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Abstract

Medical imaging (image acquisition, image transformation, and image visualization) is a standard tool for clinicians in order to
make diagnoses, plan surgeries, or educate students. Each of these steps is affected by uncertainty, which can highly influence
the decision-making process of clinicians. Visualization can help in understanding and communicating these uncertainties. In
this manuscript, we aim to summarize the current state-of-the-art in uncertainty-aware visualization in medical imaging. Our
report is based on the steps involved in medical imaging as well as its applications. Requirements are formulated to examine
the considered approaches. In addition, this manuscript shows which approaches can be combined to form uncertainty-aware
medical imaging pipelines. Based on our analysis, we are able to point to open problems in uncertainty-aware medical imaging.
Keywords: Medical Visualization, Uncertainty Visualization, Survey

1. Introduction

Medical imaging focuses on the analysis, visualization, and explo-
ration of medical image data [PB14a]. It has an over 120 year old
tradition [Bra08]. This journey started in 1895 with the discovery of
the X-Ray which allowed clinicians to examine structures inside the
human body without interfering with it. By now, medical imaging
has developed into a standard tool to assist in various applications,
such as diagnosis, determine treatment options, and show the health
status of a patient, as shown in Figure 1. Here, medical doctors use
medical imaging which separates into acquisition (green), trans-
formation (red) and visualization (blue), for specific applications
(yellow). Medical imaging has always been highly interconnected
with visualization, as visualization holds the potential to make the
captured medical images understandable and interpretable [PBO7].

Medical imaging can be roughly separated into three differ-
ent steps: Image Acquisition, Image Transformation, and Image
Visualization. Depending on the purpose of the use of medical
imaging, different image acquisition modalities can be considered.
The available techniques include Ultrasound, Computed Tomogra-
phy Scans, Magnetic Resonance Imaging, Diffusion Tensor Imag-
ing, and Positron Tensor Imaging. All of these techniques produce
unique data that are all affected by uncertainty due to different ef-
fects, such as the reconstruction process [Brul7] or patient mo-
tion [SP19]. In addition, each step in the medical imaging pipeline
that transforms the input image can introduce additional uncer-
tainty into the medical imaging process. This uncertainty highly
influences the decision-making process of clinicians when dealing
with medical image data [TWSM15]. This can lead to misinterpre-
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tation if not communicated properly [LWA*20] and can in the worst
case have crucial consequences to the patients’ health.

Hence, uncertainty information plays an important
role [LWA*20] in medical imaging and the visualization pro-
cess connected to it. The acquisition process, resulting images, and
the needs of clinicians result in a special setup when considering
uncertainty visualization. Uncertainty-aware visualization is a very
active research field that has been addressed in a state-of-the-art
analysis by multiple research groups. However, a state-of-the-art
survey, which would highlight the special needs of uncertainty vi-
sualization has lastly been performed by Ristovski et al. [RPHL14]
in 2014. Since then, there has been serious additional research
efforts to enhance uncertainty-aware medical imaging, which are
not recorded in a systematic way.

In this work, we aim to provide a starting point for medical visu-
alization researchers to help find existing solutions in uncertainty-
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Figure 1: Medical imaging and its use. Clinicians can make use
of different medical imaging techniques: In the acquisition step
(green), images are generated that can be transformed throughout
various technologies (red) and visualized (blue) with differing tech-
niques. The selected medical imaging techniques can be applied to
a variety of applications (yellow). The color-coding will be main-
tained to provide a smooth reading throughout the manuscript.
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aware visualization of medical imaging. Our primary goal is to
provide an easy to understand classification scheme that suits the
understanding of visualization researchers in the context of med-
ical imaging. In addition, we aim to identify open problems in
uncertainty-aware medical imaging.

Therefore, this manuscript contributes:

e A taxonomy of sources of uncertainty in medical imaging

o A state-of-the-art analysis of uncertainty-aware visualization in
medical imaging

o A workflow chart directly indicating potential workflows in
uncertainty-aware medical imaging

e A list of open problems in uncertainty-aware visualization in
medical imaging

STAR Scope State-of-the-art Reports (STARs) related to un-
certainty visualization have been conducted by different research
groups, providing emphasis on different aspects.

Brodlie et al. [BAL12] provided an analysis of uncertainty in
data visualization. They started with an uncertainty definition and
sorted visualization approaches along different types of data. Pot-
ter et al. [PRJ12] strived for a taxonomy of uncertainty visualiza-
tion of scientific data. Followed by that, Bonneau et al. [BHJ*14]
presented a STAR on uncertainty visualization which forms a ba-
sis for Dwyer et al. [JED*20] to build an online browsing tool to
explore several uncertainty-aware visualization approaches. Here,
uncertainty visualization approaches were classified based on the
underlying data. Olston [OMO02] presented a STAR report regard-
ing the visualization of bounded uncertainty. In their paper, com-
mon visualization methods for bounded uncertainty are discussed,
whereas Hullman et al. [HQC*19] presented a STAR report tar-
geting the evaluation of uncertainty visualization. All these works
have in common that they do not focus on medical imaging. As the
medical domain provides a unique setting in terms of uncertainty
quantification, we aim to provide a state-of-the-art report for medi-
cal imaging.

State-of-the-art analysis in the medical domain has been
conducted on different topics, such as multi-modal visualiza-
tion [LSBP17], visualization tools [YCMAI12], and flattening-
based visualization techniques [KMM*18]. Their findings show
that the specific application of medical imaging results in special
requirements that need to be considered in the respective research
field. We aim to apply this principle to the presented state of the art
analysis.

Ristovski et al. [RPHL14] provided a taxonomy of uncertainty
in medical visualization. In their work, all sources of uncertainty in
the medical application were collected, mathematically described,
and examples for visualization approaches were given. Although
this provides a valuable starting point for the presented work, the
work lacks an extensive description of already existing uncertainty-
aware medical imaging approaches. We apply the provided taxon-
omy to the sources of uncertainty in medical imaging and utilize
this as a starting point of the presented work. In contrast to the
mentioned work, we provide lists of available approaches in each
category of the taxonomy. In addition, the work of Ristovski et al.
covers only work up until 2013. Since then, there has been a variety

of attempts to tackle uncertainty in the medical imaging area which
we would like to consider in this work.

Paper Selection Criteria In this STAR we aim to present
uncertainty-aware visualization approaches in medical imaging
from the visualization field as well as the medical field. To achieve
this, we investigated different venues and companies on the inter-
section between medical imaging and visualization. The goal was
to obtain related work that has been published in the field of med-
ical imaging that considers visualization approaches related to un-
certainty analysis.

We searched conferences and journals related to IEEE Transac-
tions on Visualization and Computer Graphics, IEEE Transactions
on Medical Imaging, Computers & Graphics, Eurographics Digi-
tal Library, Computer Graphics Forum, Uncertainty Quantification
in Scientific Computing as well as general search platforms, such
as Google Scholar and Springer Link. We excluded further venues
from the medical field or uncertainty analysis as we aimed to focus
on the visualization aspect of the presented work.

The queries we executed are a composition of two search terms.
The first part of the query relates to uncertainty visualization. Here,
we searched for uncertainty-aware visualization. We also searched
for related terms, such as sensitivity analysis, ambiguity analysis,
and uncertainty analysis to deal with the ambiguity of the term un-
certainty. The second part of the query relates to Medical Imag-
ing and all subgroups of the topic that we have listed in this work
(see Figure 2). In addition, we searched for applications of medical
imaging, such as diagnosis, intraoperative support, treatment plan-
ning and education. In particular, we utilized the Cartesian product
of the following query term sets to search for adequate results.

1. Uncertainty-aware Visualization | Uncertainty Visualization |
Uncertainty Analysis | Sensitivity Analysis |
Ambiguity Analysis, Variability | Variation

2. Medical Imaging | Medical Imaging subcategories (Figure 2) |
Diagnosis | Intraoperative Support | Treatment Planning |
Education

Resulting from those queries, 250 research papers were obtained,
filtering out methods that do not fulfill the following requirements:

1. Medical image data as an underlying dataset (at least with one
demonstrated example)

2. Uncertainty visualization in at least one of the three defined
steps of medical imaging

At this point, we want to highlight that we explicitly exclude
work that covers image-based clinical studies. Although these stud-
ies work with medical image data as well, they typically do not
follow the classic medical imaging pipeline as outlined in this
manuscript. These studies make use of the presented approaches
rather than introducing them. In this context, we want to highlight
that the outcome of the studies is highly influenced by the chosen
imaging methods but inclusion in this STAR report would exceed
the current scope.

In addition, the clear relation between statistical, ensemble, and
parameter space visualization and the presented topic is obvious.
Here, we are not able to cover this relation in the given format.
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STAR Organization In this work, we start with a general de-
scription of the medical imaging pipeline in order to define all
important terms that are used throughout the manuscript (see sec-
tion 2).

After that, we demonstrate the role of uncertainty in medical
imaging (see section 3). Here, we start with important terms regard-
ing uncertainty (section 3.1) and show which sources of uncertainty
can occur in the medical imaging pipeline. We utilize the taxonomy
of uncertainty visualization by Ristovski et. al [RPHL14], to de-
velop a taxonomy of uncertainty in medical imaging (section 3.2).
Based on this knowledge, we determine requirements that need to
be fulfilled in order to provide an uncertainty-aware visualization
for medical imaging (section 3.3).

To provide an easy-to-understand classification of existing
uncertainty-aware medical imaging approaches, we aim to utilize
the steps of medical imaging as the first level of distinction in the
reviewed research papers. Here, an uncertainty-aware visualization
approach is divided into one of the phases Image Acquisition, Im-
age Transformation, and Image Visualization, as shown in sec-
tion 4. A specific approach can also be listed in multiple categories
if it is captured by the respective technique. Please note that we will
keep the introduced color scheme throughout the entire manuscript
(including tables and figures) to provide an easy-to-follow struc-
ture. We want to highlight that uncertainty visualization can oc-
cur in any of the medical imaging phases as the visualization may
not solely address the underlying data but also the uncertainty of
the acquisition process as well as the transformation. In contrast
to the visualization phase itself, we will focus on the visualization
approaches utilized to visually encode uncertainty. Image Acqui-
sition (see section 4.1) will be divided into different acquisition
techniques commonly used. Along with each technique we provide
existing uncertainty quantification approaches and show the found
visualization approaches. Image Transformation (see section 4.2)
will be separated into different processing algorithms commonly
used in this category. Uncertainty processing approaches in each
category will be discussed and available visualization approaches
will be demonstrated. Image Visualization (see section 4.3) tech-
niques will be divided along different visualization styles. These
can vary based on the visualization paradigm used to create a spe-
cific visualization

Besides uncertainty-aware visualization approaches that are tar-
geting a specific aspect of the medical imaging pipeline, there
exist uncertainty-aware visualization approaches that aim to pro-
vide an application of these techniques to medical tasks. Preim et
al. [PB14a] classified medical applications into four subgroups that
will be used in the remainder of this report to provide a state of
the art in uncertainty-aware visualization approaches in Medical
Imaging Applications (section 5).

