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Figure 1: Example renderings with DONeRF at 400×400 pixels for our tested scenes (PSNR is in brackets). All shown results are rendered
in real-time at 22 ms per frame on a single GPU and require approximately 4.35 MFLOP per pixel to compute. DONeRF requires only 4
samples per pixel thanks to a depth oracle network to guide sample placement, while NeRF uses 256 samples per pixel in total. We reduce the
execution and training time by up to 48× and achieve better quality (NeRF average PSNR at 30.52 dB vs. our 31.14 dB).

Abstract
The recent research explosion around implicit neural representations, such as NeRF, shows that there is immense potential
for implicitly storing high-quality scene and lighting information in compact neural networks. However, one major limitation
preventing the use of NeRF in real-time rendering applications is the prohibitive computational cost of excessive network
evaluations along each view ray, requiring dozens of petaFLOPS. In this work, we bring compact neural representations closer
to practical rendering of synthetic content in real-time applications, such as games and virtual reality. We show that the number
of samples required for each view ray can be significantly reduced when samples are placed around surfaces in the scene without
compromising image quality. To this end, we propose a depth oracle network that predicts ray sample locations for each view ray
with a single network evaluation. We show that using a classification network around logarithmically discretized and spherically
warped depth values is essential to encode surface locations rather than directly estimating depth. The combination of these
techniques leads to DONeRF, our compact dual network design with a depth oracle network as its first step and a locally sampled
shading network for ray accumulation. With DONeRF, we reduce the inference costs by up to 48x compared to NeRF when
conditioning on available ground truth depth information. Compared to concurrent acceleration methods for raymarching-based
neural representations, DONeRF does not require additional memory for explicit caching or acceleration structures, and can
render interactively (20 frames per second) on a single GPU.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Real-time rendering of photorealistic scenes with complex lighting
is still an overly demanding problem. However, today, consumer
machine learning accelerators are widespread from desktop GPUs to
mobile phones and virtual reality (VR) headsets, making evaluation

of neural networks fast and power-efficient. Recent advances in
implicit neural scene representations [SZW19; SMB*20; MST*20]
impressively show that machine learning can be used for compact
encoding and high-quality rendering of 3D scenes. Neural radiance
fields (NeRFs) [MST*20] use only 1000000 parameters divided
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among two multilayer perceptron (MLP) networks to encode scene
structure alongside lighting effects. For image generation, NeRF
uses traditional volume rendering drawing 256 samples for each
view ray, where each sample requires a full network evaluation.

Although NeRF-like methods show significant potential for com-
pact high-quality object and scene representations, they are too
expensive to evaluate in real-time. Real-time rendering of such a
representation onto a VR headset at 1440×1600 pixel per eye with
90 Hz would require 37 petaFLOPS (256 network evaluations each
with 2562 ·7 multiply add operations). Clearly, this is not possible
on current GPU hardware and evaluation cost is a major limiting
factor for neural representations to be used for real-time rendering.
Additionally, NeRF only works well for small scale content, requir-
ing splitting larger scenes into multiple NeRFs [ZRSK20; RJY*21],
multiplying both the memory and evaluation cost.

In this work, we make neural representations practical for inter-
active and real-time rendering, while sticking to a tight memory
budget. Particularly, our goal is to enable large scale synthetic con-
tent in movie quality in real-time rendering. We make the following
contributions with depth oracle neural radiance fields (DONeRFs):

• We propose a compact dual network design to reduce evaluation
costs for neural rendering. An oracle network predicts sample
locations along view rays and a shading network places a small
number of samples guided by the oracle to deliver the final color.
• We present a robust depth oracle network design and training

scheme to efficiently provide sample locations for the shading
network. The oracle uses filtered, discretized target depth values,
which are readily available in synthetic content, and it learns to
solve a classification task rather than to directly estimate depth.
• We introduce a non-linear transformation to handle large, open

scenes and show that sampling of the shading network should
happen in a warped space, to better capture different frequencies
in the fore- and background, capturing content in a single network
beyond the capability of previous work.
• Combining our efforts, we demonstrate high-quality real-time

neural rendering of large synthetic scenes. At the same tight
memory budget used by the original NeRF, we show equal quality
for small scenes and significant improvements for large scenes,
while reducing the computational cost by 24–98×.

With DONeRF, we are the first to render large-scale computer
graphics scenes from a compact neural representation in real time.
Additionally, DONeRF is significantly faster to train. We focus on
static synthetic scenes and consider dynamic scenes and animations
orthogonal to our work. Still, DONeRF can directly be used as a com-
pact backdrop for distant parts of a game scene, or in VR and aug-
mented reality (AR), where an environment map does not offer the
required parallax for a stereo stimulus. Our source code and datasets
are available at https://depthoraclenerf.github.io/.

2. Related work

Image-based novel view synthesis Recently, image-based render-
ing techniques using multi-plane images (MPIs) [ZTF*18; FBD*19]
managed to achieve impressive results by blending image layers.
By blending between multiple MPIs [MSO*19] and using spherical
image layers [BFO*20] the potential field of view can be increased

at the cost of memory efficiency. Further extending MPIs, neural
basis functions can be learned to enable real-time view synthe-
sis [WPYS21]. Alternatively, an implicit mapping between view,
time or illumination conditions can be learned [BMSR20]. Although
explicit image-based representations can be efficiently rendered,
they typically only allow for small viewing regions [STB*19] in
addition to requiring densely sampled input images, which substan-
tially increases memory requirements for larger viewing regions.

Implicit neural scene representations Although explicit neu-
ral representations based on voxels [STH*19], MPIs [ZTF*18;
FBD*19] or proxy geometry [HPP*18] enable fast novel view gen-
eration, they are fundamentally limited by the internal resolution
of their representation. To circumvent this issue, implicit neural
scene representations [PFS*19; SZW19] directly infer outputs from
a continuous input space, such as ray origins and directions. Scene
representation networks (SRNs) [SZW19] directly map 3D world
coordinates to a feature representation and use a learned raymarcher
to accumulate rays for the final RGB output. Similarly, neural vol-
umes [LSS*19] use raymarching to accumulate rays in a learned,
warped, volumetric representation. The quality of scene representa-
tions can be improved with periodic activation functions [SMB*20].

Neural Radiance Fields Opening a whole new subdomain of re-
search, Mildenhall et al. [MST*20] introduced NeRF, which re-
placed the learned raymarching from SRN with a fixed, differ-
entiable ray marcher. In NeRF, all ray samples are transformed
into a high dimensional sine-cosine or Fourier space [TSM*20],
and fed into an MLP, followed by an accumulation step to gen-
erate the final RGB output. The simplicity and impressive results
inspired many adaptations to the original NeRF, sometimes be-
ing referred to as the NeRF explosion [DY21]: NeRFs can cap-
ture dynamic free-viewpoint video [PSB*20; LNSW21; XHKK20;
PCPM21; DZY*20], generate photorealistic avatars [GTZN21;
GSL*20; LSS*21], perform relighting on captured scenes [MRS*21;
BXS*20; SDZ*21; BBJ*20], conditionally encode shape and appear-
ance via latent codes [SLNG20; CMK*21; YYTK21; TY20] and
compose scenes of multiple objects [OMT*21; YLSL21; NG21].

Although these NeRF variants show impressive quality, the large
number of samples per ray typically makes NeRFs unsuitable for
real-time applications. As a result, several recent publications in-
crementally improve run-time efficiency. To enable empty space
skipping,neural sparse voxel fields (NSVFs) [LGZ*20] uses a self-
pruning sparse voxel octree structure, where each ray sample in-
cludes information from a tri-linearly interpolated embedding of
voxel vertices. Alternatively, to reduce the number of evaluations
along a ray, partial integrals can be learned [LMW21]. Decomposed
radiance fields (DeRFs) [RJY*20] decompose the scene with a
Voronoi decomposition to train multiple NeRFs for each cell.

