
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Normal-Driven Spherical Shape Analogies

Hsueh-Ti Derek Liu and Alec Jacobson
University of Toronoto

:

:

Figure 1: Our normal-driven spherical shape analogy stylizes an input 3D shape (bottom left) by studying how the surface normal of a style
shape (green) relates to the surface normal of a sphere (gray).

Abstract
This paper introduces a new method to stylize 3D geometry. The key observation is that the surface normal is an effective instru-
ment to capture different geometric styles. Centered around this observation, we cast stylization as a shape analogy problem,
where the analogy relationship is defined on the surface normal. This formulation can deform a 3D shape into different styles
within a single framework. One can plug-and-play different target styles by providing an exemplar shape or an energy-based
style description (e.g., developable surfaces). Our surface stylization methodology enables Normal Captures as a geometric
counterpart to material captures (MatCaps) used in rendering, and the prototypical concept of Spherical Shape Analogies as a
geometric counterpart to image analogies in image processing.

1. Introduction

Analogies of the form A : A′ :: B : B′ is a reasoning process that
conveys A is to A′ as B is to B′. This formulation has become a core
technique for creating artistic 2D digital content, such as image
analogies [HJO*01] in Photoshop [Ado21] for image stylization
and the Lit Sphere [SMGG01] (a.k.a. MatCap) in ZBrush [Pix20]
for non-photorealistic renderings. However, leveraging analogies to
stylize 3D geometry is still at a preliminary stage because defining
the analogy relationship on surface meshes requires dealing with
irregular discretizations, curved metrics, and different topologies.

In this paper, we introduce a step towards a more general 3D
shape analogies, named spherical shape analogies. We consider a
specific case where A is a unit sphere. This restriction enables us
to operate on an input mesh B with arbitrary topologies, bound-
aries, and geometric complexity. While not fully general, because
A is restricted to be a sphere, we demonstrate that this formulation
can immediately achieve different geometric styles within a single

framework. In Fig. 1, we show that by providing different target
style shapes A′ to the algorithm, we can turn the input shape B
into different styles. In addition to stylization, our method can en-
compass many existing applications, such as developable surface
approximation and PolyCube deformation.

One key observation in our spherical shape analogies is that
the surface normal is an effective instrument to capture geometric
styles. Thus, we define the analogy relationship based on normals:
we optimize a stylized shape B′ such that the relationship between
the surface normals of B and B′ is the same as the relationship be-
tween the surface normals of A and A′

We realize this by casting it as a simple and effective normal-
driven shape optimization problem which aims at deforming the
input shape towards a set of desired normals. However, such an
optimization problem is often difficult due to the nonlinearity of
unit normals. We draw inspiration from previous works and apply
a change of variables to accelerate the computation: instead of di-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14356

https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.1111/cgf.14356

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

oursinput [Fu et al. 2016]

Figure 2: Our method can be used to create PolyCube shapes
(blue) and obtain comparable results to [FBL16] (yellow).

oursinput
15.8 iter.
per sec.

15.6 iter.
per sec.

[LJ19]

Figure 3: Although being more general for creating different geo-
metric styles (e.g., Fig. 1), our normal driven editing can also be
applied to cubic stylization [LJ19], achieving comparable perfor-
mance (blue) to the previous method (red).

rectly optimizing the vertex positions, we optimize a set of rotations
that rotate the normals of the input mesh to the set of desired nor-
mals. Our simple formulation with the change of variables results
in a generic stylization algorithm that runs at interactive rates.

2. Related Work

Our work shares similar motivations to computer-assisted image
stylization pioneered by Haeberli [Hae90]. But since our outputs
are stylized 3D geometries, we focus the discussion on geometric
stylization and geometric deformation methods.

Analogy-based Geometric Stylization

Many generative models have been proposed for creating stylized
3D objects, such as collage art [GSP*07; TRAS07], manga style
[SLHC12], cubic style [LJ19], and neuronal homunculus [RRS12].
However, these methods are tailor-made for only a specific style.

Analogy A : A′ :: B : B′ is a powerful idea to achieve different
stylization results within a single framework. This idea has inspired
several design tools for images [HJO*01], non-photorealistic ren-
derings [SMGG01; FJL*16], and curves [HOCS02]. Beyond 2D
data, the idea of analogy has also been used for transferring 3D
geometric details from one shape to another. We omit the discus-
sion on methods that are not based on analogies, such as mesh
cloning [ZHW*06; TSS*11] and geometric learning [LKC*20;
HHGC20; WAK*20; CKF*21; LZ21], and focus on analogy-based
techniques. Ma et al. [MHS*14] propose a method for 3D style
transfer based on patch-based assembly. However, their method
cannot handle free-form deformations and requires the source and
the exemplar shape to share a similar structure in order to compute

[SAJ20]input ours

Figure 4: Sellán et al. [SAJ20] propose a technique to make 2D
heightfields developable (purple). In contrast, our method can cre-
ate developable approximations for surface meshes in 3D (blue).

input[SGC18] ours
1.6 sec.9.8 sec.

Figure 5: Compared to the method proposed by Stein et al.
[SGC18] for creating developable approximations (left), our
method can create visually comparable results (right) with signifi-
cant speed-ups.

high-quality correspondences. Bhat et al. [BIT04] propose a voxel-
based texture synthesis method for transferring geometric details
encoded in the volumetric grid. Berkiten et al. [BHS*17] use met-
ric learning for details represented as displacement maps. These
methods are designed for high-frequency details (e.g., wrinkles on
the surface). In contrast, our spherical shape analogies focuses on
larger scale free-form deformations. Albeit limited — in our analo-
gies A is restricted to the unit sphere — our method enables a first
step in this exciting direction.

Surface Normals in Shape Deformation

A key insight of our spherical shape analogies is to leverage sur-
face normals to capture geometric styles. The surface normal is a
fundamental geometric quantity and is ubiquitous in geometry pro-
cessing. A representative example is in the PolyCube deformation
[THCM04] where the goal is to optimize surface normals to be
axis-aligned. Gregson et al. [GSZ11] and Zhao et al. [ZLL*17] use
the closest rotation from the surface normal to an axis-aligned di-
rection to drive the PolyCube deformation. Huang et al. [HJS*14]
and Fu et al. [FBL16] propose to minimize energies defined on
normals to create PolyCube shapes. In architectural geometry de-
sign, surface normals are a main ingredient to characterize polygon
meshes with planar faces. The methods proposed by Deng et al.
[DPW11] and Poranne et al. [POG13] utilize normals to formu-
late a distance-from-plane constraint to encourage planarity. Tang
et al. [TSG*14] use the dot product between a face normal and
its adjacent edge vectors to determine whether the vertices of a
polygon are coplanar. Characterizing whether a mesh can be flat-
tened to 2D without stretching or shearing, a.k.a. developability,
also relies on surface normals. Stein et al. [SGC18] characterize
discrete developability based on the 1-ring face normals, and pro-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

46

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

pose an algorithm to compute piecewise developable surfaces. Sel-
lán et al. [SAJ20] reformulate the developable energy into a con-
vex semidefinite program for finding piecewise developable height-
fields. In addition to these examples, deforming shapes into the cu-
bic style [LJ19; FMR20], constructing shape abstractions [Ale21],
surface parameterization [ZSL*20], and interactive mesh editing
[YZX*04; SCL*04] are all related to surface normals. Many more
examples can be found in the design of geometric filters, such as
the Guided filter [ZDZ*15], the Shock filter [PK15], the Bilateral
normal filter [ZFAT11], and the Total Variation mesh denoising
[ZWZD15].