The performed state-of-the-art analysis will be discussed in sec-
tion 6. Here, we check the presented approaches against the defined
requirements and show how single steps of the image processing
pipeline can be formed into an entire image processing pipeline.
Remaining open problems will be summarized in section 7.
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2. Medical Imaging

Medical imaging is concerned with the analysis, visualization, and
exploration of medical images [PB07]. Medical imaging comprises
three different steps, as shown in Figure 1. Each of these steps
can be implemented differently, leading to further categorization
of medical imaging approaches. An overview is shown in Figure 2.
These groups of techniques will be briefly explained in the follow-
ing.
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Figure 2: Medical imaging and its subcategories examined in this
state of the art analysis. The main categories are Image Acquisi-
tion, Image Transformation, and Image Visualization.

2.1. Image Acquisition

Image acquisition techniques include Ultrasound, Computed To-
mography, Magnetic Resonance Imaging, Diffusion Tensor Imag-
ing, and Positron Emission Imaging [Nud86]. There exist more im-
age acquisition techniques, especially in the context of endoscopy,
but we limit the considerations in this work to the most prominent
image acquisition techniques that are based on reconstruction pro-
cesses as shown by Atabo et al. [AU19]. Depending on the acquisi-
tion technique, the generated image holds different properties. They
can be 2D/3D, time-dependent, and the number of scalars per grid
point can vary.

Ultrasound Ultrasound imaging is based on the interaction of
sound waves with living tissue producing an image of the tis-
sue [Coo01]. It is usually a handheld device where clinicians can
get a first impression of the tissue or an organ that needs to be ex-
amined. Ultrasound images can be acquired in real-time resulting
in either 2D, 3D, or 4D images for each time step. Based on the
underlying physics in the image acquisition process, ultrasound is
mainly suitable for imaging soft tissues (for example tendons, ves-
sels, and organs).

Computed Tomography Scans (or X-Ray Scans) are based on the
principle that the density of tissue can be measured by the calcu-
lation of the attenuation coefficient. The X-ray emitter discharges
monochromatic photons that can be measured and computed back
based on a model describing the number of photons that can be
passed through tissue [LFM*15]. It is a widespread technique in
clinical daily routine that can be utilized in a very versatile way
for organ inspection and to determine proper treatments. This tech-
nique results in a 3D image containing density values. Depending
on the chosen imaging parameters, CT allows for the differentiation
of structures, such as bone and contrast-enhanced blood vessels.
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Magnetic Resonance Imagining (MRI) is based on a strong mag-
netic field that forces hydrogen protons in the body to spin out of
equilibrium. When the magnetic field is turned off, MRI sensors
are able to detect the energy released as the protons realign with
the magnetic field [HB97]. Intensities in MRI data are not stan-
dardized. MRI data often results in an inhomogeneous gray level
distribution which requires pre-processing of the data. In addition,
intensity values vary depending on scanner vendor and clinic. This
imaging technique is very helpful in indicating the perfusion in dif-
ferent types of tissues, for example.

Diffusion Resonance Imaging (DTI) is based on the same prin-
ciple as MRI. In addition, mathematical models are utilized to
compute the diffusion of water molecules to generate contrast in
MR images. This allows the mapping of the diffusion process of
molecules, mainly water [LBMP*01]. DTI is utilized to assess the
deformation of white matter by tumors, for neurosurgical planning
(such as the removal of a tumor), and for the diagnosis of brain
pathologies, such as Alzheimer’s disease and multiple sclerosis.
DTTI is often considered as part of MRI, but in this survey, we want
to highlight the challenge of quantifying and communicating un-
certainty in tensors which differs from scalar values. Therefore, we
separate DTI and MRI uncertainty visualization techniques in the
remaining manuscript.

Positron Emission Imaging (PET) is an imaging technique that
uses radioactive substances to visualize and measure metabolic pro-
cesses in the body [SMS*18]. These images usually show a time
series of two-dimensional images. This is often used to obtain an
image of active areas, such as activated regions in the brain.

2.2. Image Transformation

Image transformation techniques are plentiful with lots of options,
such as image correction, image registration over region defini-
tion, and geometry extraction algorithms [CLP18]. In general, it
describes the analysis and processing of images [J408]. Medical
image transformation [Ban08] can be roughly separated into the
categories image pre-processing (such as contrast enhancement),
image segmentation, and feature extraction (such as extraction of
shapes of organs).

Image Pre-Processing Image pre-processing operations can be
divided into different categories ranging from edge detection over
image enhancement techniques to image registration. In many med-
ical applications, it is important to consider multiple image datasets
of one patient to identify diseases or develop proper treatments.
These time-series images need to be correlated, referring to Image
Registration. Image Operations on the other hand, summarize all
types of operations that output a manipulated image. These opera-
tions can be performed in different ways such as with edge detec-
tion, image enhancement, or color correction.

Image Segmentation is probably one of the most important tasks
in medical imaging. Here, the goal is to define regions that repre-
sent structural components of the human body [PXP00, BZK03].
Image segmentation is required in nearly every medical imaging
pipeline as the definition of regions is required for most medical
tasks, such as organ detection, computation of sizes, or detection of
anomalies.

Feature Extraction. In many cases, it can be helpful to transform
amedical image or parts of it into another data format to understand
specific physical connections in the human body. A prominent ex-
ample is Surface Extraction where segmented parts of the medical
image are represented by a surface. Another example is Trajec-
tographies, usually based on the diffusion information in MRI or
DTI. Here, paths are computed that follow the diffusion of water.

2.3. Image Visualization

Image Visualization is a widely researched field as it allows med-
ical doctors to review medical images quickly, determine a diag-
nosis, and decide on a proper treatment plan [LML*07]. Visualiza-
tion of medical images can be accomplished by a variety of visu-
alization methods, e.g. volume rendering, geometry rendering, or a
combination thereof [HFPN90]. Also, each of these techniques can
make use of different visual variables, such as color-coding, size
and shape of an object, or motion [Burl1].

Direct Volume Rendering is a family of algorithms to visual-
ize three-dimensional image data. Volume rendering requires every
sample value to be mapped to opacity and a color. This mapping is
accomplished using a transfer function.

Indirect Volume Rendering is based on an indirect surface mesh
representation. This mesh is either generated by extracting an iso-
surface from the original volume data or by transforming a segmen-
tation result [PB14b].

Glyph-based Visualization approaches are a set of depicted prop-
erties that are encoded by a collection of visual objects [BKC*13].
Glyphs are a prominent tool to represent tensors or cases where
multiple properties need to be visually encoded.

2.4. Applications

Typical applications for medical visualization are educational pur-
poses, diagnosis, treatment planning, and inter-operative support.
Here, medical visualization is intended to support clinicians during
their daily tasks. In the following, we aim to describe these cate-
gories briefly for further reference.

Diagnosis refers to the decision about the exact character of a
disease. In particular, diagnosis is concerned with the severity of a
disease as well as the extent and precise location of pathology. In
the given context it refers to surgery, radiation treatment, and inter-
ventional radiology. As this manuscript focuses on medical imag-
ing, it does not include drug treatment or psychiatric treatment, as
image data is not relevant in these cases. This process is often aided
by medical imaging, as this technique holds the possibility to exam-
ine different tissues and their location. Here, medical doctors aim
to use medical imaging in order to determine anomalies and derive
a diagnosis based on them [RFCL16].

Treatment Planning is an important application for medical
imaging. Here, a proper plan for the treatment of a specific dis-
ease needs to be derived. Medical imaging can be of massive help
in any treatment planning where tissue needs to be examined, as
well as in spatial procedures, such as surgeries or radiation. Here
treatment steps need to be determined properly [KAS97].
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Intraoperative Support is required in many procedures in the
medical context. Especially surgeries that need to be processed and
hold a high potential for complications require an assistance mech-
anism. During these tasks, medical imaging can aid in determining
complications or aid in adjusting the current procedure [ASV*18].

Education is an important application of medical visualization.
When starting with medical education, students first need to study
anatomical structures and compositions of the human body before
they can start treating patients. Here, visualization plays an impor-
tant role in creating a first understanding of the human body and
potential diseases [SFP*00].

3. The Role of Uncertainty in Medical Imaging

We have shown that medical imaging consists of multiple steps that
can be implemented differently. This process can introduce various
sources of uncertainty. In this section, we aim to clarify the term
uncertainty, derive a taxonomy of uncertainty in medical imaging,
and determine requirements for a successful uncertainty-aware vi-
sualization for medical imaging.

3.1. Definition, Description, and Quantification of Uncertainty

Independent from the data source, datasets are usually acquired by
measuring or simulating phenomena. This creates data points that
can be related to each other.

Let ¢ € (—oo,0) be a measure and ¢* be the true value of some
measurand. When performing the actual measurement, the result
will be ¢. ¢* and ¢ may be the same value, but usually deviate
in reality due to a variety of effects. As a result, the error e of the
performed measurement can be defined as the difference between
the measured value and the true value of the measurand [BJ15].
This means: e = |¢* — ¢ |. As a consequence, the quantification of
an error requires a ground truth that clearly shows the difference
between the actual value and the measured value (Figure 3). In con-
trast to this, the uncertainty is the quantification of the doubt about
the measurement result [HDF10]. This doubt can originate from a
variety of effects such as [BHP15]:

incomplete definition of the measurand

the imperfect realization of the definition of the measurand

non-representative sampling

inadequate knowledge of the effects of environmental conditions

imperfect measurement of environmental conditions

personal bias in reading analog instruments

finite instrument resolution or discrimination threshold

inexact values of measurement standards, reference materials,

and parameters

e approximations and assumptions incorporated in the measure-
ment method and procedure

e variations in repeated observations of the measurand under ap-

parently identical conditions

These effects can have different categories: uncertainty based
on the underlying model (epistemic uncertainty e) or statistical un-
certainty resulting from variations in the measurement result when
running an experiment multiple times (aleatoric uncertainty a).
Here, a model refers to a computational description that tries to

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

map physical dependencies as adequately as possible. Naturally, a
model is never complete, as the knowledge about the physics sur-
rounding us is not complete as well. In most cases, aleatoric un-
certainty is usually the type of uncertainty that is requested to be
visualized in order to enhance a decision-making process in a given
application [PRJ12].

‘ubounded =[c'—uc'+ u]‘

Figure 3: Error vs Uncertainty. Errors can be measures according
to a ground truth whereas uncertainty needs to be quantified.

There is no unique definition of how to compute uncertainty. In
fact, arbitrary functions can be considered to achieve uncertainty
quantification. In this work, we will consider the two most popular
uncertainty quantification methods found in the literature: bounded
uncertainty and probabilistic uncertainty.

In many cases, uncertainty is described as a boundary around the
measurand [OMO2]. This defines an interval around the measurand
that can be defined as: uy4nge = [c/ - u,c/ + u]. This description of
uncertainty is chosen when the focus is not on how the occurrences
of a measurand are distributed. Instead, it is important to know the
limits in this variation [BBC87].

Another popular description of uncertainty utilizes probabilistic
distribution functions [LvB17]. These functions allow describing
the probability density of a measurand to be located at an arbitrary
point in some space. Here, the measurand usually defines the most
probable location of the true value that was captured. The most
prominent choices of probabilistic distribution functions are Gaus-
sian distribution functions but in general any distribution can be
used to express uncertainty.