Baking of Neural Radiance Fields Recent research has focused
on baking components of NeRF to achieve performance gains at
the cost of extensive memory consumption [YLT*21; HSM*21;
RPLG21; GKJ*21]. While baking could also be applied to our
work, it departs from the beauty of a compact neural representation,
potentially requiring hundreds of MBs up to GBs for a scene that
can be represented by 4 MB in NeRF or our approach.
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Figure 2: To enable efficient rendering of large-scale neural representations, DONeRF uses a five stage pipeline: (1) ray descriptions are
unified within a view cell, (2) depth is considered in a non-linear space, (3) an oracle network estimates the importance of samples, (4) sample
positions are warped towards the view cell, and (5) radiance is generated from the shading MLP with only a few samples along each ray.

In our work, we increase the inference speed of NeRF-like rep-
resentations while staying in the realm of compact MLPs without
additional data structures or increased storage requirements. At the
memory requirement of two MLPs, we show the most significant
performance improvements compared to NeRF [MST*20]. Addi-
tionally, we increase image quality and support large-scale scenes,
where the original NeRF, image-based methods, and methods that
require additional data structures, like NSVF [LGZ*20], struggle.

3. Efficient Neural Rendering using Depth Oracle Networks

To achieve real-time rendering of compact neural representations
for generated content, we introduce DONeRF. DONeRF replaces
the MLP-based raymarching scheme of NeRF [MST*20] with a
compact local sampling strategy to only consider important samples
around surfaces. DONeRF consists of two networks in a five-stage
pipeline (Figure 2): A sampling oracle network predicts optimal
sample locations along the view ray using classification and a shad-
ing network uses NeRF-like raymarching accumulation to deliver
RGBA output. To remove input ambiguity, we transform rays to a
unified space and use non-linear sampling to focus on close regions.
Between the two networks, we warp the local samples to direct high
frequency predictions of the shading network to the foreground.

View Cells For training, we use RGBD input images sampled from
a view cell. A view cell is defined as a bounding box with a primary
orientation and maximum viewing angle, i.e., it captures all view
rays that originate in the bounding box and stay within a certain
rotation, see Figure 3. In a streaming setup, trained network weights
for partially overlapping view cells can be swapped or interpolated
to enable seamless transitions between larger sets of potential views.
We define the view cell specifics to provide a clear way of splitting
large scenes and defining the potential input to our approach. As
smaller view cells reduce the visible content of a scene, smaller
view cells may lead to higher quality (with the extreme being a
single view). However, large view cells can work similarly well
while being even more memory efficient—depending on the network
capacity used to represent them. Note that this is true for any scene
representation, and comes at a cost of larger memory requirements.

4. Efficient Neural Sampling

Inference performance of NeRF-like neural representations scales
most significantly with the number of samples per ray. While there
are methods that deploy multiple lower-capacity networks for a

Figure 3: Top view of a view cell, defined by a bounding box, a
forward direction (arrow) and a maximum viewing angle (blue with
limiting arrows). Valid rays originate within the view cell and stay
within the angle bounds (see example camera orientations).

moderate quality-speed tradeoff [RJY*21], the target output quality
is fundamentally limited by the given network capacity. Thus, we
consider network capacity optimizations orthogonal to our work.
Instead, we consider different sample placement strategies to reduce
the amount of samples for neural raymarching.

Uniform Sampling The default way of NeRF-style raymarching is
to place samples uniformly between the near and far plane:

x(di) = o+di · r (1)

di =

(
dmin + i · (dmax−dmin)

N

)
, i = [0,1,2, · · · ,N],

where o is the ray origin, r is the ray direction, N is the number
of placed samples, and dmin and dmax are the near and far plane
distances from the camera pose. Sample locations are transformed to
a view cell local coordinate system, divided by dmax, and positionally
encoded to construct the feature vector f, where c is the view cell
center:

f(di) = encode
(

x(di)− c
dmax

)
. (2)

Non-linear Sampling While uniform sampling works well for indi-
vidual objects and small scenes, large depth ranges are problematic.
Focusing samples on objects closer to the camera is an intuitive
first step to reduce network evaluations without losing quality. For
non-linear sample placement, we use a logarithmic non-linearity:

d̃i = dmin +
log(di−dmin +1)

log(dmax−dmin +1)
· (dmax−dmin). (3)
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NDC Sampling NeRF [MST*20] suggests to transform rays into
an average camera frame, and to uniformly sample within the pro-
jected normalized device coordinates (NDC), directly feeding NDC
samples into positional encoding. This approach is only applicable
if all samples lie strictly in the front hemisphere of the average cam-
era frame, which is a limitation not shared by the other sampling
strategies. Large deviations from the average camera frame lead
to increasingly high non-linear perspective distortions, which may
impact the learning process. We refer the reader to the appendix
in the original NeRF paper for the detailed derivations; we use the
same transformation with dmin = 1 and dmax =∞.

Space Warping Although non-linear sampling focuses the samples
on the foreground, positional encoding is applied equally for fore-
and background. Early training for large scenes showed that the
background often contains high frequencies that must be dampened
by the network while the foreground requires those to achieve suf-
ficient detail. This is not surprising, as real cameras and graphics
techniques such as mip-mapping average background details.

To remedy this issue, we propose a warping of the 3D space
towards the view cell center. We warp the entire space using a
radial distortion, bringing the background closer to the view cell
for positional encoding. Initial experiments showed that using an
inverse square root transform works well:

f̃ = encode
(
(x(d̃i)− c) ·W (x(d̃i)− c)

)
(4)

W (p) = 1√
|p| ·dmax

. (5)

While ray samples do not follow a straight line after warping, sam-
ple locations in space stay consistent, i.e., samples from different
view points landing at the same 3D location are evaluated equally.
See Figure 4 for a visualization of the uniform, logarithmic and
log+warp placement strategies. The NDC sampling strategy is lin-
ear along each ray in NDC space, but follows a linear sampling
in disparity from the near plane to infinity in the original space,
with a more aggressive 1

x sampling curve compared to logarithmic
sampling. From the perspective of the network input, it therefore
combines the uniform and logarithmic sampling approaches.

Local Sampling Even when focusing samples on the foreground,
NeRFs with large sample counts spend many samples in empty
space. Given a ground truth surface representation, e.g., a depth
texture, it is possible to take a fraction of the samples of a trained
NeRF around the surface and still achieve mostly equal quality. This
inspires the following question: Given a ground truth depth texture
to place samples during training, what is the best quality-speed
tradeoff that can possibly be reached?

Ablation Study To determine the effectiveness of the different
sampling strategies, we run an ablation study based on the original
NeRF. For all experiments, we assume static geometry and lighting
and test on a single view cell. We vary the number of samples per
ray N between [2,4,8,16,32,64,128] and only use a single MLP
(without the refinement network proposed in the original NeRF work
which dynamically influences sample placement). To investigate
local sampling, we perform uniform, logarithmic, log+warp and
NDC sampling around the ground truth depth, keeping the step

(a) uniform (b) logarithmic (c) log+warp

Figure 4: Different sampling approaches visualized: (a) uniform
samples in equal steps between the near and far planes; (b) log-
arithmic sampling reduces the sample distance for close samples
in favor of spacing out far samples; (c) log+warp pulls the space
closer to the view cell center, making the scene appear smaller to
the NeRF and bending rays (compare to the gray straight lines).
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Figure 5: Average PSNR results for various sample reduction
schemes over the sample count N. Uniform sampling roughly in-
creases quality by 1.8 dB for each doubling of N. logarithmic in-
creases PSNR by 1.3 dB and inverse square root warping (log+warp)
adds another 0.6 dB on top. Sampling in NDC only manages to sur-
pass uniform sampling at 128 samples. When sampling around the
ground truth depth (local), the number of samples hardly affects
quality. Still, PSNR roughly increases by 0.75 dB with logarithmic
and another 0.6 dB with log+warp. Local NDC sampling performs
worse than all other local sampling approaches until N = 32.

size identical to N = 128 for all sample counts. We conduct our
experiments on four diverse scenes, Bulldozer, Forest, Classroom
and San Miguel. For more details on the evaluation setup and the
evaluated test scenes, please refer to Section 6 and Appendix E.

