-Destination Data Visualization 327

Filter Group

(e) By grid cell

(b) By attribute value

(f) By administrative area
(encoded as dot size)

Add

(g) By cluster

(c) Nodes for empty grid cells {uuz us} Ui
{usus} u'y
Split ’ ’
s s
o ® . e ¥ i (h) By same coordinates
°° " "

(d) By attribute value

Figure 3: F| transformation functions of the node set. Per type (fill,
group, add, and split), one or more examples are shown. For each
pair of diagrams, the left-hand side depicts the original node set,
and the right-hand side the transformed node set.

nodes, the columns to destination nodes and each cell to a link;
a complete graph is needed to have data points for each cell.

Split Splitting an edge set is not a common operation. It might
be useful in cases where the edges have certain weights (Fig-
ure 4(d)).

4.4. Core, Non-core, and Derived Variables

Before we examine the next two families of transformation func-
tions F3 and Fy, we introduce a few more definitions that will help
the categorization of F3 and Fy. The data variables in an individual
node record u or edge record e fall into three categories:

e Core data variables: These variables are almost ubiquitous to the
data representations in almost all ODDV applications, and they
are assumed to be explicitly defined in the source data entering
a ODDV process. The core variables of a node are its two coor-
dinates x and y. The core variables of an edge are two ordered
nodes u and v and their associated coordinates (x,y), and (x,y)y.

e Non-core data variables: These variables are commonly referred
to as attributes, and are denoted the records of u and e us-
ing Greek letters y and &. They are optional and application-
dependent. They are explicitly defined in the source data.

© 2021 The Author(s)
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(encoded as line width)
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(c) Edges to complete graph
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(h) By same pair of nodes

(d) By (scaled) attribute value

Figure 4: F, transformation functions of the edge set. Per type (fill,
group, add, and split) one or more examples are shown. For each
pair of diagrams, the left-hand side depicts the original edge set,
and the right-hand side the transformed edge set.

e Derived data variables: These variables are not explicitly de-
fined in the source data, but can be derived from those explicitly-
defined variables. For example, giving the order of u and v, and
their coordinates (x,y), and (x,y)y, we can calculate the direc-
tion (Ax,Ay), the middle point (cx,cy), the distance dist(u,v), a
straight line segment (i.e., all points between u and v), and so on.

When a node is visualized, its variables, core, non-core, and de-
rived, are encoded as visual variables depicted by different parts of
the visual object corresponding to the node, including its location,
size, shape, colour, etc. Similarly when an edge is visualised, its
variables are encoded as visual variables, including the locations of
its two nodes, a line between two nodes, an arrow on the line, etc.

The core visual variables of a node (or edge) are all visual vari-
ables that represent the core variables of a node (or edge) or derived
variables that are derived only from core variables. For an edge,
for example, visual variables for depicting (x,y)u, (x,y)v, direction,
length are all core visual variables, but those for flow capacity and
flow capacity / length are not core visual variables.

A visual variable may be explicitly or implicitly encoded. For
example, when an edge depicted by a line between two dots, the
length is explicitly encoded, the mid-point is implicitly encoded,
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(a) Original core (b) Geometric (c) Resolution (d) Dimension (e) Dimension

variables Deformation  Reduction Reduction Replacement
y y y' y (23
X x' X' c (2%
Spread more  Reduce to a Remove x  Replace x by g,
evenly squared grid variable and y by g,

Figure 5: Examples of F3 transformations: (a) the original nodes,
and (b)-(e) results of the four types of transformations.

and the ordering-direction is not encoded. When a large hollow or
solid circle is used to depict a node, its (x,y) coordinates are im-
plicitly encoded.

4.5. Dimension 3: Transformation of Individual Nodes

Let u be the set of all possible node records. The transformation of
an individual node u € u is a function F3 : U — U such that

/

u = (‘x/7y/7wll7‘ll/27"') :F3 ((x7y7w17\|]23"')) = F3(u)

A transformation, such as filtering, grouping, adding, and split-
ting, is applied to the data variables within the record of u. It is
relative easy to imagine how such a transformation may be applied
to those non-core data variables. For example, one may delete y3,
add \|1’6, group W3 and Wy as W = 3 -+ yy, or split ys into its quo-
tient y; = | ws + 10]) and remainder y§ = w5 mod 10. However,
it may be less obvious when such transformations are applied to the
core data variables x and y. We therefore categorize such transfor-
mations in terms of what has been changed, with an additional note
on how.