As mentioned above, there are many different uncertainty quan-
tification approaches. This leads to the uncertainty quantification
problem. This problem can be approached from two different sides:
forward uncertainty quantification problem and backward uncer-
tainty quantification problem [Hel08]. In the following, we list ex-
amples in each category that will become relevant in the performed
state-of-the-art analysis.

Forward uncertainty quantification works on the basis of the
propagation of input data uncertainty. As a result, the uncertainty
of the output of a system can be quantified. These approaches aim
to capture the variance in a measure and accumulate it through-
out a sequence of computations. Forward uncertainty quantifica-
tion techniques use different types of stochastic sampling strate-
gies, such as Monte Carlo sampling. An overview is provided by
Lin et al. [LEE12]. Forward uncertainty quantification is usually
utilized to quantify epistemic uncertainty. The presented techniques
in this state of the art report include:
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| Sources of Uncertainty | Type | Dimensionality of Event | Category | Description of Event |
Positional uncertainty a 3D numerical discrete
Pixel/voxel value uncertainty a nD numerical discrete
Incompleteness of Data a nD numerical discrete
Model inaccuracy e 3D spatial/volumetric/numeric | discrete/continuous
Model incompleteness e 3D spatial/volumetric/numeric | discrete/continuous
Parameter/boundary condition uncertainty | a/e nD numerical discrete
Rasterization uncertainty e 2D/3D numerical continuous
Perceptual and cognitive uncertainty e/a 3D binary continuous
Decision making bias e/a 3D binary continuous

Table 1: Taxonomy of Uncertainty in Medical Imaging. Sources of Uncertainty are listed and origin, dimensionality, type of event, and
description of event are listed. Color-coding indicates which source of uncertain occurs in which step of the medical imaging pipeline.

Stochastic based sampling

Monte Carlo sampling

Markov Chain Monte Carlo model
Random walks

Bootstrapping

Bolzmann distributions
Time-variations

Backward uncertainty quantification aims to determine the dif-
ference between the experiment and the mathematical model.
These techniques are usually utilized to capture aleatoric uncer-
tainty. This group of algorithms is very heterogeneous. For further
detail on the individual methods, we would like to refer to the book
by Smith [Smil3]. Backward uncertainty quantification approaches
that are utilized by the visualization approaches presented in this
work are the following:

Regression analysis

Analytical quantification

Gaussian noise estimation

Bayesian approaches

Maximum likelihood estimation

Subset expectation maximum reconstruction
Probabilistic deformable regression

Belief theory [Cat03]

Kullback-Leibner divergence

Kinetic modeling

All these approaches aim to provide a measure that is able to ex-
press how close the captured measurand is to the underlying com-
putational model by trying to solve an equation, set of equations,
or reach some minimum of an optimization procedure.

3.2. Taxonomy on Uncertainty in Medical Imaging

As previously outlined, medical imaging consists of multiple steps.
Ristovski et al. [RPHL14] put a lot of effort into creating a tax-
onomy of uncertainty in medical visualization. Their classification
provides a list of sources of uncertainty where random fields (RF)
are used to describe each of these sources. This enables the uti-
lization of an arbitrary uncertainty description function. A source
of uncertainty is described as an event that can have a dimension-
ality, a category, and a description. The dimensionality describes
a number larger than zero capturing the space that is required to

describe a type of uncertainty. The category describes the mathe-
matical instance that is present in each point of the defined space
and the description defines whether the events occur in a discrete or
continuous fashion. In the following, we aim to provide an appli-
cation of the taxonomy by Ristovski et al. to medical imaging. In
addition to their classification, we also provide a separation of each
source of uncertainty into the steps of medical imaging as well as a
separation of the mentioned sources of uncertainty into aleatoric or
epistemic uncertainty. Table 3.2 provides an overview of the deter-
mined taxonomy which will be explained in the following.

Image Acquisition can introduce three different types of uncer-
tainty, which will be explained in the following.

Positional uncertainty is a source of uncertainty that occurs in
the image acquisition step. Here, a position of an acquired image
in space can vary. This is especially an issue when considering Ul-
trasound Imaging where the device is hand-held and each time the
device is used, the position needs to be acquired. In addition, po-
sitional uncertainty can occur when examining surfaces that repre-
sent medical structures such as vascular systems. At last, positional
uncertainty can be an issue when considering tractography. This un-
certainty is crucial when it comes to image registration tasks where
multiple images need to be aligned to one point in space. Posi-
tional uncertainty is an aleatoric type of uncertainty that can occur
as a three-dimensional event where the events are numerical and
discrete.

Pixel/voxel value uncertainty occurs in any type of medical
imaging. The process of capturing signals, independent of their
form, is always affected by uncertainty. Especially in the medical
field, where structures in the human body are captured and there
exists no direct correlation between the captured images and the
ground truth, this is probably the most frequently occurring and in-
fluencing form of uncertainty. Due to the numerous effects that in-
fluence this type of uncertainty, it can be described as an nD event
with numerical and discrete events.

The incompleteness of Data is an effect that occurs due to the
discretization of data when capturing an image. Medical imaging is
always restricted to a specific resolution that depends on the device
constraints and other physical restrictions. This type of uncertainty
is aleatoric and results in nD events that are numerical and discrete.

Image Transformation techniques can introduce sev-
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eral sources of wuncertainty into the medical imaging
pipeline [MPG*16].

Model inaccuracy is a type of uncertainty related to the mathe-
matical description of a model. Models typically simplify physical
behavior and can therefore not be a perfect replication of reality.
This type of uncertainty is epistemic and results in 3D events that
can, depending on the model, be spatial, volumetric, or numeric
and with discrete or continuous events.

Model imprecision is highly related to model inaccuracy and ori-
gins from approximations in computation that are necessary to be
able to compute physical behavior. Therefore, the events of model
inaccuracy result in 3D events with spatial, volumetric, or numeric
events with discrete or continuous descriptions.

Parameter/boundary condition uncertainty refers to the param-
eter and boundary conditions that are used to implement and run
a model. As models usually show a snapshot of reality, they are
implemented as closed systems where parameters and boundary
conditions need to be determined. This is often accomplished ex-
perimentally, but most of the time it is still not clear if a chosen
parameter is perfect or an optimal choice. This uncertainty results
in nD events (depending on the number of parameters) with numer-
ical and discrete events.

Image Visualization holds three different types of uncertainty.

Rasterization uncertainty refers to the problem when the data
need to be visualized. Here, the screen that shows the resulting
visualization deploys a discretization typically of lower resolution
than the full complexity of the visualization model. Depending on
the desired visualization (2D or 3D), the resulting event has the
same dimensionality, holding numerical and continuous events.

Perceptual and cognitive uncertainty is related to the user that in-
teracts with the provided visualization. Humans can have very dif-
ferent perceptual interpretations even though they all interact with
the same type of visualization. This uncertainty results in 3D events
that are binary and continuous.

Decision-making bias is also highly related to the user of a visu-
alization itself. When dealing with medical image data on a daily
basis, a personal decision-making bias can form that affects the way
a user interacts with a visualization. This uncertainty is epistemic
and aleatoric and can be described as 3D events of a binary type
and a continuous description.

As shown in this section, sources of uncertainty can be found
along the entire medical imaging pipeline. They do not need to oc-
cur in all cases but at least one of them likely occurs. As uncertainty
can highly affect the decision-making process in medical imaging,
uncertainty needs to be properly communicated.

3.3. Requirements for Uncertainty-aware Visualization in
Medical Imaging

As shown before, uncertainty is an important issue that needs to
be included in visualization approaches in medical imaging. The
development of the taxonomy of uncertainty in medical imaging
has also shown that uncertainty adds at least one random field to
the originally captured image data, resulting in an increase of com-
plexity that needs to be communicated. In this section, we list the
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requirements that need to be fulfilled in order to provide a suitable
uncertainty-aware visualization in medical imaging.

When considering the medical field, there exist a variety of re-
quirements that need to be fulfilled that originate from legal restric-
tions [MSH*20]. These restrictions are not specific to uncertainty-
aware visualization itself.

We discussed all requirements with our medical collaborators
and searched for the most important in the given context. The med-
ical collaborators are all working in clinics and include a neurol-
ogist, a dermatologist, and a surgeon. We asked all collaborators
to rate each requirement from 1 (not import) to 5 (very impor-
tant). Here, we obtained 3 requirements that have been rated with
4 and 5 from all three clinicians. As a result, we restrict the formu-
lated requirements for uncertainty-aware visualization approaches
to the visualization design itself while explicitly considering the
special needs in medicine that have been proposed by Preim and
Bartz [PBO7].

In this context, the main goal when designing uncertainty-aware
visualization for medical imaging can be summarized as follows:

e R1 Show the original dataset
e R2 Show the related uncertainty
e R3 Keep the cognitive load minimal

We would like to refer to these challenges throughout the follow-
ing state-of-the-art analysis.

Here, R3 is the most critical requirement. Clinicians usually
use a very specific visualization approach to review medical im-
age data. This technique, referred to as slice-by-slice reviewing, is
consistently trained in medical education and the standard tool to
review medical images [FP17]. The inclusion of this technique is
highly beneficial in order to ease the use of a novel visualization
technique in medical imaging as users can correlate the visualiza-
tion with a known standard.

We are aware that the formulated requirements are very general.
This is due to the fact that we aim to cover a variety of approaches
and applications in this work which would raise further require-
ments by themselves. To achieve unification, the presented require-
ments are used.

4. Uncertainty-aware Visualization in Medical Imaging

In this section, we aim to give a state-of-the-art report of avail-
able visualization approaches in uncertainty-aware medical imag-
ing. The approaches will be separated into three topic areas:
Uncertainty-aware Image Acquisition, Uncertainty-aware Im-
age Transformation, and Uncertainty-aware Image Visualiza-
tion.

4.1. Uncertainty-aware Image Acquisition

Medical imaging techniques are very versatile, creating images of
different dimensionalities (2D, 3D, time-varying, scalar, or tensor
values) that may contain a variety of values in each image com-
ponent (scalars and tensors). The process of capturing this data is
affected by uncertainty, which can be quantified and visualized.
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Figure 4: Uncertainty-aware visualization of Ultrasound image
data. a) Confidence Map in 2D Ultrasound while observing
a kidney. Chroma indicates high certainty of the captured im-
age [ZBDH*15]. b) Uncertainty quantification of 3D Ultrasound
by measuring the time variation. Yellow indicates areas with high
uncertainty [LBdJ18].

4.1.1. Ultrasound (US)

Hellier et al. [HCMC10] presented a methodology that helps iden-
tify the uncertainty in ultrasound images by estimating the shade
during the time of use mainly in the prostate examination. It is
based on the assumption that signal rupture between different ultra-
sound images indicates uncertainty. This work does not provide a
visualization approach for the quantified uncertainty. Instead, Hel-
lier et al. corrected the input ultrasound image according to their
uncertainty quantification.