Averaged results are shown in Figure 5, while per-scene details
can be found in Appendix A. First, for non-local sampling, the re-
sults show that logarithmic sampling increases quality over uniform
while log+warp increases quality further. With log+warp the num-
ber of samples can be halved to still achieve equal quality to uniform.
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(a) Depth Prediction (b) 3 Local Samples (c) Ground Truth

Figure 6: (a) A depth oracle network with a single depth output
smooths depth around discontinuities. (b) As a result, local sampling
mixes fore- and background and distorts features. (c) This becomes
apparent when compared to the ground truth.

Second, with local sampling, the number of samples can be reduced
to two with nearly no decrease in quality. On average, log+warp
adds about 1.3 dB in quality over uniform for local sampling. Sam-
pling in NDC only reaches competitive results at more than 64
samples, falling behind uniform sampling in our evaluation. Since
the network inputs in NDC are still uniform, the underlying non-
linear transformation between different rays must be reconstructed
by the network, which seems difficult at lower sample counts.

Our results indicate that—given an ideal sampling oracle—
significant gains in quality-speed tradeoffs can be achieved by plac-
ing samples locally. However, in practice, ground truth depth is often
not available during inference for neural rendering due to memory
or computational constraints: large-scale scenes require a significant
amount of storage to represent via geometry or individual depth
maps, and reprojection would be necessary to generalize to novel
views. Thus local sampling from ground truth depth during infer-
ence can be considered a niche scenario, and we therefore target an
efficient and compact representation via an MLP-based sampling
oracle that only uses ground truth depth during training.

5. Sampling Oracle Network

As mentioned before, sampling around a known ground truth sur-
face representation can reduce the number of required samples by
up to 64×. However, relying on explicit surface representations
would defeat the purpose of having a compact neural representation.
Therefore, we introduce an oracle network to predict ideal sample
locations for the raymarched shading network. This oracle network
takes a ray as input and provides information about sample locations
along that ray. We found that using an MLP of the same size as the
shading network generates sufficiently consistent depth estimates for
the majority of rays in simple scenes. However, accurate estimates
around depth discontinuities remain difficult to predict, leading to
significant visual artifacts (Figure 6).

To mitigate this issue, we start with the following observation:
In general, the exact geometric structure of the scene is faithfully
reconstructed using neural raymarching, where samples are also
placed in empty space. Thus, we can allow the oracle more freedom.

Figure 7: A horizontal slice through the Bulldozer dataset. Filtering
the depth classification target (black = 1, white = 0) in both image
dimensions and along depth smooths the classification target. An
oracle producing such an output still results in high quality sample
locations (red ×), with additional samples placed in free space. A
smooth target is easier to learn as labels vary with lower frequency.

While it must predict sample locations around the surface, it may
provide additional estimates. Consider neighboring rays around a
depth discontinuity, either hitting the foreground or the background:
Representing this discontinuity accurately in ray space is difficult,
as small changes in ray origin or direction may alternate between
fore- and background. However, if the oracle is allowed to return
the same result for all rays around discontinuities, i.e., sampling at
the fore- and the background, the oracle’s task is easier to learn.

5.1. Classified Depth

Interestingly, a simultaneous prediction of multiple real-valued
depth outputs did not improve results compared to a single depth
estimate per pixel in our experiments. Alternatively, the oracle can
output sample likelihoods along the ray—i.e., a likelihood that a
sample at a certain location will increase image quality. Unlike
NeRF’s refinement network, we only want to evaluate the oracle
network once and reduce the sample count of the shading network.

To this end, we propose that the oracle is trained via classification,
where each class corresponds to a discretized segment along the ray.
For every discrete ray segment, a high value indicates that it should
receive (multiple) samples; a low value indicates that the segment
can be skipped. The surfaces are represented accurately, i.e.,

Cx,y(z) =

{
1, if dz ≤ ds < dz+1

0, otherwise,
(6)

where C is the classification value, ds corresponds to the depth
value of the first surface along the ray and dz and dz+1 describe
the discretization boundaries for the ray segment z. This leads to a
one-hot encoding as a target that can be trained using the common
binary cross-entropy (BCE) loss.

To further aid the depth oracle in predicting consistent outputs at
depth discontinuities, we provide a multi-class target that is filtered
in image-space and along depth. We blur depth values from neigh-
boring pixels in the ground truth target. To generate this filtered
target, we use a radial (Euclidean distance) filter to include values
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(a) Bulldozer K = 1 (b) Bulldozer K = 5 (c) Bulldozer K = 9 (d) Classroom K = 1 (e) Classroom K = 5 (f) Classroom K = 9

Figure 8: Visualization of the classified depth target for 16 classes along each ray and the largest classes mapped to G, R, B, i.e., a green
value indicates a single class with the brightness encoding depth; a gray value means that all classes are at similar depth; and different colors
in proximity indicate that classes vary. Small features are smoothed to neighboring pixels with increasing filter sizes (1-5-9).

of neighboring rays with a lower contribution:

Ĉx,y(z) = max
i, j∈±bK/2c

(
Cx+i,y+ j(z)−

√
i2 + j2√

2 · bK/2c

)
(7)

where K is the filter size. For example, using a 5× 5 filter, rays
at a distance of 3, 2, 1, 0 pixels contribute 0, ≈ 0.30, ≈ 0.65, 1 to
the output, respectively. For multiple depth values with the same
discretization result, we only take the maximum result (contribution
from the closest neighboring ray) to ensure a valid classification
target as well as that the largest value is placed at the actual surface.

Following the idea of label smoothing, we also filter along the
depth axis, using a simple 1D triangle filter with kernel size Z:

C̀(z) = min

(
bZ/2c

∑
i=−bZ/2c

Ĉ(z+ i)
bZ/2c+1−|i|
bZ/2c+1

,1

)
. (8)

From a classification point of view, filtering decreases false nega-
tives (at the cost of false positives) and thus ensures that important
regions are not missed. This becomes apparent when considering
that rays exist in a continuous space, i.e., the oracle does not need to
learn hard boundaries at depth discontinuities. Translating a higher
false positive rate to raymarching, we increase the likelihood for
sampling regions that do not need any samples. Thus, overall, we
need to place more samples to hit the right sample locations, while
at the same time reducing the chance to miss surfaces.

Given that the oracle network serves a similar purpose as the
coarse network in NeRF with the same capacity, while being evalu-
ated only once instead of 64 times, allowing the network to move
towards false positive classifications is essential. Additionally, false
positives are handled by the local raymarching network, as empty
space will still result in no image contribution, even at low sample
counts. A missed surface on the other hand would clearly reduce
image quality. Figure 7 shows an example slice for a fully filtered
target and Figure 8 shows visualizations for different filter sizes.
Note that the filtering only applies to the training targets for the
depth oracle—no filtering is done during inference.

Finally, to translate the classification outputs to sample locations,
we use the same approach as NeRF [MST*20] when going from
the coarse to the fine network. Compared to NeRF, which builds
a piecewise-constant probability density function (PDF) from the
opacity outputs of the coarse shading network evaluated at multi-
ple sample locations, we interpret our depth oracle output vector

distance along the ray

11/8 2/8 3/8 4/8 5/8 6/8 7/8

pdf cdf uniform samples

Figure 9: To place samples along the ray, we treat the classified
depth output from the oracle as a piecewise-constant PDF (blue)
and translate it into a CDF (green). Sampling the CDF at uniform
steps (orange) concentrates samples (red ×) around regions with a
high classification value.