Geometric Deformation. Move (x,y) to (x,y’) according to algo-
rithmic decisions as illustrated in Figure 5(b). Change its core vi-
sual variables. This is a combined action of filtering and adding.

Resolution Reduction. Reduce the resolution of x or y or both
(Figure 5(c)). Change one or more core visual variables. Visu-
ally, this is a special case of geometric deformation. This is a
grouping action in terms of the variable(s) concerned.

Dimension Reduction. Remove one of the core variable, x or y.
Visually, this is a special case of the above two, as removing a
variable is an effect to reduce its resolution to single value. For
example, if x is removed, a node originally at (x,y) will now
be displayed at (c,y) on a 2D screen, where is ¢ is a constant
(Figure 5(d)). Therefore, X’ = ¢. This is a filtering action in terms
of the removed data variable and grouping in terms of mapping
all x values to c.

Dimension Replacement. Replace one or more core variables
with non-core variables or derived variables, and encode the lat-
ter as if they are core. e.g., replace x with Y| and/or y with y,
(Figure 5(e)). This is a combined action of filtering and adding.

However, unlike most subjects (e.g., communication, compres-
sion) underpinned by information theory, in visualization, the en-
coder (i.e., data processing, visual mapping and visual display)
and decoder (i.e., viewing, perception, and cognition) are not engi-
neered as a constituent pair by the same developer [CJ10]. What is
being encoded is not assured to be decoded. As illustrated in Figure

6, different visual representations of a node may capture a viewer’s
attention differently, may demand different cognitive load to re-
trieve its (x,y) values. As the above four categories cannot capture
the non-binary states of the decoder, we introduce two additional
categories Attenuation and Enhancement.

These two categories need a common reference state, which is
the de facto standard encoding of a node. We first define visual
variables x and y to be the de facto standard set referred to as the
node norm (NN). In principle, it is not absolutely necessary to dis-
play data variables (x,y) as (x,y) explicitly. One could, for instance,
display them as (x, —y), (x,log;y), or (x,x —y), where the value
of y can be inferred from what is displayed. As this may be uncom-
mon or less intuitive for nodes, we will discuss this kind of visual
encoding for edges in detail and the notion of implicit encoding
will become clear in Section 4.6.

Once we have the node norm, we can establish Normal Encod-
ing of NN as a category of F3, and the reference point for atten-
uation and enhancement. We define the most conventional visual
encoding of a node shown in Figure 6(a) as the normal encod-
ing. In (b), a reduction of the contrast between its color and the
background makes it less noticeable, hence attenuating its pres-
ence. Meanwhile, in (c), displaying the node using flicking ani-
mation makes it more noticeable, hence enhancing its presence. In
(d), when encoding the node with a larger circle, the node presence
is enhanced, but the perception of the (x,y) values is attenuated. In
(e), when a heart icon is used in stead of the black dot in (a), the
x value can be perceived more or less similarly, but the y-value is
rather uncertain. The perception of (x,y) values can be enhanced
using the cross in (f) or the tracing lines (typically activated inter-
actively) in (g). In the following discussion, we consider the term x-
or y-dimension include both the presence, notability, and the value
of a dimension. The three additional categories are summarised as:

Normal Encoding. Show core visual variables (x,y) of a node us-
ing the conventional visual representation, which entails a black
dot on a white background or vice versa. The size of the dot is
expected be defined differently for difference media (e.g., hand-
held, desktop, projection screen, etc.). We hence define the size-
norm as the smallest size such that all target viewers can effort-
less identify it in an uncluttered layout. This is illustrated in Fig-
ure 6(a).

Dimension Attenuation. Show either or both of the core visual
variables (x,y) in a way that causes slowing-down viewing or
less accurate perception of the variable(s) concerned in compar-
ison with the node norm. It is a recoverable filtering action in
relation to the node norm as the information is encoded, but may
not be more difficult to decode than the node norm.