Berge et al. [ZBDH*15] presented confidence maps that visually
indicate the trustworthiness of image points by using a colormap,
as shown in Figure 4(a), when reviewing a kidney. Here, chroma
color indicates areas with high uncertainty. The confidence map is
defined as the solution to a random walk’s equilibrium problem us-
ing ultrasound-specific constraints. This methodology was initially
introduced by Karamalis et al. [KWKN12].

Stevens et al. [LBdJ18] presented an uncertainty quantification
of 3D Ultrasound images based on time-variations, as shown in
Figure 4(b). The method works based on the assumption that overly
drastic changes between images in a time series suggest uncer-
tainty.

Gueziri et al. [GML14] presented a visualization to cover the
positional uncertainty of an ultrasound device. Usually, these de-
vices are handhold by the user which can result in distortion of the
resulting image. The computation is based on farget registration
errors. Gueziri et al. incorporated this uncertainty into the image
reconstruction process to create an awareness of this effect.

4.1.2. Computed Tomography (CT)

Howard et al. [HLF14] utilized a stochastic sampling approach to
quantify the uncertainty in acquired CT scans. Their goal was to
express the value of the uncertainty captured in CT scans. Here, a
rainbow color map is used to indicate areas in the image that are
uncertain, as shown in Figure 5(a).

Tian et al. [TS16] presented an uncertainty quantification ap-
proach that aims to measure quantum noise in clinical body com-
puted tomography. To accomplish this, a regression analysis was

20 40 60

(a) (b)

Figure 5: Uncertainty quantification approaches for Computed To-
mography Scans. a) Stochastic uncertainty quantification in CT
scans [HLF14], where red indicates high uncertainty. b) Embedded
iso-surface visualization of multiple analytical uncertainty quan-
tification approaches [GAH* 17]. Areas that show differing uncer-
tainty behavior are separated by lines using various colors.

utilized and the uncertainty was represented in a separate visualiza-
tion of noisy voxels. In addition, this approach allows us to correct
the input images by removing voxels in the image that are uncer-
tain.

A neural network approach provided by Rheinhold et
al. [RHH*20] estimates the uncertainty captured in CT scans. The
method is based on Bayesian neural networks that can output the
uncertainty of a computational prediction. This quantification is
shown as a separate colormap.

Gillmann et al. [GAH*17] provided a visual analytics approach
to examine a high-dimensional uncertainty space of CT scans.
Here, multiple uncertainty quantification based on analytical quan-
tification approaches were utilized and visualized by using isosur-
faces that are included in the slice-by-slice reviewing procedure.
Figure 5(b) shows an example of this approach.

4.1.3. Magnetic Resonance Imaging

(a) (b)

Figure 6: Examples of uncertainty quantification algorithms for
MRI. a) Uncertainty quantification using Bayesian neural net-
works [GDP*20]. Yellow indicates areas with high uncertainty.
b) Uncertainty Quantification using Markov Chain Monte Carlo
Methods [HFSR19]. The left image shows the mean value whereas
the right image represents the standard variation. In both images,
yellow areas indicate high values.
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Edupuganti et al. [EMVP19] provided a list of statistical uncer-
tainty quantification techniques for MRI. It includes Monte Carlo
sampling, Stein’s Unbiased Risk Estimator (SURE), and Gaussian
noise with density compensation. In this methodology, the resulting
uncertainty measures are visualized by colormaps.

Bayesian neural networks can be utilized for the reconstruction
of MRI as shown by Glang et al. [GDP*20]. As a side effect, these
networks output an uncertainty map, as shown in Figure 6(a).

Harms et al. [HFSR19] derived an uncertainty quantification
of MRI using either Maximum Likelihood Estimation (MLE) or
Markov Chain Monte Carlo methods. The resulting mean and stan-
dard deviation expressing the uncertainty when using MLE of the
MRI are shown in Figure 6(b).

In addition to the classic MRI, functional MRI (fMRI) can mea-
sure brain activity within areas of the captured images. These func-
tional areas can be computed by the detection of changes associated
with blood flow. This technique is based on the fact that blood flow
and neuronal activation are coupled [HSMO8]. Croci et al. [CVR19]
utilized the convection-diffusion—reaction equation in order to de-
velop an uncertainty quantification. This was achieved by utilizing
stochastic modeling and random variables.

4.1.4. Diffusion Tensor Imaging

(b)

Figure 7: Uncertainty quantification of Diffusion Tensor Imag-
ing. a) Uncertainty quantification using bootstrapping [AMME18]
where yellow indicates high uncertainty. b) Uncertainty quantifi-
cation using Markov Chain Monte Carlo Model [BWJ*03]. Red
indicates areas with high uncertainty.

Aliotta et al. [AMMEIS] presented a bootstrapping algorithm
that creates a probability distribution based on two captured DTI
scans. Based on this procedure, the uncertainty of the original DTI,
as well as the uncertainty of the resulting eigenvectors, can be de-
termined. Figure 7(a) shows the resulting uncertainty of the first
eigenvector in a cardiac MRI scan. This approach was extended to
wild bootstrapping by Whitcher et al. [WTW*08].

Behrens et al. [BWJ*03] applied a Markov Chain Monte Carlo
model in order to estimate the uncertainty in DTI. An example can
be found in Figure 7(b).

4.1.5. Positron Emission Imaging

Kinetic modeling can be used to provide an uncertainty quantifica-
tion of PET images shown by Saad et al. [SSHMO7]. They provide
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Figure 8: Uncertainty quantification of Positron Emission Imag-
ing. a) Uncertainty quantification using kinetic energy mod-
elling [SSHMO7] where red and purple indicate high uncertainty.
b) Uncertainty quantification using Subset Expectation Maximiza-
tion reconstruction [HBG*15]. Here, yellow represents high uncer-
tainty.

a visualization based on color-coding indicating the uncertainty of
the reconstructed PET images. Figure 8(a) shows an example.

Huet et al. [HBG*15] provided an uncertainty quantification of
PET using the Subset Expectation Maximization reconstruction ap-
proach. Their approach is specially designed to target smaller struc-
tures, such as vessels, in order to determine the uncertainty when
visualizing levels of arteriosclerosis. They achieved this by present-
ing a color map to the user that indicates the amount of uncertainty
per pixel, as shown in Figure 8(b).

Ropinski et al. [NBYR12] compute intra- and inter-model un-
certainties and visualize them using a ThemeRiver Metaphor that
allows to visually connect several settings of uncertainty. This view
is connected with a volume rendering of the original dataset to un-
derstand the uncertainties derived in the acquisition process.

Summary: It can be observed that uncertainty analysis is cov-
ered in all acquisition disciplines, but Ultrasound and Computed
Tomography are the categories that developed the furthest.

4.2. Image Transformation

In the subsequent subsections, we summarize uncertainty-aware
image transformation algorithms and will differentiate between im-
age operations that output a processed image and image registration
approaches. In this section, we aim to examine uncertainty-aware
techniques for image processing and their relation to suitable visu-
alization approaches.

4.2.1. Image Pre-processing

Image pre-processing operations can be divided into different cat-
egories ranging from edge detection over image enhancement
techniques to image registration. In the following, we summarize
uncertainty-aware image processing algorithms and will differen-
tiate between image operations that output a processed image and
image registration approaches.
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Figure 9: Uncertainty-aware image operations. Visual pipeline
of arbitrary image pre-processing operations by Gillmann et
al. [GAH* 18]. Individual steps are shown side-by-side to their un-
certainty and the computational pipeline is indicated by a graph.
Orange shows areas in the images that are highly affected by un-
certainty.

Image Operations When applying image operations, the uncer-
tainty captured in the input image needs to be mapped into the out-
put image. This can be achieved in different ways. In his work,
Pal [PALO1] showed that uncertainty quantification and propaga-
tion is an important factor that affects image pre-processing opera-
tions in different applications.

The first group of uncertainty-aware image operations works on
an uncertainty-quantification of the medical image which is prop-
agated by utilizing the uncertainty propagation rules known from
physics [Che(09].

Pal [PALO1] presents an uncertainty model based on the analysis
of grayness ambiguity and shows how to propagate this information
along an image pre-processing pipeline. Still, this method does not
provide a visualization that allows the user to follow the propaga-
tion of uncertainty.

Mencattini et al. [MRSSO08] presented an image pre-processing
pipeline that is adapted by considering an uncertainty quantifica-
tion of the input image. This quantification can be chosen freely.
Although the approach is able to adjust the results in the image pre-
processing pipeline according to the underlying uncertainty quan-
tification, it does not provide a visual communication of the uncer-
tainty.

A method for the Hough transformation that is able to con-
sider uncertainty information of the input image was introduced by
Qiang et al. [JHO1]. Hough transformations map the image space
onto a selected feature space, where the degree of fitting can be

extracted. For medical imaging, this allows determining the degree
of similarity of structure shown in an image to a requested fea-
ture. Their method showed that the results of a Hough transforma-
tion can be significantly improved. This approach as presented is
not able to visually communicate the influence of the image uncer-
tainty.

Yi et al. [YHS94] showcased a method that allows the quantifi-
cation and propagation of arbitrary image uncertainties throughout
the image vision pipeline. In their method, they provide a visual
representation that demonstrates the current amount of uncertainty
in each computational step.

Franco et al. [FCC15] presented a theoretic framework that pro-
vides the ability to arbitrarily quantify and propagate uncertainty
throughout a medical image processing pipeline. This approach is
not coupled with a visualization approach that helps users to navi-
gate through the process.

Gillmann et al. [GAH*18] developed a system that provides
quantification of the uncertainty in input images and propagates
the computed uncertainty along arbitrary image pre-processing
pipelines for US, CT, and MRI images. Their system is guided by
a visual representation connecting the computational steps and pre-
senting the development of the overall uncertainty throughout each
computational step, as shown in Figure 9.

Alternatively, images can be interpreted as fuzzy sets, as shown
by Szczepaniak [SLKOO]. This allows creating probabilities of im-
age pixels to show a specific object. In the medical field, this relates
to the uncertainty of an image pixel representing a specific medical
structure. Computational rules are described that determine how to
combine several fuzzy sets or how to perform computations based
on fuzzy sets in general. This principle is utilized by Chaira et
al. [Chal5] to provide an uncertainty-aware image operation.

The operations summarized so far are solely utilized for medical
image data that holds one scalar per voxel. More precisely, diffu-
sion tensor imaging cannot directly be processed by these method-
ologies. Here, the tensors in the DTI need to be either simplified
first by tensor measures, such as eigenvalues or norm, or compu-
tational approaches that transform tensors into another representa-
tion. We will focus on this class of techniques in section 4.2.3.

Image Registration Mahyari et al. [LTAH13] proposed the con-
cept of Probabilistic Deformable Registration (PDR) where each
voxel of an image is assigned a distribution over the potential dis-
placement vectors. Mahzari et al. utilized uncertainty measures to
enhance the standard image registration process.

Bian et al. [BYW*20] proposed a neural network-based ap-
proach that is built on Bayesian neural networks to achieve image
registration. In this work, the uncertainty output of Bayesian neu-
ral networks is utilized to quantify the uncertainty in the image
registration process. Folgoc et al. [LDCA17] presented a similar
approach while relying on sparse Bayesian neural networks. Their
result is a heatmap showing the probability of the moving image
to be properly based on top of the original image as shown in Fig-
ure 10(a).