(which comes from a single oracle network evaluation) directly as
a piecewise-constant PDF and similarly sample along the inverse
transform of the corresponding cumulative distribution function
(CDF); see Figure 9.

5.2. Ray Unification and Oracle Input

To take the burden of disambiguating rays originating from different
starting locations from the oracle, we map every ray starting location
onto a sphere circumscribed around the view cell, see Figure 10.
This unification works well for arbitrary views looking outside the
view cell. For 360◦ object captures, such as in the original NeRF
work, our ray unification scheme be applied in an inverse manner,
where the circumscribed sphere is placed around the object instead.

To ease the task of the oracle network further, we supply 3D
positions along the ray as input. We place those at the centers of the
discretized depth ranges and provide them as additional inputs to
the first network layer. We do not use positional or Fourier encoding
for the depth oracle inputs, as this did not improve results in our
experiments. To work in unison with the shading network, for which
we place samples logarithmically (Section 4), we also perform the
same logarithmic transformation on the classification steps.
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Figure 10: Ray unification maps ray starting points to a sphere
surrounding the view cell. Without ray unification (left) the same
ray is encoded differently and requires different depth values; after
ray unification (right) identical rays have identical depth values.

5.3. Optimal Filter Sizes and Depth Oracle Inputs

We conduct an ablation study to evaluate the impact of the filter
sizes for our neighborhood filter K (Equ. 7), depth smoothing filter
Z (Equ. 8) and the number of 3D input positions (I = [1,128]). We
use the classified depth oracle network as the input for a locally
raymarched shading network, similar to the experiment in Section 4.

We vary the number of samples per ray N = [2,4,8,16] . Both the
depth oracle network and the shading network contain 8 hidden lay-
ers with 256 hidden units. We first train the depth oracle network for
300000 iterations, before training the shading network for 300000
iterations using the oracle’s predictions. To illustrate the importance
of our depth classification, we compare against a depth oracle that
only predicts a single depth value with (SD unified) and without
(SD) ray unification. Our metric is the resulting quality of the RGB
output of the shading network, which should improve when given
better sample positions by the depth oracle.

The results in Table 1 show that (1) ray unification adds about
0.6 dB in PSNR, (2) using a classification network adds another
0.6 dB–1.5 dB, (3) providing multiple samples along the ray as
input adds 1 dB, (4) the neighborhood filter adds 1.3 dB–1.8 dB,
and the depth smoothing filter adds 0.1 dB. These improvements
come at no inference cost (filtering) or virtually no inference cost
(ray unification, multi input). In total, our additions improve the
PSNR by 3.3 dB–4.7 dB. Note that an even larger filter size may
reduce overall quality, as many samples are placed in empty space
rather than on the surface.

6. Evaluation

To evaluate DONeRF, we focus on three competing requirements
of (neural) scene representations: quality of the generated images,
efficiency of the image generation, and compactness of the repre-
sentation. Clearly tradeoffs between them are possible, but an ideal
representation should generate high-quality outputs in real-time,
while being compact and extensible, e.g., for streaming dynamic
scenes.We compare against NeRF [MST*20], NSVF [LGZ*20],
Local Light Field Fusion (LLFF) [MSO*19] and Neural Basis Ex-
pansion (NeX) [WPYS21] to evaluate methods that choose different
tradeoffs among our three goals.

Table 1: PSNR and FLIP results averaged over all scenes, evalu-
ating the neighborhood filter size (K-X), the depth smoothing filter
size (Z-X) and the number of inputs for the depth oracle (I-X) over
the number of samples per ray N used for raymarching. We also
compare against an oracle that only predicts a single depth value
(SD), as well as a single depth value with unified input (SD unified).

PSNR ↑ FLIP ↓
Method \ N 2 4 8 16 2 4 8 16

SD 26.686 27.401 28.220 29.085 0.092 0.084 0.078 0.073
SD unified 27.423 28.052 28.825 29.554 0.085 0.079 0.074 0.071
K-1 Z-1 I-1 27.325 28.697 30.068 31.145 0.082 0.073 0.065 0.061
K-5 Z-1 I-1 28.685 30.521 31.988 32.982 0.075 0.066 0.059 0.055
K-5 Z-1 I-128 29.956 31.746 32.951 33.760 0.067 0.061 0.056 0.053
K-5 Z-5 I-128 30.071 31.842 33.027 33.836 0.067 0.061 0.056 0.053
K-9 Z-1 I-1 28.831 30.881 32.617 33.495 0.075 0.065 0.057 0.055
K-9 Z-1 I-128 29.299 31.645 33.125 33.994 0.071 0.061 0.056 0.053
K-9 Z-9 I-128 28.737 30.847 32.261 33.302 0.076 0.066 0.060 0.056

These methods capture a mix between being strictly MLP-based
(NeRF), using explicit structures and MLPs (NSVF, NeX) and using
a mostly image-based representation (LLFF). For NeX, we include
an additional variant that does not bake radiance coefficients and
neural basis functions into an MPI, but recomputes those via MLP
inference during test time (NeX-MLP). For NSVF, we run a grid
search and evaluate on three representative variants (NSVF-small,
NSVF-medium and NSVF-large) that capture the lowest memory
footprint, best quality-speed tradeoff, and best quality respectively.
Furthermore, we include a variant of NeRF that uses our log+warp
sampling to show the effect of the sampling strategy in isolation
(NeRF (log+warp)). See Appendix E for details about the methods.

We analyze the ability to extract novel high-quality views for
generated content where reference depth maps are available during
training. As an additional proof-of-concept, we extract estimated
depth maps from a densely sampled NeRF for each scene, and use
these depth maps to train our depth oracles, showcasing a solution
for scenes without available ground truth depth. We evaluate quality
by computing PSNR and FLIP [ANA*20] against ground truth
renderings, efficiency as FLOP per pixel and compactness by total
storage cost for the representation. For all methods, images are
downsampled to a resolution of 400×400 to speed up training.

6.1. Training and Real-time Implementation

We use K-5 Z-5 I-128 for our depth oracle network (see Section 5.3)
and use various numbers of samples per ray, named DONeRF-X ,
where X denotes the number of samples per ray. We transform
each sample logarithmically and warp it towards the view cell, as
described in Section 4. We train each network for 300000 iterations
and use the checkpoint with the lowest validation loss for testing.
We use Adam [KB15] with a learning rate of 0.0005 and a batch
size of 4096 samples per iteration.

For the RGB output of the shading network we use standard MSE
loss, while the depth classification uses BCE loss. Furthermore,
during initial experiments, we observed that shading networks with
low sample counts tend to “cheat” in their outputs, relying on the
opacity outputs to mix the background color into the accumulation,
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Ground Truth

(a) Ground Truth (b) DONeRF-4 (c) NeRF (d) NSVF-medium (e) LLFF (f) NeX

Figure 11: Even on our challenging dataset, DONeRF achieves higher quality on average than all other methods at only 4 samples per ray.
NeRF manages to faithfully reconstruct smaller scenes such as Bulldozer and Barbershop, but struggles with large-scale scenes such as Forest
or highly complex geometry such as in Classroom. NSVF shows worse quality on average compared to DONeRF-4 at increased memory
requirements and much worse performance. Although LLFF requires significantly more memory, it still struggles to represent fine details
accurately, even at a cropped field of view. NeX achieves good quality for San Miguel, but larger rotations and offsets from its reference pose
cause significant artifacts due to its explicit MPI representation.
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Table 2: Across all our test scenes, DONeRF shows a significant improvement in quality-speed tradeoff, beating NeRF in most scenes with
only 2− 4 samples per ray, resulting in 48× to 78× fewer FLOP per pixel at equal or better quality. Where NSVF struggles to achieve a
consistent quality or performance for our tested scenes, especially for larger scenes such as Forest, DONeRF performs consistently well across
all scales. LLFF is the cheapest to compute, but fails to replicate the quality of the other methods, in addition to requiring storage that scales
unfavorably with the amount of training images. Although NeX is also very efficient at rendering, it suffers from artifacts related to the MPI
representation when poses differ too much from the reference pose, and requires roughly 24× the amount of storage to achieve worse quality
than DONeRF across the board. NeX-MLP is able to remedy some of the artifacts at a cost of 9× worse performance compared to DONeRF-4.
Finally, using depth maps extracted from a dense NeRF without depending on available ground truth depth, DONeRF-noGT still achieves the
best tradeoff between performance, quality and storage overall. Top results in each column are color coded as Top 1 , Top 2 and Top 3.