Dimension Enhancement. Show either or both of the core visual
variables (x,y) in a way that enables speed-up viewing or more
precise perception of the variable(s) concerned. It is a kind of
adding action in relation to the node norm.

4.6. Dimension 4: Transformation of Individual Edges

Similarly, let e be the set of all possible edge records. The transfor-
mation of an edge e € e is a function F4 : € — € such that

e/ = (Clvc25~--7(t7,la§/27"') :F4((u7va§17§27-")) :F4(€)
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Figure 6: Examples of different visual representations of nodes in ODDV. Although the core variables (x,y) of the node in each case are
encoded, their decoding may demand different levels of cognitive load and may incur different amounts of uncertainty.
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Figure 7: Examples of different visual representations of edges in ODDV. A list of core visual variables are listed below each example, where
explicitly-encoded ones are labelled in cyan, implicitly-encoded ones in grey, and un-encoded ones in grey with a strike-through line. (*)
Note that in (f) the angle is implicitly encoded, but with significant resolution reduction as one can still differentiate leftward from rightward.

where ¢; is an original core variable or derived core variable, such
as x- or y-position, Ax, Ay, length, angle, etc.

For a node record u, x’ and y’ are core data variables as well
as core visual variables. For an edge record, e, the relationship
between the two types of variables is much more complicated.
We rarely just draw two end-points. As shown in Figure 7(a), we
draw an arrow to indicate the ordering of the two end-points, and
a straight line to depict the direct path from one to another. In
fact, neither the arrow is essential as depicted in the second ex-
ample, nor the straight line as in the third example. This is because
a viewer can infer such implicitly-encoded visual variables from
those explicitly-encoded variables, except it may take more time,
incur more cognitive load, or cause more errors in visualization.

As the example shown in Figure 7(a) is the most commonly-used
visual representation for an directed edge, we consider the seven
core visual variables explicitly encoded there as a de facto standard
set. We call this set as an edge-norm (EN), which includes the (x,y)
positions of the two end-points, their ordering, the direct path, and
its length. There are other core visual variables that are implicitly
shown. The consideration of explicitness and implicitness makes
the categorization of F; much more complicated than F3. With F3,
if the x-dimension is not displayed, one normally cannot infer it
from y. As exemplified in Figure 7, it is not the same with edges
because of information redundancy in EN.

In addition, similar to a node, the perception the core variables
of an edge can also be attenuated or enhanced. Following the same
reasoning about the examples in Figure 6, we can easily reason the
attenuation and enhancement in Figure 7. In general, a change from
explicit to implicit depiction usually causes an attenuation of per-
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ception. A change from implicit to explicit depiction usually leads
to an enhancement.

Similar to the node record, it is relatively easy to define and ex-
emplify filtering, grouping, adding, and splitting. For the core vi-
sual variables cy,c, ..., we assume that the transformation Fy will
visually encode them explicitly. Using the EN set as the reference
set, we can define filtering, grouping, adding, and splitting. For in-
stance, in the second example in Figure 7, the (x,y) position of
end-point 1, the direct path, and the length are removed by F4 from
the EN reference. They are filtered out by F; but are perceptually
recoverable by a viewer. Meanwhile, the middle point of each line
is added by Fy as an extra core visual variable. These middle points
help recover the information about three variables filtered out. In
the last example, arrows are removed by Fj. The ordering informa-
tion is filtered out and it is perceptually irrecoverable. Now we can
categorize the transformations of these visual variables in terms of
what has been changed to the EN, with an additional note on how.

Normal Encoding. Show core visual variables in EN explicitly
and show all other core visual variables implicitly. This is il-
lustrated in Figure 7(a).

Resolution Reduction. Show some core visual variables in EN
with reduced resolutions. This is a grouping action as edges
with different data records may visually appear to be the same.
As illustrated in Figure 7(f) with respect to angle, the angles are
grouped into two groups: from west to east and from east to west.