Risholm et al. [RPSW10] presented a framework to compute the
registration uncertainty as well as the most likely deformation that
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Figure 10: Uncertainty-aware image registration approaches. a)
Uncertainty-aware image registration using Bayesian neural net-
works [LDCAI17]. Yellow indicates areas where the registration
approach is affected by uncertainty. b) Uncertainty-aware image
registration using Boltzmann distributions [RPSW10]. Yellow rep-
resents areas where image registration is highly affected by uncer-
tainty.

is required to register image data from the human brain by using
Boltzmann distributions. In their system, the authors provided a vi-
sual representation of the registered image as well as the extent
of the deformation, as shown in Figure 10(b). Their visualization
approach is specially designed to communicate registration uncer-
tainty during surgery. The technique was refined to deploy color-
coding to indicate areas of high registration uncertainty using a
colormap [SWGS11].

By considering registration parameters, Yang et al. [YN15] pro-
vided an uncertainty quantification based on the Hessian matrix
that estimates and visualizes the sensitivity of the input parameters
in the registration process. Here, they use glyphs to indicate the
uncertainty in each image pixel to be correctly mapped.

Schlachter et al. [SFJ*16] provided a visual tool to analyze
the accuracy and uncertainty in the segmentation process of de-
formable image registration. They use a combination of 2D and 3D
visualization where color-coding is used to indicate dissimilarities
in the registration process.

4.2.2. Image Segmentation

Medical image segmentation is an often-occurring step in analysis
procedures. The separation of regions or objects of interest from
other parts of the body is of high interest for clinicians as the sim-
plification of a medical image to the region of interest can simplify
decisions.

In contrast to classic segmentation definitions where voxels are
distributed to segments, fuzzy segmentations use probabilities to de-
scribe the degree of affiliation to a segment. A review of these tech-
niques can be found in [NMI10]. These methods work on a fuzzy
c-means clustering algorithm performing an unsupervised segmen-
tation for a predefined number of segments. Still, this type of clus-
tering is sensitive to noise which makes it difficult to use for real-
world datasets.
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In order to reduce noise sensitivity, different methods [BS09,
CCZ07] adapt the fuzzy c-means clustering. These approaches con-
sider the neighborhood of a voxel to decide the segmentation result.
Although this increases the applicability of fuzzy segmentation on
real world datasets, it is an unsupervised segmentation approach
that does not provide a mechanism to insert user knowledge into
the segmentation process.

Aside from fuzzy segmentation, Petronella et al. [AVvO*04] cre-
ated a probabilistic segmentation based on density measurements
generated from a Magnetic Resonance Imaging (RMI) device.

Graph-cut approaches [KT08] can be extended to result in a
fuzzy segmentation [Adal2]. Although this shows the weaknesses
of the segmentation result, the user is not able to control the result-
ing structures. The resulting segments are visualized using color-
coding.

Model-dependent segmentation approaches can also be extended
in order to achieve an uncertainty-aware segmentation result. Her-
shkovitch et al. [HR18] presented an approach where models can
be overlapped with the target image and the quality of fit between
model and image can be determined and visually encoded.

Several approaches describe measures that classify and visual-
ize the classic segmentation results. Benno et al. [LGM*14] uti-
lized belief functions that help express the uncertainty in each im-
age pixel. The certainty of the segmentation result is encoded by a
colormap.

Al et al. [ATHL14] utilized the Kullback—Leibler divergence (or
the total variation divergence) to express the uncertainty in the seg-
mentation result. They use color-coding to indicate pixels that can-
not be counted into a specific segmentation class for sure. An ex-
ample of this approach is shown in Figure 11(a).

Saad et al. [SHM10] proposed an interactive framework that al-
lows users to examine the uncertainty of the segmentation result,
as shown in Figure 11(b). The quantification of uncertainty in the
segmentation result is based on Bayesian decision theory. The seg-
mentation result is shown by utilizing a volume rendering approach
that color-codes the uncertainty in the segmentation result.

Some approaches that highlight segmentation defects or uncer-
tainty in the segmentation results are available in the literature as
well. Prassini et al. [PRH10] presented an uncertainty-aware image
segmentation approach that is based on the random walker com-
putation. In their visual framework, they indicate the borders of a
segment with a certain probability with different lines as shown in
Figure 11(c).

Batra et al. [BUK*10] proposed a visually fuzzy segmentation
approach where users can guide the segmentation process. Here,
users start marking in the original image in order to guide the
segmentation algorithm. The segmentation algorithm computes the
certainty for each image pixel based on geodesic distances, which
is visually indicated in the segmentation process and the user can
adapt the scribbling input if required, as shown in Figure 11(d).

Using a multi-modal segmentation approach, Al-Taie et
al. [ATHL15] also describe the segmentation uncertainty as well.
Their approach is suitable for brain imaging and works on a
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Figure 11: Uncertainty-aware medical image segmentation. a) Image Segmentation using Kullback—Leibler divergence [ATHLI14]. Areas
that cannot be separated clearly are highlighted in yellow. b) Segmentation result based on belief functions [PRHI10] shown by volume ren-
dering. Belief functions aim to capture our belief regarding the location of the true value. In the context of image segmentation, they express
the probability of a pixel to be contained in a specific segmentation class. Dark orange indicates areas with high uncertainty. c) Segmentation
result based on random walker computation approach [BUK*10]. d) Segmentation result based on random walker computation [SHM10].
Light gray areas indicate an uncertain segmentation approach e) Segmentation based on hierarchical geodesic distances [GPW*19]. Trans-
parent and mixed colors highlight uncertain areas in the segmentation result.

Kullback-Leibner divergence. In addition to the segmentation out-
put, this approach provides an uncertainty map of the segmentation
result.

Gillmann et al. [GPW*19] presented a hierarchical and prob-
abilistic segmentation approach where users can design arbitrary
hierarchical segmentation classes and initialize them with seed
points. The resulting visualization shows the assigned color of each
segmentation node and uncertainty between nodes is indicated by
the mixing of colors, as shown in Figure 11(e).

3D multi-modal
MRI
30D U-net

Tumour Segmentation

=
[ 3D conv (1x1x1) + sofimax dropout (0.05)

[ 3D Avgpool (22x2) skip connection

[ 3D conv (3x3x3) + relu TSERCE Norm +
(] 3D transposed conv (3x3x3) + relu

Figure 12: Uncertainty-aware medical image segmentation using
Bayesian neural networks. Based on a U-Net architecture, images
can be segmented [MA19].

Recently, segmentation approaches that are based on neural net-
works became very popular in medical applications. This is due to
the fact that segmentation results can become very accurate when
considering neural network approaches and having labeled train-
ing datasets. A popular tool to achieve this is so-called U-Nets, as
shown in Figure 12. These form a deep convolutional neural net-
work that is able to expand the determined classification in order to
restore its location in the original image [RPB15].

A popular tool to express the uncertainty throughout U-Nets is
an adaptation that utilizes Bayesian neural networks, as shown by
Kwon et al. [KWKP20]. These networks are able to output the seg-
mentation result as well as the uncertainty of segmentation results.

A popular application for these networks is the lesion segmenta-
tion task [JA19]. This is due to multiple effects: first brain lesion
datasets are widely available and the detection of a brain lesion is a
clear localization task that works as a basis for a U-Net.

Nair et al. [NPAA20] presented a visualization approach that
helps examine the segmentation output of neural networks using
various uncertainty measures. Here, the segmentation results and
the quantified uncertainty are visually encoded in the original im-
age.

4.2.3. Feature Extraction

In many cases, it can be helpful to transform a medical image or
parts of it into another data format to understand specific physical
connections or other features in the human body. A prominent ex-
ample is surface extraction where segmented parts of the medical
image are represented by a surface. Another example is trajectog-
raphy, usually based on the diffusion information in MRI or DTI.

Surface Extraction The original surface extraction algorithm
known as marching cubes [LC87] is a well-known algorithm. It
is based on a selected value that determines the resulting surface
elements. Although this algorithm has been successfully applied to
many problems, the original algorithm is not able to adapt its value
throughout the image to match the desired surface.

Glanznig et al. [GMGO09] presented a marching cubes method
that is able to automatically adapt its iso-value throughout the ex-
traction process, as shown in Figure 13(a). Here, users can select
different types of iso-value generation such as random distributions
around a set value or iso-value generation based on image gradi-
ents. Still, this process is not guided by a visual approach.

In general, the marching cubes algorithm can lead to degenerated
meshes, independent of whether a dataset is affected by uncertainty.
Dietrich et al. [DSS*09] inserted surface points into the original
surface to preserve topological features.

Pothkow et al. [PWHI11] presented a probabilistic marching
cubes approach that captures the uncertainty of the resulting geom-
etry. Here, joint distributions of random variables associated with
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Figure 13: Uncertainty-aware geometry extraction in medi-
cal imaging. a) Uncertainty-aware geometry extraction through
adaptive isovalues [GMGO09]. Dark orange highlights areas
with high positional uncertainty. b) Uncertainty-aware optimiza-
tion of the extracted surface using arbitrary uncertainty mea-
sures [GWHH18]. White color indicates high uncertainty in the
position of the surface.

the sample locations are utilized to compute level crossing proba-
bilities for cells of the sample grid.

By utilizing an analytical uncertainty model, He et al. [HMH* 15]
extended the original marching cubes algorithm. They propagate
this information throughout the marching cubes algorithm. This
approach leads to an uncertainty visualization complementing the
extracted isosurface.

Gillmann et al. [GWHH18] presented an isosurface extraction
algorithm that is based on the classic marching cubes algorithm.
Here, the algorithm starts with an isosurface that was extracted by
the marching cubes algorithm. For each of the points included in the
surface, the algorithm adapts the point position to move the surface
into a direction in such a way that the measured uncertainty of the
input image is minimized while at the same time trying to preserve
the original geometry. The remaining uncertainty is encoded via
color-coding of the surface, as shown in Figure 13(b).

Tractography Extraction Tractography is a 3D modeling tech-
nique for visually representing nerve tracts and thereby understand-
ing the functionality of the human brain [Mor07]. This method is
usually deployed to examine MRI or DTI data. It is based on the
measure of the apparent diffusion coefficient at each voxel. Using
seed points, a space-path through the field of diffusion coefficients
can be computed.

Bornemo et al. [BBKWO02] presented a fiber tracking approach
that is based on stochastics and regularization allowing paths origi-
nating in a seed point to branch and return a probability distribution
of possible paths. Possible paths can be visualized in the original
slice-by-slice view as shown in Figure 14(a).

Friman et al. [FFWO06] utilized a Bayesian stochastic analysis
to compute potential tractography. The resulting computations are
visualized in the original slice-by-slice view.