San Miguel Pavillon Classroom Bulldozer Forest Barbershop Average

Method
Storage
[MiB]

MFLOP
per pixel PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP

DONeRF-2 3.6 2.70 26.01 .094 30.50 .103 31.66 .061 30.15 .063 29.29 .082 29.41 .074 29.50 .079
DONeRF-2-noGT 3.6 2.70 25.33 .098 29.84 .103 30.11 .067 26.92 .077 28.36 .089 29.01 .075 28.26 .085
DONeRF-4 3.6 4.36 27.41 .080 31.07 .098 33.43 .058 33.46 .048 30.63 .077 30.84 .065 31.14 .071
DONeRF-4-noGT 3.6 4.36 26.19 .090 30.69 .096 31.44 .061 29.78 .060 29.31 .086 30.42 .067 29.64 .077
DONeRF-8 3.6 7.66 28.65 .071 31.46 .096 35.23 .048 35.88 .039 32.09 .070 31.72 .060 32.50 .064
DONeRF-8-noGT 3.6 7.66 26.88 .086 31.56 .091 33.19 .055 32.96 .047 29.98 .084 31.73 .062 31.05 .071
DONeRF-16 3.6 14.29 29.67 .065 31.79 .094 36.27 .045 36.98 .036 31.32 .074 32.15 .059 33.03 .062
DONeRF-16-noGT 3.6 14.29 27.70 .078 32.22 .088 34.63 .049 35.41 .040 30.74 .079 32.80 .057 32.25 .065

NeRF 3.2 211.42 25.19 .117 29.54 .115 34.02 .056 36.83 .038 23.90 .151 33.63 .052 30.52 .088
NeRF (log + warp) 3.2 211.42 28.98 .074 32.88 .089 35.19 .051 36.22 .040 28.97 .101 33.60 .055 32.64 .068

NSVF-small 2.3 74.66 24.00 .132 29.42 .110 31.00 .070 25.75 .167 23.79 .159 27.72 .094 26.95 .122
NSVF-medium 4.6 132.03 25.07 .110 29.81 .105 33.04 .055 26.51 .163 25.08 .135 29.62 .077 28.19 .108
NSVF-large 8.3 187.52 25.73 .097 30.48 .099 34.06 .051 33.14 .042 26.05 .119 30.61 .061 30.01 .078

LLFF 4130.6 .03 24.53 .106 27.50 .123 24.87 .114 24.76 .114 22.19 .148 24.13 .129 24.66 .122

NeX 88.8 .06 28.07 .094 26.28 .174 30.34 .085 29.20 .072 20.95 .220 22.98 .152 26.30 .133
NeX-MLP 89.0 42.71 30.68 .060 30.41 .102 34.10 .046 34.03 .046 24.65 .125 29.45 .075 30.55 .076

resulting in a darkening with black background color. At low sample
counts, this tends to hurt generalization, especially when rays should
accumulate to an opacity of at least 1 for opaque surfaces. As a
result, dark pixel artifacts are visible in some test set views, which
we remedy by adding an additional opacity loss term that forces the
accumulated ray opacity δ to be at least 1:

lossO =

0, if ∑
X
i=1 δi ≥ 1((

∑
X
i=1 δi

)
−1
)2

, otherwise,
(9)

where X is again the number of samples per ray. Our final loss
function is a weighted sum of both the MSE and the opacity loss

loss = α · lossMSE +β · lossO. (10)

For all DONeRF experiments, we use α = 1.0 and β = 10.0 to
conservatively remove all dark pixel artifacts. Lower values for
β could be selectively applied to further increase quality in cer-
tain scenes. The network architecture of DONeRF is visualized in
Appendix D. For DONeRF without ground truth depth (DONeRF-
X-noGT), we train a dense NeRF with 12 layers of 512 hidden units
each using 128 samples per ray, and extract depth maps for all poses.

Using these depth maps, we train DONeRF in exactly the same way
as when using the reference depth maps.

For our prototype real-time implementation of DONeRF, we
use a combination of TensorRT and CUDA. Ray unification, space
warping, feature generation and raymarching run in custom CUDA
kernels with one thread per ray. Both networks are evaluated using
TensorRT in half floating point precision. All parts still offer signifi-
cant optimization potential, by, e.g., using multiple threads during
input feature generation or reducing the bit length for the network
evaluation further.

Nevertheless, we already achieve real-time rendering at medium
resolutions on an NVIDIA RTX 3090. Ray unification and first
feature generation (0.21 ms), the oracle network (12.64 ms), space
warping and the second feature generation (3.46 ms), the shading
network (34.9 ms), and final color generation (0.09 ms) take a total
of 51.3 ms for a 800×800 image and 2 samples per ray, i.e., about
20 frames per second. Note that the shading network still is the
major cost in our setup and that computation times increase nearly
linearly with the number of samples: 34.9 ms, 65.4 ms, 136.4 ms
and 270.4 ms for 2, 4, 8 and 16 samples, respectively.
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6.2. Dataset

We collect a set of scenes that showcase both fine, high-frequency
details as well as large depth ranges to validate that DONeRF is
applicable to a wide variety of scenes. All datasets are rendered
using Blender, using their Cycles path tracer to render 300 im-
ages for each scene (taking approximately 20 minutes per image
on a 64 core CPU), which we split into train/validation/test sets
at a 70%/10%/20% ratio. For each scene, we define a view cell
that showcases a wide range of movement and rotation to reveal
disocclusions and challenging geometry, while not intersecting ge-
ometry within the scene. Poses are randomly sampled within the
view cell, limiting the rotation to 30 degrees in pitch and 20 degrees
in yaw relative to the initial camera direction. We limit the rota-
tion to be comparable to plane-based representations such as NeX
and LLFF—DONeRF would be able to handle unrestricted rotation
angles. Please refer to Appendix C for more details about the scenes.

6.3. Comparisons

The results of our main evaluation are summarized in Table 2 and
qualitative example views are shown in Figure 11. In the following
we individually compare the competing approaches to DONeRF in
terms of quality, efficiency, and compactness.

NeRF Compared to NeRF, the advantages of both our sampling
strategy and oracle network are immediately visible. On average,
DONeRF achieves equal or better quality with only 2−4 samples
per ray compared to NeRF’s 256. At 16 samples, DONeRF achieves
up to 7 dB higher PSNR, and outperforms NeRF on all scenes except
for Barbershop. At the same time, DONeRF is 15–78× faster to
evaluate than NeRF. As both only use two MLPs, they are among the
most compact methods—the small increase in memory of DONeRF
is due to the increased number of inputs and outputs of our oracle
network compared to the coarse NeRF network. Even when applying
our improved sampling strategy for NeRF (log+warp), DONeRF
achieves equal quality with just 8 samples. Overall, DONeRF is
superior compared to NeRF —especially for large open scenes—
both when considering quality, efficiency and compactness as a
whole, and when considering them individually.