Dimension Attenuation. Show some core visual variables in EN
implicitly or in a way that cause slowing-down viewing or less
accurate perception of the variables concerned in comparison
with the normal encoding of EN. It is a recoverable filtering



330 Martijn Tennekes and Min Chen / Design Space of Origin-Destination Data Visualization

action in relation to EN. This is illustrated in Figure 7: in (b) and
(d) with respect to end point 1, direct path and length; in (c), to
direct path and length; and in (d), to direct path.

Dimension Enhancement. Show some core visual variables not
in EN explicitly or show some core visual variables in EN in a
way that enables speed-up viewing or more precise perception of
the variables concerned. It is a kind of adding action in relation
to EN. Examples in Figure 7 are: (b) with respect to middle point,
(d) with respect to middle point, x-offset, and angle, and (e) with
respect to middle point and 25/75 intervals.

Dimension Reduction. Completely remove some core visual vari-
ables in EN. These core visual variables are no longer encoded,
i.e., neither explicitly nor implicitly and thus no longer perceiv-
able. It is an irrecoverable filtering action in relation to EN.
In Figure 7, this is illustrated in (f) with respect to end point 1,
direct path, and length, and in (g) with respect to ordering.

Dimension Replacement. Replace some core visual variables in
EN with one or more non-core visual variables. This is a com-
bined filtering and adding function in terms of core. In relation
to EN, the removed core visual variables may or may not be re-
coverable. An example is Figure 7(b) where the length can be
used to encode an attribute variable.

5. Application

The presented design space can help ODDV designers to see the
big picture. Analog to using a map of a partly unknown territory,
the design space can be used to find out where the existing points of
interests, i.e. existing ODDV methods, are located and which part
of the design space is unexplored. Another analogy with using a
map is that it not only tells us where points of interests are, but also
provides a better context of the locations.

In this section, we first add points of interests by classifying
some existing ODDV techniques in the literature. We then outline
several actions for exploring our design space. This is followed by
a test case of using the design space to discover the ODDV for the
Dutch Commuting dataset. Finally, we provide some ideas for fur-
ther exploration of undiscovered parts in the design space.

5.1. Classification of ODDYV Literature

In this subsection, we demonstrate how eight existing ODDV meth-
ods can be placed in our design space. The example visual designs
of these methods are shown in Figures 10-17 in Appendix B, where
we used zoomed-in views to annotate the nodes and edges.

In order to be complete, we describe the transformation functions
starting from raw OD data. Since all examples describe mobility or
migration of persons, we can safely assume that a raw OD dataset
consists of a record per person, with the location of both origin and
destination. As mentioned in Section 3, ODDV designers may not
always have had access to these raw datasets. If that is the case, the
transformation functions F; and F, (or part of them) have not been
applied by the ODDV designers, but in the preprocessing stage.

All eight examples mentioned in Appendix B, except Figure
17, have similar transformations functions in Dimensions 1 and
2, namely group nodes, mostly by administrative area, and group

edges accordingly. For the ODDVs that are based on the OD ma-
trix (Figures 13, 14, and 15), edges have been add to complete the
graph (Figure 4(c)).

The flow diagrams, shown in Figure 17, have more complex
transformation functions in Dimensions 1 and 2. First, the nodes
are grouped by cluster (F]). Then, for each origin node, the edges
are grouped by angle (in eight cardinal directions) and length (in
three classes), which is a F> transformation. After that, the destina-
tion nodes are grouped accordingly, which is an F| transformation.

None of the eight examples have applied the node norm. The
standard flow maps shown in Figures 10, 11, and 12 show the coor-
dinates (x,y), even though some Fj transformation functions have
been applied. The other examples either have reduced or replaced
the dimensions. Notice that the main difference between an OD
matrix Figure 13 and an OD map Figure 14 is the third dimension;
in the OD matrix the coordinates have been replaced by order in
the matrix whereas in the OD map, the coordinates have been de-
formed to a nested grid, where origin nodes are shown in the large
grid and destination nodes in the small grids.

None of the eight examples have applied the edge norm either.
Although the examples in Figures 10, 11, 12, and 16 still show
edges explicitly, all of them have applied some of the transforma-
tion functions mentioned in Section 4.6. The edges shown in the
Figure 17 are different in the sense that they are part of the glyph
design. The length of those edges does not represent distance, but
flow (a Dimension Replacement).