Our method can be adapted to these normal-based deformations.
Compared to the PolyCube method [FBL16], we achieve compara-
ble quality (see Fig. 2), but we can further generalize to polytopes
(see Fig. 18). Compared to [LJ19] in cubic stylization (see Fig. 3),
we can achieve similar performance, but we can further generalize
to many styles other than the cubic style (see Fig. 1). In developable
surface approximation, in contrast to the method by Sellán et al.
[SAJ20], our method can be applied to surface triangle meshes (see
Fig. 4) and is significantly faster than the method by Stein et al.
[SGC18] (see Fig. 5).

Shape Deformation

Our geometric stylization method can also be perceived as a type
of shape deformation method. We share technical similarities with
methods that deform a shape while addressing given modeling con-
straints. A common choice is to minimize the as-rigid-as-possible
(ARAP) energy [SA07; IMH05; CPSS10] while satisfying the con-
straints. This ARAP energy measures the rigidity of local surface
patches and favors detail-preserving smooth deformations. In the
case where locally rigid deformations are too constrained, the con-
formal energy [CPS11; VMW15] which preserves angles is com-
monly used. In contrast to ARAP, the conformal energy often trig-
gers larger deformations as it allows both local uniform scaling
and rigid transformations. In addition to mesh deformations, simi-
lar energies have also been used for parameterization [LZX*08],
shape optimization [BDS*12], and simulating mass-spring sys-
tems [LBOK13]. The ARAP and conformal energies are also com-
monly used as regularization terms in mesh optimization problems,
such as reconstruction [ZNI*14], surface registration [HAWG08;
YMYK14], PolyCube construction [HJS*14], and surface styliza-
tion [LJ19]. Their popularity comes from the property that they fa-
vor smooth deformations and are amenable to fast optimizations.
For the same reasons, we also use these as our regularization ener-
gies for interactive modeling tasks (see Fig. 11).

3. Spherical Shape Analogies

Our main idea is to use surface normals to capture the style of 3D
objects: if two shapes share a similar normal “profile”, we consider
them to exhibit the same geometric style. Centered around this ob-
servation, as discussed in Sec. 1, we propose an analogy-based styl-
ization method to translate the relationship between the normals of
A′,A to create a stylized output shape B′ (see Fig. 6). Throughout
the paper, we use green color to denote the target style shape A′,
gray color to denote the input shape B, and blue color to denote the
output stylized shape B′.

: :: :
A A’ B B’

Figure 6: We generate an output shape B′ that relates to the input
B in the same way as how the surface normal of a given primitive
A′ relates to the surface normal of a sphere A.

: :: :

step 1

step 2

step 3

A A’ NA

NA’

NB TNA

B T B’

NA’

NA’

Figure 7: Our algorithm defines the analogous relation based on
the surface normals. We first map the normals of the style shape NA′

to a unit sphere to obtain ÑA′ (top row), transfer the relationship
between NA and ÑA′ to the input shape to obtain the target normals
T (middle row), then optimize the input shape B so that the actual
output normals are aligned with the target normal T (bottom row).

Our algorithm consists of three simple steps, described in Fig. 7:
(1) we map the surface normal of A′ to a unit sphere A in order to
compute target normals on a sphere ÑA′ , (2) we construct analogous
target normals T that relate to NB the same way ÑA′ relate to NA,
(3) we take B,T as inputs and generate the stylized shape B′ whose
normals approximate T via optimization.

3.1. Generating ÑA′

Depending on the provided style shape A′ or user preferences, we
consider three ways to get a set of target normals on a sphere ÑA′ .

1. Closest normals. The simplest case is when the style shape A′

is a simple convex shape with only few distinct face normals (e.g.,
icosahedron). We compute ÑA′ simply via snapping the normals of
the sphere NA to the nearest normal in the style shape NA′ .

2. Spherical parameterization. For a generic genus-0 shape (e.g.,
smooth or concave), we compute its parameterization to a sphere
using, for example, conformalized mean curvature flow [KSB12].
Then ÑA′ can be computed from the spherical parameterization.

3. Normal Capture. If one desires more control, one can man-
ually specify ÑA′ , in the spirit of how MatCap (material capture

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

47

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

mean curvature flowA’

NB NA’

Figure 8: Given a style shape A′, we run mean curvature flow
[KSB12] to map the normals of style shape NA′ to a sphere as ÑA′ .

[SMGG01]) is used in rendering. We can then skip the first step in
Fig. 7 and move on to the second step using the user-provided ÑA′ .

3.2. Generating T

Gauss map

A B

Generating target normals T on
the input shape B using analogy
requires the correspondences be-
tween A, B. We compute the map
using the Gauss map, leveraging
the fact that our A is always a unit
sphere (see the inset, where we use colors to visualize the corre-
spondences). Specifically, the unit normal vector of each element
(e.g., vertex or face) on the input shape B can be equivalently in-
terpreted as a point on the unit sphere A. Thus, we can easily map
signals from A back to B. Once the correspondences are obtained
via the normals of input shape NB, we can trivially compute T by
“pasting” ÑA′ on top of B.

3.3. Generating B′

After obtaining a set of target normals T = {tk} for each vertex
k, our goal is to obtain a deformed output shape B′ whose surface
normals approximate T . Let V be a matrix of vertex locations with
size |V|-by-3 and F be the face list with size |F|-by-3 of the input
shape B. Our output shape B′ is a deformed version of the input
shape and we use V′ to denote the |V|-by-3 matrix of the deformed
vertex locations. We formulate the normal-driven deformation as
an energy optimization in the following form:

min
V′ ∑

k∈V

ER(vk,uk)+λak‖n̂k(V
′)− tk‖2

2, (1)

where ER denotes a regularization energy to preserve the details of
the input mesh, and the second part measures the squared distance
from the output unit surface normal n̂k(V

′) to the target output nor-
mal tk at vertex k. We use ak to denote the Voronoi area of the
vertex k, λ is a weighting parameter to control the balance between
the two terms, and vk (uk) is the input (output) location of vertex k.
In Fig. 9, we can observe that using a small λ, the method preserves
the input shape B. Using a bigger λ, the method favors in deforming
the shape more into the style of A′. The choice of ER depends on the
user’s intent. One can apply different regularizations to obtain dif-
ferent results. For the purposes of this exposition, we introduce our
optimization based on ARAP regularization in Sec. 3.4. We discuss
how to extend to other regularizations in Sec. 4.1.

increasing

Figure 9: The λ parameter in Eq. 3 controls the balance between
preserving the original shape and satisfying the desired style. We
show different stylization results with increasing λ. c©Spiral Light
Bulb (top) by benglish under CC BY-SA.