NSVF The comparison to NSVF is interesting, as NSVF is able to
adjust the tradeoff between quality, efficiency and compactness by
changing the voxel size of its representation. Even though NSVF-
small is 2.5 dB lower in quality compared to DONeRF-2, it takes
27× longer to evaluate. NSVF-medium and NSVF-large are similar
in quality to DONeRF-2 and DONeRF-4 respectively, but take 43×
times longer to evaluate. As NSVF only uses a single MLP, using
fewer voxels can be advantageous if a very low memory footprint is
required at the cost of quality, and NSVF-small is the smallest scene
representation in our comparison. However, to achieve competitive
quality, NSVF requires more than 2× the amount of memory of
DONeRF. Additionally, NSVF takes about 6× longer to train than
DONeRF and also required ground truth depth for initialization for
our challenging scenes. Thus, for every configuration, a DONeRF
exists that provides identical or better quality at significantly better
compactness that can be evaluated much more efficiently.

(a) Ground Truth

(b) GT

(c) DONeRF-4

(d) NeRF

(e) DONeRF-4-
noGT

Figure 12: (a) Example ground truth view of the test set of San
Miguel with the corresponding inset (b). (c) DONeRF manages to
preserve high-frequency detail around the leaves of the tree at only 4
samples per ray. (d) Although NeRF also preserves the tree faithfully,
the edges are blurrier. (e) Even when trained with extracted NeRF
depth maps (no GT depth), DONeRF produces slightly sharper
results than NeRF.

LLFF Compared to purely image-based methods like LLFF, the
advantages of neural scene representations become apparent. Even
when using the entire training set as the basis for image-based
rendering (and thus requiring more than 1000× the memory of
DONeRF) and cropping the image to remove border artifacts, LLFF
achieves the lowest quality among all tested methods. Only for the
highly challenging views of Forest and San Miguel, PSNR values
are close to NeRF but still 1 dB–7 dB from DONeRF-2. However,
due to its simplicity of only selecting few, small light fields for each
pose at test time and blending between them, LLFF is the fastest
method for novel view generation. Thus, if memory is no concern,
LLFF may be the preferred option for low-power rendering.

NeX NeX shows similar artifacts to LLFF, in that it suffers from its
explicit MPI representation when generating views that differ too
much from its reference view. Although it is very fast to evaluate
(45× faster than DONeRF) and achieves competitive quality for San
Miguel, overall it requires 25×more memory compared to DONeRF,
and its quality is 3 dB lower than DONeRF-2 on average. Looking at
the improved quality of NeX-MLP, we can confirm that transferring
its neural scene representation into an MPI comes at a significant loss
in quality. Compared to NeX-MLP, DONeRF achieves better quality
using only 4−8 samples for most scenes, at a 10× speedup and 25×
more compactness. For simple scenes, limited fields of view, and
if compactness is no concern, precomputing an MPI from a neural
scene representation enables high-resolution real-time performance.
However, when targeting higher quality or streaming, a complete
neural scene representation, like DONeRF, is the better choice.
Finally, NeRF-like representations have also been shown to support
dynamic scenes and relighting, which may tilt the scales further
towards an approach like DONeRF, where the memory consumption
of MPI videos becomes even more prohibitive.
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(a) Ground Truth

(b) GT

(c) DONeRF-4

(d) NeRF

(e) DONeRF-4-
noGT

Figure 13: (a) Example image and ground truth depth from the Bar-
bershop test set with the corresponding inset (b). (c) The reflective
mirrors cannot be accurately represented by just sampling around
the mirror’s depth in DONeRF. (d) NeRF places samples behind
the mirror, constructing a virtual reflected room. (e) As depth maps
extracted from NeRF include the virtual room, DONeRF-4-noGT
learns to represent the mirrors with much fewer samples than NeRF.

6.4. DONeRF without Ground Truth Depth

Our proof-of-concept DONeRF that is trained without available
ground truth depth (DONeRF-X-noGT) loses about 1 dB on average
compared to DONeRF (see Table 2). The losses are largest for Bull-
dozer; for Pavillon and Barbershop DONeRF-X-noGT actually out-
performs DONeRF for higher sample counts. For Bulldozer, NeRF
outputs high frequency depth values across the entire background,
which impedes the task of the depth oracle, only to create samples
with zero contribution during shading—adding background detec-
tion to remove those samples during oracle training would likely
resolve this issue. Looking at San Miguel (Figure 12), DONeRF is
capable of reconstructing fine details for foliage. DONeRF-X-noGT
interestingly produces sharper results than NeRF although we use
a single NeRF depth output as ground truth depth. We attribute
DONeRF’s ability to recover such high quality to filtering the depth
targets and being able to place samples all around the foliage.

Even more surprising is the fact that DONeRF-X-noGT can out-
perform DONeRF, as in Pavillon and Barbershop (see Figure 13).
Transparent surfaces and fully reflective mirrors pose an issue for
DONeRF, as the low sample count combined with only a single
depth estimate is not sufficient for the network to perfectly replicate

these challenging view-dependent phenomena. However, for these
scenes, NeRF essentially learns to place samples at multiple sur-
faces (for the refractive water) and in a virtual mirrored room (for
the reflective mirror), and thus DONeRF-X-noGT places samples
better than DONeRF for these parts and can reach higher quality for
increased sample counts.

Overall, these results show that even without ground truth depth
to train its depth oracle network, DONeRF is able to achieve bet-
ter quality compared to NeRF at much lower sample counts, and
provides the best tradeoff in terms of quality, performance and stor-
age requirements. Thus, a perfectly accurate depth estimate is not
necessary to benefit from using DONeRF.

7. Conclusion, Limitations and Future Work

Starting from an evaluation of the sampling strategies of NeRF, we
showed that sampling non-linearly and warped towards a view cell
is beneficial in a variety of scenes. Using ground truth depth for
optimal sample placement, we showed that local sampling achieves
equal quality with as few as 2 samples per ray compared to a fully
sampled network with 128 samples. From this insight, we proposed
our classified depth oracle network which discretizes the space
along each ray, and spatially filters the target across x, y and depth
to further improve the sample placement for challenging geometric
scenarios. Using our oracle network to guide sample placement for
a raymarched shading network, our compact DONeRF approach
achieves equal or better quality compared to NeRF with 256 sam-
ples across most scenes, while using as few as 2 samples per ray
at the memory requirement of only two MLPs. Compared to other
scene representations and light field methods, DONeRF compares
favorably in terms of storage requirements by a large margin and
outperforms all other methods in quality. Only image-based meth-
ods can be rendered faster than DONeRF. Nevertheless, DONeRF
makes a big step towards rendering directly from neural scene rep-
resentations with all their advantages in real-time.

Partially transparent objects and mirror-like surfaces can pose an
issue when using standard depth maps for training, as the first surface
depth value does not represent the necessary sample locations along
the ray. Fortunately, due to being a classification network, it would
be straightforward to extend the training target of the depth oracle
network with multiple ground truth surface points. The proof-of-
concept DONeRF that is trained by using depth maps extracted
from a NeRF already shows promising results for these surfaces.
However, both, using multiple depth values for ground truth depth
training, and eliminating the round trip through a full NeRF when
there is no ground truth depth, are obvious next steps for DONeRF.

Furthermore, we only focused on static content in our evalu-
ation. For dynamic content, related research has already shown
that depth-aware losses can be introduced to achieve more consis-
tency [XHKK20; LNSW21]. Our classified depth sampling strategy
could be adapted as a variation of these ideas, allowing for more
consistency across dynamic content while staying within a com-
pact neural representation. Another partially orthogonal approach
to ours is caching and baking NeRFs to further increase evalua-
tion speeds. Integrating an oracle, especially in combination with
dynamic caching, may allow for further increases in rendering effi-
ciency without compromising compactness for streaming.
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To our knowledge, DONeRF is the first reliable method to render
from a raymarched neural scene representation at interactive frame
rates without exhaustive caching, and opens the door for compact
high-quality dynamic rendering in real-time. We are confident that
such a local sampling strategy will be essential for real-time neural
rendering going forward.
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Appendix A: Additional Results: Efficient Neural Sampling

Tables 7, 8, 9 and 10 show per-scene results for varying numbers of
samples per ray, using the sampling methods described in Section 4.