The classification results not only provided insights into the un-
derlying design choices, but also indicated which parts of the de-
sign space are more populated with ODDV methods than other
parts. It is worthwhile for VIS researchers to examine those empty
parts and explore new ODDV designs that would reside there.

In the remainder of this section, we first describe a test case for
exemplifying how the design space in 4 may be exploited, and then
discuss those less exploited areas.

5.2. Design Space Exploration

Like map exploration, the effectiveness and efficiency in navigating
in the design space depends on the designers’ knowledge of exist-
ing ODDV methods and their categorization in the four dimensions.
Obtaining a good visual design is a balancing act that maximizes
the positive impact of information loss while minimizes the neg-
ative impact and cost (see Appendix A). Here we outline several
actions that may help deliver such a design.

Know the users. Users’ knowledge about the data and application
context and their previous experience of viewing similar data us-
ing the visual design can alleviate the negative impact of infor-
mation loss. The choice of information type and reduction should
be based on users’” knowledge.

Know the tasks. Losing a type or amount of information may
cause poor performance for some tasks, but may improve task
performance for other tasks. The choice of information type and
reduction should be based on users’ tasks.

Benefits of interaction. When abstraction such as filtering and
grouping is applied, interaction (e.g., adding and splitting) al-
lows users to reintroduce some of the lost information. One can
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estimate the net benefit of such interaction, enabling a balancing
act between information loss and the cost of information reintro-
duction.

Trade-off between dimensions. When one reduces information
in one dimension, one may preserve part of the lost informa-
tion in another dimension. For example, one may remove some
nodes using grouping (F}), add the group size as an attribute of
the super-node, and visually encode the attribute (F3).

Trade-off between explicit and implicit encoding. One may dis-
play edges using different combinations of explicit and implicit
encoding of core visual variables. Likely, there are novel visual
encodings to be discovered.

Start with simple information reduction. With a large OD
dataset, cluttering is always an issue. One can start with infor-
mation reduction by considering different categories of Fj, F»,
F3, and Fj transformations. If there is too much information
loss, one can consider interaction and the above trade-offs as
balancing acts.

Start with an existing design. Alternatively, one can start with an
existing ODDV method, and use the design space to explore dif-
ferent trade-offs.

5.3. Test Case: Commuting in the Netherlands

In addition to using the ODDV design space to categorize various
design ideas featured in the literature, we can also use the design
space to explore new design ideas. In particular, because it is un-
common to have a design space structured based on the informative
changes, it can provide opportunities for uncommon design ideas.
After completing the specification of the design space in Section 4,
we used the Dutch Commuting dataset described in Section 3 and
the two initial ODDVs on the left of Figure 1 to test and explore the
design space [Sta21].

We noticed that the visual encoding on the bottom-left has al-
ready featured an F; transformation for filtering out some edges,
and an Fj transformation for enhancing the presence of certain
edges. Interestingly, color-coding edges based on an attribute of
its nodes (e.g., population of a city) does not add or remove any
core visual variables in the edge norm, but falls into the category
of Dimension Enhancement as it makes some visual variables more
perceivable (e.g., end-points, direct path, and length). In informa-
tion theory, it is related to automated error detection and correction
by the decoder as viewing the edges is rather “noisy” (see [CJ10]
for a detailed explanation).

Meanwhile, the missing arrow heads indicate an Fj transforma-
tion, i.e., Dimension Attenuation. The ordering can still be per-
ceived by the curve angle, albeit much harder than via arrows;
edges are bend to the right-hand side from the origin point of view.

Following a quick scan of the figures in Section 4, we noticed
that the half-edge encoding in Figure 7(b) could help address the
cluttering issue while bringing back the ordering information. We
were aware that the distance between the two end-points of an edge
could be perceived much shorter than in reality and that the dimen-
sion of the origin nodes might be attenuated too much. We con-
sidered to use glyphs as shown in Figure 17, but the original glyph
design unfortunately clashed with the half-edge encoding. With an-
other scan of the figures in Section 4, we noticed that a glyph based
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on Figure 6(d) or (f) could avoid a clash with the half-edge encod-
ing. This led to the ideas of using a small doughnut chart or pie
chart. After some prototyping experiments, we narrowed the de-
sign down to the option using small doughnut charts. The design in
Figure 1(right) has been implemented and deployed as a web-based
interactive map by Statistics Netherlands [Sta21].