3.4. Normal-Driven Optimization with ARAP

We use ei j := v j− vi ∈ R3 to denote the edge vector between ver-
tices i, j on the original mesh, and e′i j := v′j− v′i for the edge vec-
tors on the deformed mesh. We can write down the energy that uses
ARAP regularization as

min
V′,R

∑
k∈V

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2︸ ︷︷ ︸

EARAP

+λak‖n̂k(V
′)− tk‖2

2, (2)

kk

We useNk to denote the edge vectors of
the spokes and rims at vertex k (see the in-
set) [CPSS10], Rk ∈ SO(3) to denote a 3-
by-3 rotation matrix defined on k, and wi j
is the cotangent weight of edge i, j [PP93].
However, this energy is difficult to opti-
mize because the term n̂k(V

′) is non-linear in V′.

We adapt the observation made in [LJ19] that the space of unit
vectors can be captured by rotations. Thus, we can perform a
change of variables by replacing n̂k(V

′) with the rotated unit nor-
mal of the input mesh Rkn̂k as

min
V′,R

∑
k∈V

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2 +λak‖Rkn̂k− tk‖2

2, (3)

where n̂k is the kth unit vertex normal of the input mesh com-
puted via area-weighted average of face normals, which is con-
stant throughout the optimization. This Rkn̂k can be perceived as
an approximation of the area-weighted vertex normals of the out-
put mesh n̂k(V

′). In Fig. 10, we visualize the difference between
the output normals n̂k(V

′) and the rotated input normals Rkn̂k. We
can notice that Rkn̂k is a decent approximation of the output ver-
tex normals computed via area-weighted average. We can observe
that error tend to concentrate on high-curvature regions because

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

48

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

input
1

0

output

Figure 10: Empirically, we show that rotated input normals Rkn̂k is
a good approximation of the area-weighted output vertex normals
n̂k(V

′). We can observe that the error mostly occurs on the high-
curvature regions (right). c©Proto Paradigm under CC BY.

discrete vertex normals are less accurate along on those regions
and the ARAP regularization encourages smooth deformation. This
change of variables allows us to solve for Rks in parallel and make
this energy quadratic in V′. In addition, the fact that Rk is shared
across the ARAP term and the normal term enables us to jointly con-
sider both the regularization and the normal terms when obtaining
the deformed vertex locations V′.

We minimize this energy via the local/global strategy [SA07],
where the local step involves solving a set of small Orthogonal
Procrustes problems and the global step amounts to a linear solve.
For the sake of reproducibility, we reiterate the local-global steps
for our energy in App. A, B. Non-linear methods, such as New-
ton’s method, could be applied to our scenario. It is however far
slower than the local-global optimization since a single iteration of
the Newton’s method could be more expensive than 100 iterations
of the local-global iterations (see [LBK17]). Thus, it is less suitable
for our interactive applications. Further accelerating our solver us-
ing other optimization methods (e.g., [KGL16; PDZ*18; ZBK18])
should be possible, but is left as future work.

4. Extensions & Analysis

In this section, we introduce its extensions to different regulariza-
tions and how to handle cases where target normals T (B′) are a
function of output geometry.

4.1. Different Regularizations

In addition to EARAP, the normal-driven optimization supports dif-
ferent regularization energies for different modeling intents. One
could use ARAP when the goal is to produce a smooth deformation
that preserves surface details. If one wants to produce a non-smooth
deformation (e.g., sharp creases) while preserving local rigidity,
one could instead use a face-only ARAP energy EFARAP discussed in
[ZG16; LG15] which consists of only the membrane term. If one is
interested in preserving the textures and allowing local scaling, one
could use an as-conformal-as-possible energy EACAP [BDS*12].

k

 fkFace-only ARAP. The core idea is to remove
the bending term from ARAP and only measure
the membrane term [TPBF87], so that two adja-
cent triangles can bend freely. We achieve this by
applying the idea from [ZG16; LG15] which only measures the

input

constraints

EARAP EFARAP EACAP

Figure 11: Different regularizations favor different behaviors.
Given a sheet (gray), we pull up the center part (central blue dots)
and shrink the boundary (blue dots on the boundary), then we min-
imize each regularization energy to determine the unconstrained
vertices. We can observe that EARAP favors rigid and smooth in-
terpolation, EFARAP favors sharp bending between triangles, and
EACAP favors to preserve angles while allowing local scaling.

ARAP energy over the three edge vectors of a face fk (see the in-
set), instead of the spokes and rimsNk. Precisely, we can write this
“face-only” ARAP regularization EFARAP as

EFARAP(V
′,R) = ∑

k∈F
∑

i, j∈ fk

wi j‖Rkei j− e′i j‖2
2, (4)

As-conformal-as-possible. If the goal is to create novel geomet-
ric details, it is crucial to allow non-rigid deformations. However,
an arbitrary deformation may lead to undesirable behaviors, such as
badly shaped triangles. Thus constraining the angle preservation,
a.k.a. conformality, will be a suitable regularization. Specifically,
we use the ACAP energy EACAP in [BDS*12] as our regularization

EACAP(V
′,R,s) = ∑

k∈F
∑

i, j∈Nk

wi j‖skRkei j− e′i j‖2
2, (5)

where sk is a scalar representing the scaling of local patch. One can
compute the optimal sk analytically via the method by Schönemann
et al. [SC70] (see App. C).

Deploying these regularizations EFARAP,EACAP requires only a
few changes in the optimization steps. Deploying EFARAP only in-
volves changing the incidence matrix. Deploying EACAP only re-
quires adding one more line of code in the local step to solve an
isotropic orthogonal Procrustes problem [SC70]. We detail such
changes in App. C. In Fig. 11, we apply the same deformation to
a sheet but with different regularizations. We can perceive that dif-
ferent regularizations favor drastically different solutions.

Our framework allows one to easily plug-and-play different reg-
ularizations. Specifically, we use EARAP for applications that fa-
vor smooth deformation (e.g., Fig. 13), EFARAP for creating sharp
creases (Fig. 18, 20), and EACAP when one wants to manipulate ge-
ometric details such as in Fig. 22.