Bootstrapping is a very popular group of approaches to capture

the uncertainty in tractography [CFJ*06,Jon08]. This approach is
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Figure 14: Uncertainty-aware tractography in MRI and DTI data.
a) Tractography visualization using multiple paths [BBKWO02]
to indicate variations in the path. b) Uncertainty visualization
of potential paths using first eigenvector direction as color-
coding [CLHO6]. Red shows segments of the path that hold a high
positional uncertainty.

based on random sampling and assigns measures of accuracy to
the measured samples. Several approaches utilize bootstrapping to
quantify the uncertainty of the tractography and visualize the po-
tential paths. Chung et al. provided a comparison of available boot-
strapping approaches [CLHO6]. The visualization is normally an
inlay of potential paths in the original slice of the image data to
provide spatial context. Figure 14(b) shows an example of this ap-
proach.

Behrens et al. [BBJ*07] presented a direct extension of proba-
bilistic diffusion tractography to the case of multiple fiber orien-
tations. Their approach is based on relevance determination that
allows users the online selection of a number of fiber orientations
supported by the data at each voxel. These paths are visually en-
coded in the slice-by-slice visualization.

Descoteux et al. [DDKAO09] provided a visual approach to exam-
ine variations in tractography. Here, orientation distribution func-
tions (ODF) are modeled using sharpening deconvolution functions
(SDF). The resulting tractography is minimized to one path that is
color-coded to indicate the strength of geometric variation.

Brecheisen et al. [BPVHR12] used a Wild Bootstrap algorithm
combined with a fiber tracking algorithm. They utilized illustrative
rendering to minimize the paths that need to be drawn. Here, sur-
rounding hulls indicate frequently occurring paths.

Summary: This section shows that there exists a variety of im-
age transformation approaches. In addition, each category contains
at least one example, where all requirements can be fulfilled.

4.3. Image Visualization

Independent from the visualization of uncertainty measures or the
visualization of image pre-processing results, the medical images
themselves need to be visualized in order to provide clinicians with
powerful decision-making tools. In this section, we will differen-
tiate between direct volume rendering approaches; indirect vol-
ume rendering approaches; further visualization techniques, such
as flattening-based visualization or illustrative visualization; and
visual analytics systems.
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4.3.1. Direct Volume Rendering

Volume rendering is a straightforward tool to visualize three-
dimensional medical image data.

Low High
HE N
Sensitivity
(@) (b)

Figure 15: Uncertainty-aware volume rendering. a) Volume ren-
dering to encode sensitivity of the input image [KniO8]. Red indi-
cates high sensitivity. b) Ambient occlusion of uncertain anatomical
structures [KSE16]. Uncertain structures are shown less opaque.

Kniss et al. [KniO8] provided a method that uses two-
dimensional transfer functions to allow the user to select different
structures in an image. Here, the methodology allows the use of
color transfer functions that indicate the confidence of voxel val-
ues, as shown in Figure 15(a). Mia et al. [MCC*20] refined this
approach to allow users to express the feature of interest via trans-
fer functions. Here, volume rendering is used to indicate uncertain
areas in the resulting volume visualization by distortion.

Lundstroem et al. [LLPYO07] proposed an uncertainty-aware vol-
ume rendering approach that captures uncertainty through anima-
tion. The rendering is animated by sampling the domain of prob-
abilistic transfer functions over time, which results in a varying
appearance of regions. Contrary to a variety of approaches listed
so far, the defined target of providing an easy-to-understand visual-
ization that addresses medical researchers’ needs is excellently im-
plemented in this approach. In addition, it contains a strong eval-
uation, which makes it one of the most remarkable works in this
manuscript.

Kroes et al. [KSE16] presented an ambient occlusion approach
for direct volume rendering that allows the highlighting of cer-
tain structures while utilizing volume rendering, as shown in Fig-
ure 15(b). Here, occlusion maps are updated according to the cer-
tainty of the input dataset.

4.3.2. Indirect Volume Rendering

Indirect volume rendering refers to the rendering of geome-
tries [ZT03]. Although this section is highly related to section 4.2.3,
we distinguish between these approaches as they are not directly
related to the source of the geometry that is utilized. We want to
separate these topics as geometry extraction methods produce the
geometry that needs to be visualized and indirect volume rendering

(b)

Figure 16: Uncertainty-aware indirect volume rendering. a) In-
direct Volume Rendering using color-coded point clouds [GRO4]
where purple indicates surface points with high positional uncer-
tainty. b) Iso-surface representation with uncertainty color-coding
for uncertain points included in the surface [Dra08]. Blue shows
high uncertainty.

is solely concerned with the visualization of geometry, independent
from its source.

Rhodes et al. [RLBS03] evaluated different techniques to visu-
ally encode uncertainty on isosurfaces. They tested different modes
as color-coding, textures, and a combination of these techniques for
multi-modal visualization. They found that color-coding is a suit-
able method to visualize uncertainty on a surface.

Grigoryan et al. [GR04] presented a probabilistic description of
points that can describe extracted surfaces. In contrast to march-
ing cubes, solely points that represent a surface are extracted. In
this method, for each point a probability is computed that encodes
how likely it is that this point is part of a surface, as shown in Fig-
ure 16(a).

Drapikowski [Dra0O8] described a model for isosurface uncer-
tainty characterization in medical applications based on geomet-
ric features such as smoothness and curvature. These features were
combined with knowledge of the underlying image structure and
the human anatomy to determine the quality of an isosurface.
This uncertainty is color-coded into the surface, as shown in Fig-
ure 16(b). This is an important issue when designing prostheses that
need to fit perfectly onto a bone of a patient.

Gillmann et al. [GWHA18] provided a visual approach to in-
dicate positional uncertainty in extracted surfaces. Here, semi-
transparent isosurfaces are utilized to encode potential locations of
surface points.

4.3.3. Glyph-Based Rendering

As a DTI dataset contains tensors, a suitable tensor visualiza-
tion needs to be derived. Here, glyphs are a common visualiza-
tion tool. Ropinski et al. [ROP11] provided an overview on glyph-
based spatial multivariate medical data and highlighted the need for
uncertainty-aware tensor glyphs [GRT19].

Jones et al. [Jon03] utilized cones of uncertainty that indicate the
uncertainty in each voxel of the DTI scans. Here, the cones gain
in size when the uncertainty increases. In addition, the cones are
oriented such that the tractography direction can be determined.
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Figure 17: Uncertainty-aware tensor visualization in medical
imaging. a) Comparison of two different tensor fields [ZSL*16].
b) Uncertainty-aware tensor glyphs with surrounding sur-
faces [GRT19].

Zhang et al. [ZSL*16] provided a methodology to compare two
different sets of tensors, as shown in Figure 17(a). They utilized
merged glyphs to provide a visual representation for comparison.
Although this allows solely the comparison of different datasets,
one might be able to get a first impression of the variability in DTI
datasets.

Gerrits et al. [GRT19] presented an uncertainty-aware visualiza-
tion of tensor glyphs. In their methods, the tensor glyph is sur-
rounded by a transparent hull that indicates the potential variation
in the glyph appearance, as shown in Figure 17(b).

Abbasloo et al. [AWHS16] provided a visual analytics tool
that allows a user to examine DTI datasets in an intuitive fash-
ion. Starting from an uncertainty quantification, volume rendering,
uncertainty-aware glyphs, and tractography are provided to allow
clinicians to refine their diagnosis.

Ristovski et al. [RGH*19] used glyphs in a completely differ-
ent manner. They aim to highlight areas in the brain that should be
treated by radiofrequency to remove a tumor while not destroying
surrounding tissue. The glyphs use a distinct color-coding to high-
light the certainty of an area to be treated.

Summary: This section shows that visualization of uncertainty
in medical imaging is hard to achieve as there does solely exist
one approach (direct volume rendering= that is able to cover all the
requirements that were defined.

5. Applications

In order to target a specific use case in medical imaging, medi-
cal imaging visualization pipelines need to be composed. In the
following, we aim to summarize approaches of visualization for
uncertainty-aware medical imaging that can be directly used in
medical applications. Here, we structure the identified approaches
along with four applications: diagnosis, treatment planning, intra-
operative support, and education.

5.1. Diagnosis
Saad et al. [SMH10] devised an interactive segmentation algorithm

where users can manipulate the aspects of the medical image that
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is visible to them. For diagnosis, this is a very important feature
as the region of interest and the resulting segmentation target vary
dramatically according to the underlying use case. The tool can be
used to assist during diagnosis tasks where the shape and appear-
ance of specific structures play an important role.

Unger et al. [UHP*20] presented a real-time diagnosis and visu-
alization of tumor margins in excised breast specimens. They use
Bayesian machine learning in order to determine tissue that is af-
fected by a tumor. The probabilities are shown as color-coding in
the original imaging data.

Gillmann et al. [GSW*20] developed a visual analysis tool that
is able to examine the uncertainty of input CT scans, transforming
this uncertainty throughout an uncertainty-aware image segmen-
tation approach, indicating the resulting uncertainty in an indirect
volume rendering approach to show which part of the brain might
be affected by a lesion.

Brecheisen et al. [BPtHRV 13] used illustrative volume render-
ing in order to capture a variety of potential tractographies obtained
from a DTI scan, as shown in Figure 18(b). They embed the result-
ing visualization into a volume rendering of the brain to allow the
examination of spatial variation in the captured tractography.

Ristovski et al. [RMW*17] presented an uncertainty-aware vol-
ume rendering method that allows users to directly see the poten-
tial dimension of stenotic regions in arteries. Here, several surfaces
are shown to indicate different confidence intervals of the reviewed
stenosis, as shown in Figure 18(a).

Gillmann et al. [GMHWI18] provided an uncertainty-aware
image-based indicator to early diagnose peripheral artery disease.
They use an uncertainty-aware segmentation approach to compare
a healthy and a diseased leg to locate differences between them.

5.2. Treatment Planning

A prominent application of medical imaging for treatment planning
is the determination of dose radiation. Schlachter et al. [SRM*19]
highlighted the importance of uncertainty-aware visualization in
this application.

Wieser et al. [WCW™*17] developed an open-source tool called
matRad that allows the calculation of radiation at specific points
in a patient’s tissue. Their work computes the radiation dose us-
ing the underlying CT image and its uncertainty. The resulting
visualization is a heatmap embedded in the original image data,
as shown in Figure 18(c). This principle was refined by Maleike
et al. [MUOOG6] considering probabilistic dose distributions, and
Clements et al. [CST*18] allowing user input to define which ar-
eas should be aimed at with radiation. The tool then computes the
potential radiation to the surrounding tissue.

Another important aspect of intraoperative support is the use of
brain maps that aim to assign different regions to the human brain
that map to the physical abilities of humans. These maps are of-
ten computed based on a sample of patients and it can be hard to
determine the exact boundaries between different regions.