A post-hoc analysis helped us notice some other merits. Since
an edge meets its opposite edge at their half-way, one can con-
nect the two end points perceptually, and moreover, compare the
volumes between both edges. This is generally easier for flows be-
tween color-coded cities than for other flows. Another benefit of
our design is that the small doughnut chart enables us to show addi-
tional information. We opted for a summary of outgoing commutes,
which was not possible with the two initial ODDVs on the left of
Figure 1 for small municipalities.

5.4. Scope for Further Exploration

Figures 3, 4, 5, 6, and 7 in Section 4 are not exhaustive lists of in-
stances of design options. They are abstract illustrations that can
be used to prompt VIS researchers to instantiate design ideas suit-
able for the data, users, and tasks that they know well. We hope
that with a community effort, these sets of abstract instances will
be extended in the future. Here we focus on the four dimensions of
the design space, and provide our observations as to aspects in the
design space that may offer interesting, and potentially rewarding,
areas for exploration. We use the symbol » to indicate such an area.

Dimension 1: Transformation of a Node Set. As discussed in Sec-
tions 4.2 and B, the four types of transformation functions applied
to a node set (i.e., filter, group, add, and split) are typically imple-
mented as part of interactive visualization, such as zooming and
abstraction. Much of the existing work in the literature has focused
on analytical algorithms as well as human-computer interaction.
Because there is an informative trade-off (see Appendix A), the de-
cisions as to what to filter and add and how to group or split are
mostly data-, user-, and task-dependent. The exploration for new
application-specific algorithms for these transformations will con-
tinue, as well as for new interaction modalities.

» What we can explore more is perhaps the “resolution” of fil-
tering. When a node is filtered out, the typical consequence is that
the node and its edges are no longer available to the visual map-
ping. When a number of nodes are grouped together, their edges
are also grouped together. Hence the decisions about whether to
keep a node or not in the node set are of a binary nature. In or-
der to explore the intermediate states between the binary decisions,
one could explore different functions F3 and Fy for those nodes to
be transformed. For example, for a node u € U, a filtering trans-
formation £ (U) may not simply decide if it remains in U’ or not.
Instead, it may “downgrade” a node to a “lower” state. Here the
word “lower” implies that a transformation F3 (i.e., in Dimension 3
of the design space) may make use less information bandwidth to
encode such a node visually, e.g., resolution reduction, dimension
attenuation, or dimension reduction.

» In general, there are more reports on filtering and grouping,
but much less on adding and splitting. In many application scenar-
ios, there are needs for “add” transformations (e.g., dynamic data
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streaming) and “split” transformations (e.g., ungrouping different
modes of transport). These transformations that introduce more in-
formation often cause problems to other dimensions, e.g., Geomet-
ric Deformation, Resolution Reduction, and Dimension Reduction
in F3. These problems pose challenges as well as opportunities for
new innovations.

Dimension 2: Transformation of an Edge Set. Similar to the dis-
cussion in the above section, transformation functions in this di-
mension of the design space typically make binary decisions about
an edge e € E. The information about e is either entirely available
or fully lost. Since an optimal visual design reflects the trade-off
among alphabet compression, potential distortion, and cost, allow-
ing for different amount information loss can enable designers to
explore more design options.

» One area of exploration is to introduce some intermediate
states, between the binary decisions of either entirely available or
fully lost, for each edge in an edge set. After a “filter” or “group”
transformation, an edge ¢ may be “downgraded”, and an Fj trans-
formation F4 may use less information bandwidth to encode the
edge visually.

» Similar to Dimension 1, new research effort on “add” and
“split” transformations will be much appreciated.