4.2. Dynamic Target Normals

Our method converges to a local minimum. Empirically, we ob-
serve that treating the target normal T as a constant throughout the
optimization may work fine perceptually in many cases (see the
left pair in Fig. 12). However, constant T may lead to an undesir-
able local minimum due to a sub-optimal assignment of T (see the
right pair in Fig. 12). Inspired by Projective Dynamics [BML*14],
a simple solution to avoid such local minima is to treat T as a func-
tion of B′ (NB′ specifically), and update T at every iteration. We

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

49

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

constant constant

A’

Figure 12: Setting the target normal T as a constant or treating it
as a function of the output mesh T (B′) leads to different local min-
ima. In many cases (left pair), both options lead to similar looking
results. But setting T as a constant may result in an undesirable
local minimum in some cases (right), such as the ears of the bunny.

Algorithm 1: Normal-driven optimization
Input : A triangle mesh V,F and a weight λ

Output: Deformed vertex positions V′

1. compute ÑA′ // step 1, Sec. 3.1
2. compute T from n̂(V) // step 2, Sec. 3.2
3. n̂← n̂(V) // compute input surface normals
4. Q,K← precompute(V,F) // see App. B
5. V′← V
6. while not converge do
7. R← local-step(V′, n̂,T,λ) // App. A
8. V′← global-step(R,Q,K) // App. B
9. compute T from n̂(V′) // (optional) for dynamic T

summarize the pseudo code in Alg. 1. If T is a constant throughout
the optimization, one can simply skip the optional step at line 9.

log energy

-3.0

-2.5

-2.0

constant T

dynamic T

iterations0 50

In terms of convergence, in the
case where T is constant, the con-
vergence behaves the same as the
original ARAP [SA07], where the
energy decreases monotonically.
In the case where T is depen-
dent to B′, we do not guarantee a
monotonic decrease in energy, but the optimization still converges
in our experiments. In the inset, we visualize the convergence plot
for examples in Fig. 12.

runtime per iterationsec.

|V|

10-2

10-1

105104

O(n)

We implement our algorithm
in C++ with Eigen [GJ*10] and
evaluate our method on a Mac-
Book Pro with an Intel i5 2.3GHz
processor. Our method runs 24 it-
erations per second for a mesh
with around 20k vertices. We re-
port a complete picture of our runtime in the inset. The local step
will be the computation bottleneck for meshes with less than 20k
vertices, but further acceleration can be achieved via the method by
Zhang et al. [ZJA21]. Typically, within the first 10 iterations, our
method can achieve a visually similar result compared to the con-
verged solution. This property enables us to build an interactive tool
for users to play with different style shapes A′ or artistic controls.

Figure 13: Given an input shape (gray), our approach can trans-
fer the style of a primitive shape (green) to obtain a stylized out-
put shape (blue). c©Johannes (bottom left), Joseph Larson (bot-
tom middle), and Angelo Tartanian (bottom left) under CC BY. The
Nefertiti mesh (top right) was scanned by Nora Al-Badri and Jan
Nikolai Nelles from the Nefertiti bust.

Figure 14: Even for input shapes with boundaries (gray), our
method is still applicable to transfer the style of primitive shapes
(green) to obtain the stylized output shape (blue).

large
error

small
error

Figure 15: We visualize the difference between the mesh normals
and the normals of the style shape. Our normal-driven optimization
effectively reduce the difference to the target normals. c©Morena
Protti under CC BY.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

50

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

Figure 16: When the input shape is smooth or non-convex, we use
the mean curvature flow (see Fig. 8) to obtain target normals to pro-
ceed the optimization. We deform the input shapes (gray) to exhibit
the style of an oloid (left, green), a Jessen’s icosahedron (middle,
green), and a tractricoid (right, green), respectively. c©Splotchy Ink
(left), fong182 (middle), and Colin Freeman (right) under CC BY.

Figure 17: One can manually specify the target normals on a
sphere (Normal Captures) for full control, and deform the input
shape (gray) to the style (blue) prescribed by the colored sphere.
c©MakerBot (right) under CC BY.

5. Applications

The major benefit of our analogy-based stylization method is that
one can plug-and-play different style shapes to obtain different re-
sults. When one provides convex primitives with few distinct face
normals, we can simply use the method discussed in Sec. 3.1 to
turn an input shape into the style of the primitive (see Fig. 13,
14). In Fig. 15, we also quantitatively show that our method can
effectively reduce the difference between mesh normals and the
normals of a primitive. If the provided style shape is smooth or
non-convex, where the simple closest normal may fail to capture
the style, one could use a spherical parameterization described in
Sec. 3.1 to achieve the stylization. If desiring more user controls,
one could “paint” the desired surface normals on a unit sphere (see
Sec. 3.1), and then transfer the style of the painted normals directly
to the input (see Fig. 17)

5.1. PolyCube Deformation

If one is interested in PolyCube maps [THCM04], we can adapt
normal driven editing to create PolyCube maps,following the ob-
servation in [ZLL*17]. Specifically, we need to use a cube as a
style shape and move the pre-computation step in Alg. 1 to the
optimization loop. Moving the pre-computation in the loop would
no longer preserve the original details, which is desirable for cre-
ating PolyCube shapes. This modification may also lead to badly
shaped triangle. When these faces appear, a quick solution is to
move the vertex towards the 1-ring average by a small amount to
improve triangle quality. For the sake of comparison, we use the
same PolyCube segmentation as in [FBL16] and show that we can

Figure 18: By using different sets of normals, we can generalize
the PolyCube method (left) to create polygonal boxed maps.

input more patches fewer patches

Figure 19: Stein et al. [SGC18] control the patches on the devel-
opable surfaces via remeshing the input. We, instead, can control
the amount of creases (middle, right) by tuning a single parameter
(see App. E).

achieve comparable results in Fig. 2. We can further generalize the
PolyCube map to other polygonal boxes by specifying non-cube
normals (see Fig. 18).

5.2. Developable Surface Approximation

So far we have only considered an explicit shape or a set of painted
normals as our style shape. Here we further extend our method to
support an energy that describes a certain style. In particular, we
consider the target normal T is computed via an optimization

T = argmin
T

f (B′), (6)

and, similar to the case where T is dependent to B′, we update T at
every iteration in the local/global solve.

inputoutput

log histogram of
Gaussian curvature magnitude

low high

We evaluate this extension via
setting f to be the discrete de-
velopability energy proposed in
[SGC18], with details provided
in App. E. Compared to the orig-
inal method, our approach con-
tains a regularization term in ad-
dition to the developable energy, thus our optimization requires no
remeshing and results in the faster optimization (see Fig. 5). In
Fig. 19, we further show that our framework enables one to con-
trol the number of creases in the results. With our framework one
can interactively create a variety of piece-wise developable shapes
(see Fig. 20). In Fig. 21, we evaluate our results by visualizing
the discrete Gaussian curvature before and after running our de-
velopable flow. We can observe that the Gaussian curvature con-
centrates along the creases and results in a piece-wise developable
surface. In the inset, we quantitatively demonstrate that our method
effectively increases the developability of the mesh in Fig. 21.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

51

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

Figure 20: Our normal driven editing can be used to create
many piece-wise developable surfaces (blue). Our method re-
quires no remeshing and is fast enough for interactive modeling.
c©cerberus333 (third) under CC BY-NC.