Appendix B: Additional Results: Sampling Oracle Network

Tables 3, 4, 5 and 6 show per-scene results for varying numbers of
samples per ray and various sampling oracle configurations. Sec-
tion 5 details the various depth oracle configurations.

Appendix C: Additional Evaluation Setup: Datasets

Bulldozer (by ”Heinzelnisse“ https://www.blendswap.com/

blend/11490) [view cell size: x = 1,y = 1,z = 1] shows a
close view of a toy bulldozer made of building bricks with fine,
high-frequency details and mostly diffuse shading. This scene
differs from the dataset used in the original NeRF [MST*20], as we
re-rendered it to better fit our view cell methodology.
Forest (by Robin Tran https://cloud.blender.org/p/

gallery/5fbd186ec57d586577c57417) [x = 2,y = 2,z = 2]
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Figure 14: For evaluation, we use the same MLP architecture for
both NeRF and DONeRF: 8 layers with 256 hidden units each, with
a single skip connection to forward the encoded directions to the last
layer. For the depth oracle network, we do not use a skip connection.
The inputs and outputs are described in Section 5.1.

shows a vast field of cel-shaded high-frequency foliage and trees,
with a person in the foreground, which enforces a good foreground
and background representation.
Classroom (by Christophe Seux https://download.blender.

org/demo/test/classroom.zip) [x = 0.7,y = 0.7,z = 0.2]
provides a challenging indoors scenario, with thin geometric detail
such as the chairs’ legs, as well as very detailed texture work.
San Miguel (by Guillermo M. Leal Llaguno https:

//casual-effects.com/g3d/data10/index.html)
[x = 1,y = 1,z = 0.4] provides a test on a proven computer
graphics test scene with difficult high-frequency transparent
materials (the leaves of the trees) as well as complex disocclusions.
Pavillon (by Hamza Cheggour / ”eMirage“ https:

//download.blender.org/demo/test/pabellon_

barcelona_v1.scene_.zip) [ x = 1,y = 1,z = 1] contains
complex view-dependent effects such as reflection and refraction in
the pool as well as completely transparent objects.
Barbershop (by ”Blender Animation Studio“ https:

//svn.blender.org/svnroot/bf-blender/trunk/

lib/benchmarks/cycles/barbershop_interior/)
[x = 1.5,y = 1.5,z = 0.4] is a small indoors scene contain-
ing realistic global illumination and challenging mirrors.

Appendix D: Additional Evaluation Setup: DONeRF

We use a slightly adapted version of the network architecture of
NeRF for both networks of DONeRF and NeRF in our evaluation
(Figure 14): slightly less capacity with 8 layers at 256 hidden units
and only a single skip connection for the encoded directions. The
depth oracle network neither uses skip connections nor encoding
for the positions and directions, but still uses ray unification and
non-linear sampling (see Section 5).

Appendix E: Additional Evaluation Setup: Baselines

For each baseline method, we converted our datasets to use their
required format, i.e., we provide ground truth poses and undistorted
ground truth images for each method. We count the storage by
summing all required network weights, checkpoints or images that
are necessary to render novel views. FLOP per pixel are counted
either by profiling with NVIDIA Nsight Compute or directly from
the neural network evaluation.
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NeRF [MST*20] We use an open source PyTorch port of
NeRF (https://github.com/yenchenlin/nerf-pytorch) in
our evaluation setup. For consistency, we use the same network
architecture as used for evaluating DONeRF (Figure 14) and use 64
coarse and 128 additional fine samples (resulting in 64+64+128 =
256 total network evaluations) as in the original NeRF [MST*20].
We train NeRF at 300000 iterations total, taking 2048 samples from
2 images per iteration.

NSVF [LGZ*20] For NSVF, we use the authors’ open source
code (https://github.com/facebookresearch/NSVF) and
perform a grid search over the initial voxel size. As NSVF varies
greatly in terms of quality and performance based on the initial
voxel size, we choose 3 representative variants by choosing the best
version within three scenarios: NSVF-large is selected by choos-
ing the best quality, ignoring performance and memory constraints,
NSVF-medium is aimed at the best quality-performance tradeoff,
and NSVF-small aims at the lowest memory requirements. We train
each NSVF for 150000 iterations using 4096 samples per iteration.

LLFF [MSO*19] For LLFF, we use the authors’ available code
(https://github.com/Fyusion/LLFF), and evaluate the qual-
ity metrics by first removing a border of 10 % from each side of the
image, as suggested by the authors.

NeX [WPYS21] For NeX, we use the authors’ open source
code (https://github.com/nex-mpi/nex-code/) and their
suggested parameters that fit into the memory budget of 11 GB
GPU RAM, i.e., 256 hidden units for their main MLP, 6 layers and
12 sublayers for their MPI. This also provides a more competitive
comparison in terms of storage requirements. We use the authors’
real-time web viewer to render images for the evaluation, and train
for 300000 iterations with 4096 samples per iteration. Furthermore,
we include an additional baseline for NeX, where we do not precom-
pute the radiance and neural basis functions into an MPI, and instead
query them from the MLPs directly during inference, to show the
potential upper limit in quality. Note that this NeX-MLP variant has
slightly higher storage requirements than NeX, as it contains the
base color MPI in 32-bit floating point format.

Table 3: Ablation results for various depth oracle configurations
for the Bulldozer scene. Please refer to Section 5 of the main paper
for a detailed explanation on these depth oracle configurations.

Bulldozer PSNR ↑ FLIP ↓

Method N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

SD 25.187 25.977 26.684 27.347 0.096 0.083 0.074 0.067
SD unified 26.714 27.242 27.736 28.196 0.079 0.071 0.066 0.061
K-1 Z-1 I-1 26.936 28.776 30.476 31.926 0.074 0.061 0.052 0.047
K-5 Z-1 I-1 30.435 33.241 34.893 36.019 0.059 0.046 0.041 0.038
K-5 Z-1 I-128 31.442 33.840 35.248 36.203 0.053 0.044 0.040 0.037
K-5 Z-5 I-128 31.351 34.253 36.071 37.119 0.054 0.043 0.038 0.036
K-9 Z-1 I-1 30.511 33.506 35.441 36.561 0.058 0.046 0.040 0.037
K-9 Z-1 I-128 30.837 33.931 35.645 36.661 0.056 0.044 0.039 0.037
K-9 Z-9 I-128 29.497 32.654 35.156 37.132 0.064 0.050 0.042 0.036

Table 4: Ablation results for various depth oracle configurations
for the Forest scene. Please refer to Section 5 of the main paper for
a detailed explanation on these depth oracle configurations.

Forest PSNR ↑ FLIP ↓

Method N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

SD 29.884 30.640 31.832 33.212 0.067 0.062 0.057 0.053
SD unified 30.768 31.608 32.822 33.876 0.063 0.058 0.054 0.050
K-1 Z-1 I-1 29.261 30.933 32.425 33.501 0.069 0.061 0.056 0.052
K-5 Z-1 I-1 30.262 32.535 34.057 34.978 0.064 0.056 0.051 0.050
K-5 Z-1 I-128 32.188 34.327 35.119 35.591 0.056 0.051 0.049 0.048
K-5 Z-5 I-128 32.395 34.177 35.385 36.308 0.056 0.051 0.047 0.045
K-9 Z-1 I-1 30.617 33.203 34.920 35.648 0.063 0.054 0.049 0.048
K-9 Z-1 I-128 31.136 33.861 35.298 35.869 0.061 0.052 0.049 0.047
K-9 Z-9 I-128 30.558 32.941 34.452 35.830 0.064 0.054 0.050 0.046

Table 5: Ablation results for various depth oracle configurations
for the Classroom scene. Please refer to Section 5 of the main paper
for a detailed explanation on these depth oracle configurations.