Dimension 3: Transformation of Individual Nodes. » The con-
cept of “node norm” is new. It raises a research question as to how
different ways of encoding nodes affect their perception. Figure 6
shows that the most conventional ways of encoding a node is not
optimal for perceiving the values of (x,y). In other words, most
ODDVs would cause a non-trivial amount of perception errors if
perceiving (x,y) is a visualization task. On the other hand, if per-
ceiving (x,y) is not a visualization task, why it not always better to
use visual representations with limited geospatial information, such
as the ODDVs in Figures 13, 14, 15, and 16. This leads to a more
fundamental question as to how viewers benefit from displaying a
node at (x,y).

» Many existing visual designs, e.g., the nodes in Figures 13,
14, 15, and 16, feature transformations that fall into the categories
of Geometric Deformation, Resolution Reduction, Dimension Re-
duction, and Dimension Replacement. Some common rationales in-
cludes “requirements by domain experts” and “task-dependent de-
signs”. There are scopes for gaining deeper understanding about
behind these rationales, such as what are the potential demerits,
what tasks may suffer from such demerits and what may not, and
what human knowledge may alleviate the impact of demerits.

» Encoding nodes with colors, shapes, sizes, etc. is often rea-
soned on the basis of showing some application-specific attributes
(e.g., population). It is less common to reason the positive or neg-
ative impact of such visual encoding on the perception of core vi-
sual variables of nodes (x,y). Since the positive or negative impact
is rarely avoidable, it is desirable to examine and understand such
impact in a systematic or organized manner.

Dimension 4: Transformation of Individual Edges. » In compar-
ison with “node norm”, the concept of “edge norm” is much more
interesting. While a simple directed edge seems to convey many

core visual variables related to an edge, there are numerous alter-
native visual representations can do almost the same. From a purely
mathematical perspective, it may not appear to be an issue as many
these “additional” visual variables in the edge norm are not inde-
pendent. However, saying that one variable can be derived from
others differs significantly from saying it can perceived just like
others. This topic will likely provide a fertile ground for further re-
search, including theoretical development, innovative designs, and
empirical studies.

» Many existing visual designs feature transformations that fall
into the categories of Resolution Reduction, Dimension Reduction,
and Dimension Replacement. Similar to Dimension 3, there is a
need to gain deeper understanding about behind these rationales.

» Encoding edges with colors, thickness, shapes, etc. is often
reasoned on the basis of showing some application-specific at-
tributes (e.g., transport mode and traffic volume). Similar to Di-
mension 3, it is desirable to examine and understand the impact of
such visual encoding on the core visual variables in the edge norm
in a systematic or organized manner.

6. Conclusions

We have introduced a 4D design space for ODDV methods with
the purpose to gain insights about the visualization of OD data, and
provide a means for exploring potentially novel designs system-
atically. Some years ago, it might be unthinkable to use informa-
tion loss as the central theme to categorize ODDV methods because
such loss would only be viewed negatively. With support from the
mathematical reasoning about the merits and demerits of informa-
tion loss in [CG16], we have found that the categorization scheme
based on different types of informative changes is rather appropri-
ate for ODDV due to the facts that ODDV is useful and information
loss is ubiquitous in ODDV.

OD data is typically large. With the design space, ODDV de-
signers can now pursue a design process by focusing on which in-
formation to keep, loose, attenuate, enhance, and add, in conjunc-
tion with their knowledge of about the user and the task at hand.
The designers can then scan the design space as if it were a map
about various transformations in abstraction, and identify how to
keep, loose, attenuate, enhance, or add information, in conjunction
with their creativity and experience. The design space itself cannot
replace designers’ knowledge about users and tasks and their cre-
ativity and experience in design, but can help structure the design
process more effectively and efficiently. With the visualization of
the Dutch Commuting dataset in Figure 1(right), we have demon-
strated how this can be done.

We hope to engage the VIS community to continue design space
research, formulating general methodologies for design space ex-
ploration. For those aspects identified in Section 5.4, it will need a
substantial amount of effort to fill in these gaps. In addition, there
are no doubt many other aspects to be identified. Furthermore, the
design space is not a static fixture, and can and will be improved or
extended by future work, e.g., for hypergraphs. We also hope that
we have shown the merits of information theory for data visualiza-
tion. We highly recommend to apply information theory to other
data types and their visual representations.
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