+K

-K

Figure 21: We use our normal driven editing to deform the input
shape (gray) into a piece-wise developable approximation (blue).
In the bottom row, we visualize the Gaussian curvature concen-
trates on the creases after the deformation, leading to a piece-wise
developable shape. c©Oliver Laric under CC BY-NC-SA.

6. Limitations & Future Work

Our method draws inspiration from Projective Dynamics
[BML*14] to handle the case where target normals T are a
function of output shape B′ (e.g., Fig. 12, 20). Although being
fast and suitable for our intended interactive applications, it often
struggles to converge to a highly accurate solution. Extending our
optimization to, for example, Newton’s method would be desirable
for applications that desire highly accurate solutions.

Our approach is restricted to a sphere as our reference shape
A, and uses the Gauss map to determine the correspondences
between A and the input B. As the Gauss map purely relies
on surface normals to determine the map, the resulting map
is ignorant to area distortion. This characteristic is beneficial
to handle input shapes B that are very different (e.g., differ-
ent genus) from a sphere because in these cases it is chal-
lenging to obtain a map with low area distortion. However,
the price we have to pay is that we cannot support structured
and high-frequency patterns (e.g., geometric
texture synthesis). Thus, if one is interested
in stylizing shapes with detailed textures, we
suggest to first synthesize target normals on
the surface directly [WLKT09] then perform
the normal-driven optimization (Sec. 3.4). In
Fig. 22 we demonstrate this alternative by un-
baking an existing normal map for manufactur-

unbaking normal maps normal texture synthesis

Figure 22: If one is interested in creating high-frequency geometric
textures, we recommend to compute target normals via texture syn-
thesis and then optimize the geometry via the normal-driven opti-
mization. We demonstrate an example of “unbaking” normal maps
(left) and an example of geometric texture synthesis (right).

ing purposes (see the inset) and synthesizing normal textures from
an image.

Our method currently supports manifold triangle meshes. Ex-
tending to non-manifold meshes, polygon meshes, volumetric
meshes, and point clouds could be beneficial to handle real-world
geometric data. Not every shape or normal capture sphere is valid
to serve as the style shape of our algorithm. Discovering the va-
lidity of a style shape is important to understand the behavior of
these novel modeling methods. Removing the assumption about the
source shape being a sphere could lead to a more general analogy-
based shape editing. Based on the observation that surface normals
are a promising geometric quantity to capture the style of a shape.
Developing a better categorization of styles based on normals or ex-
ploring learning-based techniques on normals (instead of vertices)
could lead to novel stylization methods.

Acknowledgements

Our research is funded in part by NSERC Discovery (RG-
PIN2017–05235, RGPAS–2017–507938), New Frontiers of Re-
search Fund (NFRFE–201), the Ontario Early Research Award pro-
gram, the Canada Research Chairs Program, the Fields Centre for
Quantitative Analysis and Modelling and gifts by Adobe Systems,
Autodesk and MESH Inc. We thank Sheldon Andrews, Abhishek
Madan, Silvia Sellán, Oded Stein, Li-Yi Wei for helps on experi-
ments. We thank members of Dynamic Graphics Project at the Uni-
versity of Toronto; Sarah Kushner, Abhishek Madan, Silvia Sellán,
Letícia Mattos Da Silva, Towaki Takikawa for proofreading; John
Hancock for the IT support. We thank all the artists for sharing a
rich variety of 3D models.

References
[Ado21] ADOBE INC. Adobe Photoshop. Version 22.3.1. 2021. URL:
https://www.adobe.com 1.

[Ale21] ALEXA, MARC. “PolyCover: Shape Approximating with Dis-
crete Surface Orientation”. IEEE Computer Graphics and Applications
(2021) 3.

[BDS*12] BOUAZIZ, SOFIEN, DEUSS, MARIO, SCHWARTZBURG,
YULIY, et al. “Shape-Up: Shaping Discrete Geometry with Projec-
tions”. Comput. Graph. Forum 31.5 (2012), 1657–1667 3, 5.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

52

https://www.adobe.com

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

[BHS*17] BERKITEN, SEMA, HALBER, MACIEJ, SOLOMON, JUSTIN, et
al. “Learning Detail Transfer based on Geometric Features”. Comput.
Graph. Forum 36.2 (2017), 361–373 2.

[BIT04] BHAT, PRAVIN, INGRAM, STEPHEN, and TURK, GREG. “Ge-
ometric Texture Synthesis by Example”. Second Eurographics Sym-
posium on Geometry Processing, Nice, France, July 8-10, 2004. Ed.
by BOISSONNAT, JEAN-DANIEL and ALLIEZ, PIERRE. Vol. 71. ACM
International Conference Proceeding Series. Eurographics Association,
2004, 41–44 2.

[BML*14] BOUAZIZ, SOFIEN, MARTIN, SEBASTIAN, LIU, TIANTIAN, et
al. “Projective dynamics: fusing constraint projections for fast simula-
tion”. ACM Trans. Graph. 33.4 (2014), 154:1–154:11 5, 8, 11.

[CKF*21] CHEN, ZHIQIN, KIM, VLADIMIR G., FISHER, MATTHEW,
et al. “DECOR-GAN: 3D Shape Detailization by Conditional Refine-
ment”. Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2021) 2.

[CPS11] CRANE, KEENAN, PINKALL, ULRICH, and SCHRÖDER, PETER.
“Spin transformations of discrete surfaces”. ACM Trans. Graph. 30.4
(2011), 104 3.

[CPSS10] CHAO, ISAAC, PINKALL, ULRICH, SANAN, PATRICK, and
SCHRÖDER, PETER. “A simple geometric model for elastic deforma-
tions”. ACM Trans. Graph. 29.4 (2010), 38:1–38:6 3, 4.

[DPW11] DENG, BAILIN, POTTMANN, HELMUT, and WALLNER, JO-
HANNES. “Functional webs for freeform architecture”. Comput. Graph.
Forum 30.5 (2011), 1369–1378 2.

[FBL16] FU, XIAO-MING, BAI, CHONG-YANG, and LIU, YANG. “Effi-
cient Volumetric PolyCube-Map Construction”. Comput. Graph. Forum
35.7 (2016), 97–106 2, 3, 7.

[FJL*16] FISER, JAKUB, JAMRISKA, ONDREJ, LUKÁC, MICHAL, et al.
“StyLit: illumination-guided example-based stylization of 3D render-
ings”. ACM Trans. Graph. 35.4 (2016), 92:1–92:11 2.

[FMR20] FUMERO, MARCO, MÖLLER, MICHAEL, and RODOLÀ,
EMANUELE. “Nonlinear spectral geometry processing via the TV trans-
form”. ACM Trans. Graph. 39.6 (2020), 199:1–199:16 3.

[GJ*10] GUENNEBAUD, GAËL, JACOB, BENOÎT, et al. Eigen v3.
http://eigen.tuxfamily.org. 2010 6.