Classroom PSNR ↑ FLIP ↓

Method N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

SD 26.832 27.403 28.205 29.601 0.103 0.095 0.086 0.076
SD unified 27.732 28.315 29.233 30.351 0.091 0.086 0.078 0.071
K-1 Z-1 I-1 27.449 28.882 29.587 31.733 0.092 0.081 0.079 0.068
K-5 Z-1 I-1 28.697 30.506 30.823 32.998 0.083 0.072 0.074 0.063
K-5 Z-1 I-128 29.965 31.882 33.236 33.581 0.073 0.069 0.061 0.061
K-5 Z-5 I-128 30.749 32.244 33.482 34.348 0.070 0.067 0.060 0.058
K-9 Z-1 I-1 29.387 31.640 32.681 33.836 0.078 0.067 0.066 0.059
K-9 Z-1 I-128 30.006 32.200 33.619 33.984 0.073 0.068 0.058 0.059
K-9 Z-9 I-128 29.698 31.574 32.656 34.029 0.081 0.069 0.062 0.059

Table 6: Ablation results for various depth oracle configurations for
the San Miguel scene. Please refer to Section 5 of the main paper
for a detailed explanation on these depth oracle configurations.

San Miguel PSNR ↑ FLIP ↓

Method N = 2 N = 4 N = 8 N = 16 N = 2 N = 4 N = 8 N = 16

SD 25.314 25.699 26.283 27.163 0.097 0.092 0.086 0.081
SD unified 25.142 25.487 26.078 26.925 0.099 0.094 0.088 0.082
K-1 Z-1 I-1 26.080 26.977 27.970 28.746 0.092 0.082 0.075 0.070
K-5 Z-1 I-1 26.406 27.580 28.547 29.364 0.086 0.078 0.071 0.066
K-5 Z-1 I-128 27.125 27.986 28.992 29.739 0.079 0.073 0.068 0.064
K-5 Z-5 I-128 27.105 27.980 28.906 29.781 0.079 0.074 0.068 0.064
K-9 Z-1 I-1 26.505 27.808 29.056 29.815 0.086 0.076 0.068 0.065
K-9 Z-1 I-128 26.875 28.200 29.257 29.893 0.082 0.073 0.066 0.064
K-9 Z-9 I-128 26.330 27.571 28.484 29.431 0.088 0.078 0.071 0.066
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Table 7: Ablation results for various sampling methods for the Bulldozer scene. Please refer to Section 4 of the main paper for a detailed
explanation on these sampling strategies.

Bulldozer uniform logarithmic log+warp NDC
uniform

local
logarithmic

local
log+warp

local
NDC
local

PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP PSNR FLIP

Number of
samples N

2 27.930 0.062 27.774 0.063 27.755 0.064 25.158 0.099
4 16.662 0.276 16.562 0.276 16.834 0.275 11.929 0.408 28.071 0.061 28.038 0.060 28.034 0.060 26.147 0.086
8 19.720 0.204 19.458 0.209 19.637 0.206 14.814 0.314 28.115 0.061 28.093 0.059 28.129 0.059 26.358 0.083
16 22.790 0.146 22.683 0.147 22.769 0.145 18.384 0.229 28.152 0.061 28.169 0.059 28.192 0.059 26.483 0.084
32 26.551 0.096 26.233 0.098 26.458 0.095 22.027 0.156 28.208 0.060 28.223 0.058 28.269 0.059 26.891 0.081
64 30.660 0.064 30.472 0.064 30.817 0.062 25.381 0.106 28.366 0.060 28.939 0.055 28.975 0.056 29.424 0.068

128 34.362 0.047 34.261 0.047 34.651 0.045 29.265 0.075 30.169 0.052 32.551 0.047 32.640 0.047 29.172 0.071

Table 8: Ablation results for various sampling methods for the Forest scene. Please refer to Section 4 of the main paper for a detailed
explanation on these sampling strategies.

Forest uniform logarithmic log+warp NDC
uniform

local
logarithmic

local
log+warp

local
NDC
local

Number of
samples N

2 24.126 0.156 29.666 0.079 30.867 0.071 22.108 0.182
4 14.794 0.525 21.062 0.227 21.185 0.220 15.431 0.474 27.384 0.102 28.513 0.089 30.760 0.075 22.683 0.170
8 20.172 0.242 22.494 0.171 23.129 0.160 18.651 0.305 27.164 0.104 27.909 0.100 29.799 0.087 22.801 0.169
16 20.282 0.239 24.430 0.144 25.363 0.131 21.185 0.221 26.724 0.109 26.762 0.117 29.070 0.091 23.417 0.164
32 20.824 0.229 25.294 0.139 25.995 0.129 23.403 0.166 22.786 0.179 25.492 0.133 27.754 0.104 23.581 0.164
64 22.498 0.178 27.357 0.113 26.951 0.118 25.962 0.122 22.137 0.194 24.996 0.150 26.242 0.129 22.961 0.170

128 23.082 0.167 26.536 0.125 28.809 0.100 29.291 0.097 22.416 0.184 27.067 0.123 29.552 0.097 23.696 0.164

Table 9: Ablation results for various sampling methods for the Classroom scene. Please refer to Section 4 of the main paper for a detailed
explanation on these sampling strategies.

Classroom uniform logarithmic log+warp NDC
uniform

local
logarithmic

local
log+warp

local
NDC
local

Number of
samples N

2 33.389 0.054 33.668 0.054 33.458 0.055 32.157 0.060
4 21.135 0.194 21.804 0.204 21.497 0.211 18.920 0.275 33.994 0.052 33.964 0.053 33.815 0.054 33.033 0.057
8 24.357 0.141 25.263 0.130 25.689 0.120 22.690 0.180 33.889 0.053 33.949 0.054 33.948 0.054 33.259 0.056
16 26.519 0.111 27.313 0.105 27.838 0.094 25.689 0.123 33.346 0.055 33.688 0.054 33.952 0.053 33.325 0.056
32 28.882 0.085 29.678 0.082 30.435 0.072 28.342 0.088 33.495 0.056 33.786 0.055 33.883 0.054 33.587 0.057
64 31.322 0.068 32.252 0.064 32.822 0.060 31.307 0.065 33.660 0.057 34.182 0.055 34.452 0.053 33.586 0.058

128 33.113 0.059 33.781 0.057 34.527 0.053 33.823 0.055 33.574 0.058 33.727 0.057 34.510 0.055 33.674 0.058

Table 10: Ablation results for various sampling methods for the San Miguel scene. Please refer to Section 4 of the main paper for a detailed
explanation on these sampling strategies.

San Miguel uniform logarithmic log+warp NDC
uniform

local
logarithmic

local
log+warp

local
NDC
local

Number of
samples N

2 28.689 0.072 28.658 0.071 28.919 0.068 28.286 0.073
4 20.763 0.213 21.442 0.197 21.662 0.190 17.843 0.291 28.824 0.071 28.705 0.071 28.861 0.070 28.627 0.072
8 22.607 0.171 23.610 0.146 24.031 0.137 21.549 0.190 28.810 0.072 28.632 0.072 28.879 0.072 28.913 0.071
16 23.634 0.149 24.588 0.128 25.250 0.114 23.711 0.138 28.675 0.075 28.595 0.074 28.935 0.072 29.096 0.071
32 24.795 0.126 25.369 0.114 26.429 0.098 25.702 0.103 28.654 0.076 28.533 0.077 29.027 0.072 29.330 0.071
64 26.137 0.105 26.283 0.102 27.607 0.086 27.783 0.080 28.476 0.079 28.460 0.079 28.976 0.074 29.566 0.070

128 27.227 0.092 27.391 0.089 28.825 0.075 29.453 0.069 28.498 0.079 28.132 0.079 28.869 0.075 29.582 0.069
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