The Julich-Brain Atlas [AMBZ20] provides a brain atlas with
fuzzy boundaries. The atlas is computed based on multiple patient
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Figure 18: Applications of uncertainty-aware visualization in medical imaging. a) Uncertainty-aware visualization of stenosis [RMW*17]
using isosurfaces to indicate different stenosis stages. b) Illustrative rendering of tractographies [BPtHRV13] showing a summary of multiple
paths surrounding a tumor. ¢) Uncertainty-aware visualization of radiation during therapy [WCW*17] indicating radiated tissue using
color-coding. d) Uncertainty-aware guidance during surgery [CBS*19] using color and transparency to indicate potential missplacement of
instruments. e) Uncertainty-aware brain atlas [AMBZ20] providing a color-coding that highlights uncertain areas.

data and their degree of agreement is used to provide a probabil-
ity for a specific voxel to be contained in a specific class of the
brain, as shown in Figure 18(e). This atlas was used by Fox et
al. [Fox18] who also included uncertainty-aware tractography com-
putations that allow for examining the probability of a tractography
to be located in a specific class of the brain atlas.

5.3. Intraoprative Support

A prominent example of intraoperative support is the use of medi-
cal imaging during surgeries or the planning process of surgeries.

Simpson et al. [SMC*06] provided guidance in surgery guidance
by visually indicating the uncertainty of the registered surgery de-
vice during the surgery itself. The uncertainty is quantified by using
statistical analysis which allows clinicians to identify the positional
uncertainty of specific surgery tools.

Barbara et al. [CBS*19] presented a visual tool that indicates the
positional uncertainty of tools used during surgery. The uncertainty
was quantified using trajectory alignment. Their approach shows
the potential distortion of the tools in visualizations, as shown in
Figure 18(d).

Simpson et al. [SMV*14] computed and visualized the uncer-
tainty throughout the use of surgical tools. They used a heat map
to indicate the probability of a tool touching a specific tissue while
considering the registration uncertainty during the registration pro-
cess.

Gillmann et al. [GMP*18] provided an uncertainty-aware tool
that allows planning minimally invasive surgeries. In their tool, the
uncertainty of the input CT scans is captured while an uncertainty-
aware segmentation approach is used to extract different types of
tissues. This enables clinicians to define surgery paths and visual-
ization is used to show the probability of interfering with different
types of tissues.

5.4. Education

Although the positive effect of visualization approaches in med-
ical education are well-known [FL18] and specific courses to

teach image processing principles to medical students are de-
signed [GWHH17], uncertainty is not covered in any of these works
so far.

Summary: Considering applications, there exist approaches in
each category that consider uncertainty except for education. Here,
no approaches have been found.

6. Discussion

We showed that there exist a variety of uncertainty-aware visualiza-
tion approaches in medical imaging and how these can be applied
to different clinical scenarios. In this section, we aim to discuss
whether the requirements that have been determined in section 3.3
are met by the presented approaches. Here, we made a ranking for
all presented works. Our medical collaborators (3 clinicians) dis-
cussed our rating and corrected it if needed. In addition, we aim
to provide a list that indicates which groups of medical imaging
approaches can be combined in order to compose an entire image
processing pipeline.

6.1. Check of Requirements

Table 2 shows all presented approaches for uncertainty-aware
Image Acquisition. It can be seen that there exist solely two
categories (Ultrasound and Computed Tomography) that hold
uncertainty-aware medical imaging approaches. MRI, DTI, and
PET approaches exist in an uncertainty-aware manner but do not
fulfill all requirements.

Most presented approaches show the captured uncertainty in the
input images using a separate image that provides a color-coding
indicating the degree of uncertainty captured in an image voxel.
This approach can be hard to correlate in clinical daily routine and
is a clear violation of R3. Especially for DTI where multiple values
per voxel need to be reviewed, an additional dimension of complex-
ity may lead to cognitive overload. Here, we can clearly see that a
direct correlation between the input image and its uncertainty in
one intuitive view is an important aspect that needs more focus in
this research area.

We have investigated a variety of uncertainty-aware Image
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| Acquisition | Work | R1 | R2 | R3 | | Transformation | Work | R1 | R2 | R3 |
[HCMCI10] | vV X v [PALO1] 4 X X
[ZBDH*IS] | vV | V | V [MRSS08] 4 X X
Ultrasound [KWKNI2] | V | V | V/ Image [JHO1] v X X
[LBdJ18] X v |/ Overafi [LTAHI13] |/ X
[GMLI4] | X | v | v PEHOmS - rects) | v | x| X
[HLF14] X |/ Pre- [GPW*19] A A 4
Computed Tomography [TSI6] X v v Processing [Chal5] v X X
[RHH*20] X v |/ [LTAH13] X v |/
[GAH*17] v | V|V [BYW*20] X v |/
M R [EMVP19] X v |/ Image [LDCA17] X v |/
agnetic Resonance | ioppogr | x | v | v Registration | [RPSW10] | v | v | v
Imaging [CVRI9] | v | v | x YNIS] | v | v | v
Diffusion Tensor [AMMEI8] |~ X v 4 [SFI*16] v v/ v
Imaging [WTW*08] | X v |/ [BS09] v X X
[BWJ*03] X v |/ [CCZO07] v X X
Positron Emission [SSHMO7] X v v [AVVO"04] v X X
Imaging [HBG*15] X v |/ [KTO08] X v |/
[NBYRI12] |/ X [Adal2] X v | v
. [HR18] | V|
Table 2: Check of uncertainty-aware Image Acquisition against [LGM*14] X v/ v/
the formulated requirements (R1 Show the original dataset, R2 Segmentation [ATHL14] X v/ v/
Show the related uncertainty and R3 Keep the cognitive load min- [SHM10] X v/ X
imal). The approaches are sorted along with the subcategories of [PRH10] v/ v/ v/
different acquisition techniques. Techniques that fulfill all require- [BUK*10] X v/ v/
ments are highlighted in gray. [ATHL15] v v/ X
[GPW*19] X v |/
[KWKP20] | /Y
Transformation approaches that we have sorted into several sub- [NPAA20] A AN 4
categories, as shown in Table 3. For image pre-processing, we were [GMG09] XX
able to find approaches that fulfill all requirements for uncertainty- Surface [DSS*09] 4 X X
aware medical imaging visualization in both subcategories (image Extraction [PWHII] v X X
operations and image registration). For image operations we can [HMH"15] 4 v X
see that most approaches do not aim to indicate the uncertainty vi- Feature [GWHAILS8] | v 4 X
sually. Instead, these approaches aim to use uncertainty information Extraction [BBKWO2] v
to enhance the image operation output. Tracto- [FEW06] A A
[CLHO06] | /Y
For medical image segmentation, about a third of the approaches Graphy [BBJ*07] J/ v/ J/
that we identified are able to fulfill all defined requirements. In this [BPVHRI2] v/ v/ v

context, we want to highlight that Bayesian decision theory is a
technique that becomes more popular in the field of visualization
and potentially is a key element in fulfilling the formulated require-
ments.

In the category of feature extraction algorithms, the geometry ex-
traction algorithms included in this report do not provide a method
that allows for visualization of uncertainty-aware medical imaging
that fulfills all defined requirements. This is probably due to the na-
ture of surfaces and the relatively seldom use in clinical daily rou-
tine. On the other hand, all tractography-based visualization algo-
rithms fulfill the defined requirements. This category impressively
shows how original image and uncertainty information can be com-
bined while providing an intuitive visualization for clinicians. Trac-
tographies are embedded in a slice-by-slice view which makes it
easy for clinicians to correlate the novel visualization technique
with the well-known slice-by-slice reviewing technique.

Table 4 summarizes the identified techniques for the visualiza-

tion step in medical imaging. The table indicates that there ex-
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Table 3: Check of uncertainty-aware Image Transformation
against the formulated requirements (R1 Show the original dataset,
R2 Show the related uncertainty and R3 Keep the cognitive load
minimal). The approaches are sorted along with the subcategories
of different processing techniques. Techniques that fulfill all re-
quirements are highlighted in gray.

ists solely one approach that is able to fulfill the requirements for
uncertainty-aware visualization in medical imaging. This approach
uses direct volume rendering. The reason is that indirect volume
rendering and glyph-based visualization are not used in all clinical
settings. If it is used, structures that are rather clearly identified are
shown such as bones or surface shaded displays in radiology sta-
tions. Therefore, the examined techniques are not able to present
a visualization that meets the needs of clinicians in general. Here,
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| Visualization | Work | R1 | R2 | R3 |
[KniO8] v v X
. . [LLPYO07] v v v
Direct Volume Rendering [MCC*20] % % X
[KSE16] v v v
[RLBS03] v v X
. . [GRO4] v v X
Indirect Volume Rendering [Dra08] % v X
[GWHAI18] | v/ v X
[Jon03] v v X
[ZSL*16] v v X
Glyph-based Visualization [GRT19] v | V| X
[AWHS16] v v X
[RGH*19] v v X

Table 4: Check of uncertainty-aware Image Visualization against
the formulated requirements (R1 Show the original dataset, R2
Show the related uncertainty and R3 Keep the cognitive load min-
imal). The approaches are sorted along with the subcategories of
different visualization techniques. Techniques that fulfill all require-
ments are highlighted in gray.

a combination with the slice-by-slice reviewing approach is highly
required in order to promote unused visualization approaches.

| Application | Work
[SSHMO07]
[GSW*20]
[BPtHRV13]
[RMW*17]
[GMHW18]
[WCW*17]
[MUOO06]
[CST*18]
[AMBZ20]
[Fox18]
[SMC*06]
[CBS*19]
[SMV*14]
[GMP*18]
Education -

| RI [R2 [R3 |

Diagnosis

Treatment Planning

Intraoperative Support

AN NN XX N[N X XN
SANNSSOSNKIRSANSS
AV N N N N T N R A S YR N N

Table 5: Check of uncertainty-aware Applications against the for-
mulated requirements (R1 Show the original dataset, R2 Show the
related uncertainty and R3 Keep the cognitive load minimal). The
approaches are sorted along with the subcategories of different
medical applications. Techniques that fulfill all requirements are
highlighted in gray.

Table 5 shows the examined approaches that are designed to
target a specific application in uncertainty-aware medical imag-
ing. Here, we directly see that we could not find any approaches
that provide uncertainty-aware visualization in medical education,
which might be due to the fact that medical students have to learn
a lot. For the remaining categories, we were able to identify sev-
eral approaches that assist in the respective task. In each category,

there exist multiple approaches that fulfill the formulated require-
ments. In general, the table shows that approaches that are designed
to aid in a specific task hold the highest potential in fulfilling all
defined requirements. This indicates that medical imaging needs
to be considered in its entirety instead of a single step. It also
shows that combined properly, single image processing algorithms
can form an uncertainty-aware medical imaging pipeline that pro-
vides a visualization that fulfills all defined requirements. For di-
agnosis, we found the highest variety of applications. They range
from organ examination over tumor detection to the identification
of stenotic regions. For treatment planning, we mostly identified
tumor radiation approaches for uncertainty-aware visualization ap-
proaches. We postulate that more treatment applications could ben-
efit from these techniques, such as ultrasound and ultraviolet thera-
pies. Methods for intraoperative support could be found for surgery
assistance mainly. This is due to the nature of this procedure, where
medical images are used to follow the progress of surgery. Other
applications for intraoperative support could be strengthened by
medical imaging and uncertainty visualization as well if it gets used
more frequently.