[GSP*07] GAL, RAN, SORKINE, OLGA, POPA, TIBERIU, et al. “3D col-
lage: expressive non-realistic modeling”. Proceedings of the 5th interna-
tional symposium on Non-photorealistic animation and rendering. ACM.
2007, 7–14 2.

[GSZ11] GREGSON, JAMES, SHEFFER, ALLA, and ZHANG, EUGENE.
“All-Hex Mesh Generation via Volumetric PolyCube Deformation”.
Comput. Graph. Forum 30.5 (2011), 1407–1416 2.

[Hae90] HAEBERLI, PAUL. “Paint by numbers: abstract image representa-
tions”. Proceedings of the 17th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1990, Dallas, TX, USA, Au-
gust 6-10, 1990. Ed. by BASKETT, FOREST. ACM, 1990, 207–214 2.

[HAWG08] HUANG, QI-XING, ADAMS, BART, WICKE, MARTIN, and
GUIBAS, LEONIDAS J. “Non-Rigid Registration Under Isometric De-
formations”. Comput. Graph. Forum 27.5 (2008), 1449–1457 3.

[HHGC20] HERTZ, AMIR, HANOCKA, RANA, GIRYES, RAJA, and
COHEN-OR, DANIEL. “Deep geometric texture synthesis”. ACM Trans.
Graph. 39.4 (2020), 108 2.

[HJO*01] HERTZMANN, AARON, JACOBS, CHARLES E., OLIVER,
NURIA, et al. “Image analogies”. Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 2001, Los Angeles, California, USA, August 12-17, 2001. Ed.
by POCOCK, LYNN. ACM, 2001, 327–340 1, 2.

[HJS*14] HUANG, JIN, JIANG, TENGFEI, SHI, ZEYUN, et al. “l1-Based
Construction of Polycube Maps from Complex Shapes”. ACM Trans.
Graph. 33.3 (June 2014) 2, 3.

[HOCS02] HERTZMANN, AARON, OLIVER, NURIA, CURLESS, BRIAN,
and SEITZ, STEVEN M. “Curve Analogies”. Proceedings of the 13th Eu-
rographics Workshop on Rendering Techniques, Pisa, Italy, June 26-28,
2002. Ed. by GIBSON, SIMON and DEBEVEC, PAUL E. Vol. 28. ACM
International Conference Proceeding Series. Eurographics Association,
2002, 233–246 2.

[IMH05] IGARASHI, TAKEO, MOSCOVICH, TOMER, and HUGHES, JOHN
F. “As-rigid-as-possible shape manipulation”. ACM Trans. Graph. 24.3
(2005), 1134–1141 3.

[KGL16] KOVALSKY, SHAHAR Z., GALUN, MEIRAV, and LIPMAN,
YARON. “Accelerated quadratic proxy for geometric optimization”.
ACM Trans. Graph. 35.4 (2016), 134:1–134:11 5.

[KSB12] KAZHDAN, MICHAEL, SOLOMON, JAKE, and BEN-CHEN,
MIRELA. “Can Mean-Curvature Flow be Modified to be Non-singular?”:
Comput. Graph. Forum 31.5 (2012), 1745–1754 3, 4.

[LBK17] LIU, TIANTIAN, BOUAZIZ, SOFIEN, and KAVAN, LADISLAV.
“Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Ma-
terials”. ACM Trans. Graph. 36.3 (2017), 23:1–23:16 5.

[LBOK13] LIU, TIANTIAN, BARGTEIL, ADAM W., O’BRIEN, JAMES
F., and KAVAN, LADISLAV. “Fast simulation of mass-spring systems”.
ACM Trans. Graph. 32.6 (2013), 214:1–214:7 3.

[LG15] LEVI, ZOHAR and GOTSMAN, CRAIG. “Smooth Rotation En-
hanced As-Rigid-As-Possible Mesh Animation”. IEEE Trans. Vis. Com-
put. Graph. 21.2 (2015), 264–277 5.

[LJ19] LIU, HSUEH-TI DEREK and JACOBSON, ALEC. “Cubic styliza-
tion”. ACM Trans. Graph. 38.6 (2019), 197:1–197:10 2–4.

[LKC*20] LIU, HSUEH-TI DEREK, KIM, VLADIMIR G., CHAUDHURI,
SIDDHARTHA, et al. “Neural subdivision”. ACM Trans. Graph. 39.4
(2020), 124 2.

[LZ21] LI, MANYI and ZHANG, HAO. “D2IM-Net: Learning Detail Dis-
entangled Implicit Fields from Single Images”. Proc. of CVPR. 2021 2.

[LZX*08] LIU, LIGANG, ZHANG, LEI, XU, YIN, et al. “A Local/Global
Approach to Mesh Parameterization”. Comput. Graph. Forum 27.5
(2008), 1495–1504 3.

[MHS*14] MA, CHONGYANG, HUANG, HAIBIN, SHEFFER, ALLA, et
al. “Analogy-driven 3D style transfer”. Comput. Graph. Forum 33.2
(2014), 175–184 2.

[PDZ*18] PENG, YUE, DENG, BAILIN, ZHANG, JUYONG, et al. “An-
derson acceleration for geometry optimization and physics simulation”.
ACM Trans. Graph. 37.4 (2018), 42:1–42:14 5.

[Pix20] PIXOLOGIC INC. ZBrush. Version 2021.5.1. 2020. URL: https:
//pixologic.com 1.

[PK15] PRADA, FABIAN and KAZHDAN, MISHA. “Unconditionally Sta-
ble Shock Filters for Image and Geometry Processing”. Comput. Graph.
Forum 34.5 (2015), 201–210 3.

[POG13] PORANNE, ROI, OVREIU, ELENA, and GOTSMAN, CRAIG.
“Interactive Planarization and Optimization of 3D Meshes”. Comput.
Graph. Forum 32.1 (2013), 152–163 2.

[PP93] PINKALL, ULRICH and POLTHIER, KONRAD. “Computing Dis-
crete Minimal Surfaces and Their Conjugates”. Experimental Mathemat-
ics 2.1 (1993), 15–36 4, 11.

[RRS12] REINERT, BERNHARD, RITSCHEL, TOBIAS, and SEIDEL,
HANS-PETER. “Homunculus Warping: Conveying importance using
self-intersection-free non-homogeneous mesh deformation”. Comput.
Graph. Forum 31.7-2 (2012), 2165–2171 2.

[SA07] SORKINE, OLGA and ALEXA, MARC. “As-rigid-as-possible sur-
face modeling”. Proceedings of the Fifth Eurographics Symposium
on Geometry Processing, Barcelona, Spain, July 4-6, 2007. Ed. by
BELYAEV, ALEXANDER G. and GARLAND, MICHAEL. Vol. 257. ACM
International Conference Proceeding Series. Eurographics Association,
2007, 109–116 3, 5, 6, 11.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

53

https://pixologic.com
https://pixologic.com

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

[SAJ20] SELLÁN, SILVIA, AIGERMAN, NOAM, and JACOBSON, ALEC.
“Developability of heightfields via rank minimization”. ACM Trans.
Graph. 39.4 (2020), 109 2, 3.

[SC70] SCHÖNEMANN, PETER H and CARROLL, ROBERT M. “Fitting
one matrix to another under choice of a central dilation and a rigid mo-
tion”. Psychometrika 35.2 (1970), 245–255 5, 11.

[SCL*04] SORKINE, OLGA, COHEN-OR, DANIEL, LIPMAN, YARON, et
al. “Laplacian Surface Editing”. Second Eurographics Symposium on
Geometry Processing, Nice, France, July 8-10, 2004. Ed. by BOISSON-
NAT, JEAN-DANIEL and ALLIEZ, PIERRE. Vol. 71. ACM International
Conference Proceeding Series. Eurographics Association, 2004, 175–
184 3.

[SGC18] STEIN, ODED, GRINSPUN, EITAN, and CRANE, KEENAN. “De-
velopability of triangle meshes”. ACM Trans. Graph. 37.4 (2018), 77:1–
77:14 2, 3, 7, 11.

[SLHC12] SHEN, LIANG-TSEN, LUO, SHENG-JIE, HUANG, CHUN-KAI,
and CHEN, BING-YU. “SD Models: Super-Deformed Character Mod-
els”. Comput. Graph. Forum 31.7-1 (2012), 2067–2075 2.

[SMGG01] SLOAN, PETER-PIKE J., MARTIN, WILLIAM, GOOCH, AMY,
and GOOCH, BRUCE. “The Lit Sphere: A Model for Capturing NPR
Shading from Art”. Proceedings of the Graphics Interface 2001 Con-
ference, Ottawa, Ontario, Canada, June 7-9, 2001. Canadian Human-
Computer Communications Society, 2001, 143–150 1, 2, 4.

[THCM04] TARINI, MARCO, HORMANN, KAI, CIGNONI, PAOLO, and
MONTANI, CLAUDIO. “PolyCube-Maps”. ACM Trans. Graph. 23.3
(2004), 853–860 2, 7.

[TPBF87] TERZOPOULOS, DEMETRI, PLATT, JOHN C., BARR, ALAN
H., and FLEISCHER, KURT W. “Elastically deformable models”. Pro-
ceedings of the 14th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH 1987, Anaheim, California, USA, July
27-31, 1987. Ed. by STONE, MAUREEN C. ACM, 1987, 205–214 5.

[TRAS07] THEOBALT, CHRISTIAN, ROESSL, CHRISTIAN, AGUIAR,
EDILSON DE, and SEIDEL, HANS-PETER. “Animation Collage”. Eu-
rographics/SIGGRAPH Symposium on Computer Animation. Ed. by
METAXAS, DIMITRIS and POPOVIC, JOVAN. The Eurographics Asso-
ciation, 2007 2.

[TSG*14] TANG, CHENGCHENG, SUN, XIANG, GOMES, ALEXANDRA,
et al. “Form-finding with polyhedral meshes made simple”. ACM Trans.
Graph. 33.4 (2014), 70:1–70:9 2.

[TSS*11] TAKAYAMA, KENSHI, SCHMIDT, RYAN M., SINGH, KARAN,
et al. “GeoBrush: Interactive Mesh Geometry Cloning”. Comput. Graph.
Forum 30.2 (2011), 613–622 2.

[VMW15] VAXMAN, AMIR, MÜLLER, CHRISTIAN, and WEBER, OFIR.
“Conformal mesh deformations with Möbius transformations”. ACM
Trans. Graph. 34.4 (2015), 55:1–55:11 3.

[WAK*20] WANG, YIFAN, AIGERMAN, NOAM, KIM, VLADIMIR G.,
et al. “Neural Cages for Detail-Preserving 3D Deformations”. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, 72–80 2.

[WLKT09] WEI, LI-YI, LEFEBVRE, SYLVAIN, KWATRA, VIVEK, and
TURK, GREG. “State of the Art in Example-based Texture Synthesis”.
30th Annual Conference of the European Association for Computer
Graphics, Eurographics 2009 - State of the Art Reports, Munich, Ger-
many, March 30 - April 3, 2009. Ed. by PAULY, MARC and GREINER,
GÜNTHER. Eurographics Association, 2009, 93–117 8.

[YMYK14] YOSHIYASU, YUSUKE, MA, WAN-CHUN, YOSHIDA, EI-
ICHI, and KANEHIRO, FUMIO. “As-Conformal-As-Possible Surface
Registration”. Comput. Graph. Forum 33.5 (2014), 257–267 3.

[YZX*04] YU, YIZHOU, ZHOU, KUN, XU, DONG, et al. “Mesh editing
with poisson-based gradient field manipulation”. ACM Trans. Graph.
23.3 (2004), 644–651 3.

[ZBK18] ZHU, YUFENG, BRIDSON, ROBERT, and KAUFMAN, DANNY
M. “Blended cured quasi-newton for distortion optimization”. ACM
Trans. Graph. 37.4 (2018), 40:1–40:14 5.

[ZDZ*15] ZHANG, WANGYU, DENG, BAILIN, ZHANG, JUYONG, et
al. “Guided Mesh Normal Filtering”. Comput. Graph. Forum 34.7
(2015), 23–34 3.

[ZFAT11] ZHENG, YOUYI, FU, HONGBO, AU, OSCAR KIN-CHUNG, and
TAI, CHIEW-LAN. “Bilateral Normal Filtering for Mesh Denoising”.
IEEE Trans. Vis. Comput. Graph. 17.10 (2011), 1521–1530 3.

[ZG16] ZHAO, HUI and GORTLER, STEVEN J. “A Report on Shape Defor-
mation with a Stretching and Bending Energy”. CoRR abs/1603.06821
(2016). arXiv: 1603.06821 5.

[ZHW*06] ZHOU, KUN, HUANG, XIN, WANG, XI, et al. “Mesh quilting
for geometric texture synthesis”. ACM Trans. Graph. 25.3 (2006), 690–
697 2.

[ZJA21] ZHANG, JIAYI ERIS, JACOBSON, ALEC, and ALEXA, MARC.
“Fast Updates for Least-Squares Rotational Alignment”. Computer
Graphics Forum (2021) 6.

[ZLL*17] ZHAO, HUI, LEI, NA, LI, XUAN, et al. “Robust Edge-Preserved
Surface Mesh Polycube Deformation”. 25th Pacific Conference on Com-
puter Graphics and Applications, PG 2017 - Short Papers, Taipei, Tai-
wan, October 16-19, 2017. Ed. by BARBIC, JERNEJ, LIN, WEN-CHIEH,
and SORKINE-HORNUNG, OLGA. Eurographics Association, 2017, 17–
22 2, 7.