6.2. Creation of Medical Imaging Pipelines

As shown in section 4, there are plenty of techniques available for
uncertainty-aware visualization in medical imaging. A summary
of relevant work that we identified in this area can be found in
Figure 19. Here, we included the three categories Image Acqui-
sition, Image Transformation and Image Visualization with de-
rived subcategories. In each category, we added the identified re-
lated work, which is described in section 4.

Direct Visualization

I I
|

Computed Tomography

‘ Magnetic Resonance Tomography ‘ <\

Positron Emission Tomography

Scalar Fields

Image Pre-Processing

Image Operations / Direct Volume Rendering
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Image Registration
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Reduction
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Figure 19: Uncertainty-aware medical imaging and its subcate-
gories examined as a pipeline. The arrows connect subcategories
where output and input fit and can form a potential pipeline. If there
is no connection indicated, no literature has been found that is able
to connect these subcategories.

Besides the reviewed application scenarios, we observed each
category of medical imaging as an independent step and exam-
ined the available work in this area. But typically, medical imag-
ing involves several steps. Our prior analysis showed that medical
imaging needs to be considered as an entirety to be powerful. Tech-
nically, each step can be repeated multiple times thereby creating
arbitrary medical imaging pipelines. In this section, we aim to de-
clare the potential correlations between medical imaging steps in
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the case that an output of an imaging step matches the input of an-
other imaging step. In combination with the previously provided
state-of-the-art analysis in each step, this provides a versatile way
of forming arbitrary uncertainty-aware medical imaging pipelines.

Ultrasound images, Computed Tomography Images, Magnetic
Resonance Tomography Images, and Positron Emission Imaging
can be passed to image pre-processing segmentation algorithms
and geometry extraction algorithms. As all this results in a dataset
defined as a scalar field on a regular grid, image pre-processing al-
gorithms are able to process these uncertainty-aware input images.

For diffusion tensor images, this does not hold as the previously
mentioned operations are usually not able to process uncertainty-
aware tensor fields. Still, Diffusion Tensor imaging might be able
to be processed by image pre-processing, image segmentation,
or surface extraction algorithms when simplifying the input im-
age into scalar values. There are a variety of simplification met-
rics for tensors [VZKLO06], but the incorporation of uncertainty
does not work right away. Luckily, these methods can be extended
to include the uncertainty information captured from the original
DTI [BP00, And01,JB04, HAT*17].

Image pre-processing can be used as input for direct volume
rendering. The resulting images from image operations, as well
as image registration algorithms, create manipulated images that
can be used as input for uncertainty-aware direct volume render-
ing. The same holds for image segmentation results. In addition,
uncertainty-aware image segmentation results can be passed to sur-
face extraction algorithms and therefore be passed to direct vol-
ume rendering. In general, uncertainty-aware image transformation
outputs can be visualized utilizing indirect volume rendering ap-
proaches.

The described pathways can be directly used to create image
processing pipelines and therefore allow for a flexible design of
uncertainty-aware medical imaging.

6.3. The Curse of Uncertainty

Although we showed the importance of including uncertainty in
the medical imaging process, uncertainty analysis can add multiple
dimensions of uncertainty on top of each data point in the origi-
nal dataset. Here, the question arises if and when it is feasible and
worth taking the effort to include uncertainty into a medical imag-
ing process.

This issue has been raised by Windhager et al. [WSSM19], in
the domain of digital humanities. Hullman [Hul20] examined this
issue generally in the visualization community. In his work, he re-
searched reasons why uncertainty is often not included in visual-
ization approaches. Hullman showed that most researchers aim to
include uncertainty visualization, but are often overwhelmed by the
possibilities of uncertainty visualization. As a result, uncertainty vi-
sualization is neglected in many cases.

These issues also occur in medical visualization and result in the
problem to find a proper balance between visualizing uncertainty,
while keeping the cognitive load in a visualization minimal. This is
hard to determine, and further research in this direction is required.
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7. Open Challenges

Although section 6 shows that uncertainty-aware medical imaging
approaches can be found in most medical imaging steps and ap-
plications, there remains a set of open challenges, which will be
discussed in the following.

7.1. Identification of proper Uncertainty Quantification
Approaches

We have listed a variety of uncertainty quantification approaches
that are suitable for medical imaging regarding specific cases and
specific images or algorithms. Unfortunately, this prevents us from
deriving a general rule for which uncertainty quantification applies
best in each case. In each novel case or even if a case is only slightly
different, uncertainty quantification algorithms need to be tested in
order to determine their quality. This is a massive problem when
dealing with uncertainty-aware medical imaging which remains an
open problem.

7.2. Uncertainty in Clinical Studies

Uncertainty in clinical studies is not covered in this manuscript, as
we aimed to provide a summary of uncertainty-aware visualization
approaches. Still, this is an important issue as uncertainty in clin-
ical studies holds two problems: first, assumptions for visualiza-
tion approaches and the general applicability of image modalities
are generated throughout these studies. Here, incorrect assumptions
can lead to false conclusions when designing uncertainty-aware vi-
sualization. On the other hand, uncertainty-aware medical imaging
approaches may be used to proceed with clinical studies. There-
fore, the outcome of the clinical study is directly depending on the
quality of the visualization.

7.3. Exploration Tools for Uncertainty in Medical Image Data

As shown in section 4.1, nearly all quantification approaches use
color-coding to represent the resulting uncertainty quantification.
This can lead to visual overload when adding this information to
the input image or difficulty to understand the relationship between
the input image and uncertainty quantification if using the color-
coded uncertainty quantification next to the original image. In this
case, there is a clear need to provide novel visualization approaches
that help review both: the acquired image and the uncertainty quan-
tification. This visualization should also include interaction meth-
ods that help users explore the uncertainty space in relation to the
original dataset.

7.4. Knowledge from other Applications

Besides the medical domain, other application areas, such as me-
chanical engineering, deal with scalar and tensor fields [HBK*21].
These research areas are very active and the techniques developed
in those areas could translate to the medical domain and provide
novel insights into medical image data. Especially work that con-
siders sensitivity analysis, multi-field visualization, and uncertainty
in the acquisition step can be of great value for the presented topic.
Still, the applicability of approaches other than the medical field
needs to be proven in order for it to be suitable in the medical area.
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7.5. Provenance Visualization of Uncertainty

As shown in section 6, medical imaging can be the starting point
of an arbitrary pipeline. The uncertainty accumulates along this
pipeline. Depending on the specific elements within this pipeline,
the uncertainty of the dataset to be examined can dramatically in-
crease. In this context, an understanding of how the uncertainty
evolves throughout the application of multiple imaging steps would
be beneficial. Here, provenance visualization techniques can be ap-
plied and more research is required to achieve this.

7.6. Teaching of uncertainty-aware Medical Imaging

Although section 3 shows that uncertainty plays a crucial role in
medical imaging, these techniques are not well-known in the med-
ical community. A major reason for this is the lack of education
of uncertainty in medical imaging. Here, novel classes need to be
established that help educate medical students to specialize in un-
certainty analysis in a similar way as the general medical imaging
class by Gillmann et al. [GWHH17].

7.7. Connection to Sensitivity and Ensemble Visualization

Besides uncertainty analysis itself, sensitivity analysis and ensem-
ble analysis can be of great benefit to the medical imaging commu-
nity. In fact, there is a strong relationship between all topics men-
tioned. For ensemble visualization [WHLS19], research that aims
to summarize different data points in a visualization capturing the
variation is of high interest for the given topic. Sensitivity analy-
sis approaches that assist in understanding the impact of variations
of parameters could be a great starting point for medical imaging
as well. Here, methodologies from sensitivity and ensemble analy-
sis should be considered for their potential applicability in medical
imaging.

7.8. Further use of Machine Learning

As shown in section 4, machine learning is a popular tool for
uncertainty-aware medical algorithms across all imaging steps.
This set of methods is of great interest as it provides promising
results in a variety of medical imaging tasks. We believe that the
use of machine learning could improve the field of medical visu-
alization dramatically. Still, there are a variety of downsides when
using machine learning approaches (especially neural networks).
The most important is that neural networks form a black box. Here,
users are not able to directly follow the computation of the neural
network. This is especially critical in the medical area as medical
doctors are responsible for their decisions and therefore need a way
to verify the computational result of an algorithm. Ongoing work
with respect to explainability for machine learning may eventually
resolve this issue.

7.9. Visual Analytics Approaches in Medical Imaging

In medical imaging, often multiple steps of the computational
pipeline need to be considered to provide a holistic analysis of
patient data. In addition, machine learning approaches become in-
creasingly important. Depending on the medical tasks (diagnosis,

surgery planning, etc.) different medical image steps need to be
combined and clinicians need to be enabled to examine and inter-
act with these techniques. Here, visual analytics approaches can
be a suitable approach. Visual analytics describes a holistic visual
approach where data can be processed by hypothesis forming and
using visualizations to create novel knowledge [KMS*08]. Sacha et
al. [SSK*16] highlighted the importance of proper communication
of uncertainty in the visual analytics process.

There exist first attempts to provide visual analytics approaches
in medical imaging, such as Gillmann et al. [GMHW 18] that aim to
assist in minimally invasive planning or Brecheisen et al. [BVPt09]
providing a visual analytics tool that allows the user to visually ex-
plore how small variations in parameter values affect the output of
fiber tracking. However, these methods are still in their infancy. In
addition, the concepts of visual analytics are not fully incorporated
in the listed research papers. We suggest a more holistic use of vi-
sual analytics approach in the area of medical imaging.

7.10. Ready to use Framework

As shown in section 6, a variety of potential uncertainty-aware
imaging pipelines can be created while communicating uncer-
tainty [GWH16, MSH*20]. Still, the question arises as to which of
these pipelines really provide insight for clinicians. Further, it is un-
clear which use cases can be covered by which pipeline. We, there-
fore, encourage the development of a flexible and easy to adjust
framework for uncertainty-aware medical imaging to allow easy
and fast testing.

7.11. Clinical Trials on Uncertainty-aware Medical Imaging

To the best of our knowledge, there does not exist any commer-
cially available visualization technique in medical workstations that
is uncertainty-aware. This may indicate that uncertainty visual-
ization research is driven by visualization researchers rather than
clinicians. Here, we suggest defining selected diagnostic decisions
where the hypothesis is that uncertainty visualization is beneficial.
This hypothesis should then be confirmed or rejected in close col-
laboration with physicians. This can be achieved by a clinical study
where perception, cognition, and interpretation with respect to un-
certainty visualization can be examined.

8. Conclusions

In this manuscript, we provide a state-of-the-art analysis of
uncertainty-aware medical imaging. We provide an overview of
medical imaging in general and determined the special role of un-
certainty in this area. Resulting from that, we compiled a taxonomy
of uncertainties in medical imaging and defined requirements that
need to be fulfilled to provide a suitable visualization. Our state-
of-the-art analysis is structured along the medical imaging pipeline
consisting of Image Acquisition, Image Transformation, and Im-
age Visualization. We further examined uncertainty-aware visual-
ization approaches in applications of medical imaging. Based on
the defined requirements, we outlined the suitability of the exam-
ined approaches in the given context. Furthermore, we provided a
list of open problems that have not been tackled in the area of med-
ical imaging.

© 2021 The Author(s)
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