[ZNI*14] ZOLLHÖFER, MICHAEL, NIESSNER, MATTHIAS, IZADI,
SHAHRAM, et al. “Real-time non-rigid reconstruction using an RGB-D
camera”. ACM Trans. Graph. 33.4 (2014), 156:1–156:12 3.

[ZSL*20] ZHAO, HUI, SU, KEHUA, LI, CHENCHEN, et al. “Mesh
Parametrization Driven by Unit Normal Flow”. Comput. Graph. Forum
39.1 (2020), 34–49 3.

[ZWZD15] ZHANG, HUAYAN, WU, CHUNLIN, ZHANG, JUYONG, and
DENG, JIANSONG. “Variational Mesh Denoising Using Total Variation
and Piecewise Constant Function Space”. IEEE Trans. Vis. Comput.
Graph. 21.7 (2015), 873–886 3.

Appendix A: Local Step with EARAP

Given a fixed V′, we obtain the optimal rotation for each vertex k
by solving the following minimization problem

Rk = argmin
Rk∈SO(3)

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2 +λak‖Rkn̂k− tk‖2

2

The above optimization is an instance of the orthogonal Procrustes
which finds the best rotation matrix Rk to map a set of vectors
(ei j, n̂k) to another set of vectors (e′i j, tk). We can re-write it into a
more compact expression as:

R?
k = argmax

Rk∈SO(3)
Tr(RkXk) (7)

Xk =
[
Ek n̂k

][Wk

λak

][
E′>

k

t>k

]
. (8)

where Wk is a |Nk|-by-|Nk| diagonal matrix of the cotangent
weights wi j, Ek and E′

k are 3-by-|Nk| matrices concatenating the
edge vectors of the face one-ring at the rest and deformed states,
respectively. One can then derive the optimal Rk from the SVD of
Xk = Uk ∑kV>k

Rk = VkU>k , (9)

up to changing the sign of the column of Uk so that det(Rk)> 0.

Appendix B: Global Step with EARAP

The global step updates the deformed vertex positions V′ from a
fixed set of rotations R obtained via the local step. This boils down

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

54

https://arxiv.org/abs/1603.06821

Hsueh-Ti Derek Liu & Alec Jacobson / Normal-Driven Spherical Shape Analogies

to solving the following problem

V′? = argmin
V′

∑
k∈V

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2

We can expand this energy as

∑
k∈V

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2

= ∑
k∈V

∑
i, j∈ fk

wi je
′>
i j e

′
i j−2wi je

′>
i j Rkei j + constant

It is often convenient to express the summation in terms of matrices.
We introduce a directed incidence matrix Ak with size |V |-by-|Nk|
to represent the edge vectors in Nk as V>Ak, and we use Mk to
represent a |Nk|-by-|Nk| diagonal matrix of the weights wi j. Then
we can re-write the energy in terms of matrices as

∑
k∈V

Tr(MkA
>
k V′V′>Ak)−2Tr(MkA

>
k V′RkV

>Ak)

= ∑
k∈V

Tr(V′>AkMkA
>
k V′)−2Tr(RkV

>AkMkA
>
k V′)

= Tr
(
V′>

(
∑k AkMkA

>
k

)
V′
)
−2Tr

((
∑k RkV

>AkMkA
>
k

)
V′
)

= Tr(V′>QV′)−2Tr(RKV′), (10)

where R = {Rk} is the concatenation of all the rotations, Q is a
|V |-by-|V | symmetric matrix, and K is a |9V |-by-|3V |matrix stack-
ing the constant terms which can be computed during the precom-
putation. We can then find the optimal V′ by solving a linear system

QV′ = K>R>

As we know from [SA07], Q is the cotangent Laplacian [PP93]. We
can pre-factorize Q to speed up runtime performance. With these
pieces in hand, we can minimize our energy Eq. 3 by iteratively
performing the local and the global steps (see Alg. 1).

Appendix C: Generalize to EFARAP and EACAP

Changing the regularization from EARAP to the membrane-only reg-
ularization EFARAP (Eq. 4) requires to re-define R on each face and
change the set of edge vectors to the three edge vectors of a trian-
gle. These changes would lead us to replace the Ek,E

′
k in the local

step Eq. 7 to the three edge vectors of a face, and ak to the face area.
In the global step, one only needs to update the incidence matrix Ak
in Eq. 10 to a |V |-by-| fk| matrix containing the three edge vectors
information.

Deploying the as-conformal-as-possible regularization EACAP

(Eq. 5) changes the local step to solve an instance of the isotropic
orthogonal Procrustes problem, where an analytical solution has
been derived in [SC70]. In short, one can obtain the optimal ro-
tation the same way as Eq. 9, and compute the optimal scaling sk
analytically as

sk =
Tr(WkE

′>
k RkEk)+λakn̂

>
k tk

Tr(WkE
>
k Ek)+λakn̂

>
k tk

.

When assembling the matrices for the global step, using EACAP

would require replacing Rk with skRk.

Appendix D: Projective Dynamics for Dynamic Target Normals

We draw inspiration from projective dynamics [BML*14] to handle
cases where the target normal T is a function of output geometry
B′. Let us first define

T = argminEN(V
′)

as a minimizer of an energy EN defined on the output shape. In
our cases, EN could be the distance to the closet normals or the de-
velopable energy [SGC18]. With this definition, we re-write Eq. 3
as

min
V′,R

∑
k∈V

∑
i, j∈Nk

wi j‖Rkei j− e′i j‖2
2 +λak‖Rkn̂k− tk‖2

2,

subject to T = argminEN(V
′)

This reformulation allows us to directly deploy the projective dy-
namics solver by first projecting T = {tk} to the “constraint” EN ,
fixing tk, and solving the original problem as Eq. 3 via the lo-
cal/global solver to get V′ at the next iteration. We then iterate this
procedure (see Alg. 1) until convergence. This expression enables
us to plug-and-play different EN for different modeling objectives.

Appendix E: Normal Driven Developable Surfaces

Our normal-driven editing can be used to create developable sur-
faces by specifying a set of target normals that are developable.
Stein et al. [SGC18] propose a characterization of discrete devel-
opability based on face normals of a vertex one-ring. In short, if all
the one-ring face normals correspond to a common plane or two
planes, then this local one-ring is piecewise developable.

With this characterization, we can easily get a set of “devel-
opable” face normals by (1) visiting all the one-ring faces of a ver-
tex, (2) performing a small principle component analysis on the
face normals for each one-ring, and (3) projecting the normals to
one or two common planes by zeroing out the components corre-
spond to the smallest eigenvalues. By using a different threshold to
decide whether to zero out the smallest or the smallest two com-
ponents, we can control the amount of creases in the developable
approximation (see Fig. 19). As each face will receive three (pos-
sibly) different developable normals from the previous procedure,
we simply average them to get the target face normals. We perform
this developable normal computation at each iteration in parallel,
which corresponds to the Line 9 of Alg. 1.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

55

