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Figure 1: Water filtration. A mixture of two fluids is poured into a funnel, where only the green phase is allowed to pass through the filter.
The red phase stays in the funnel, separating from the green phase.

Abstract
We present a dynamic mixture model for simulating multiphase fluids with highly dynamic relative motions. The previous
mixture models assume that the multiphase fluids are under a local equilibrium condition such that the drift velocity and the
phase transport can be computed analytically. By doing so, it avoids solving multiple sets of Navier-Stokes equations and
improves the simulation efficiency and stability. However, due to the local equilibrium assumption, these approaches can only
deal with tightly coupled multiphase systems, where the relative speed between phases are assumed stable. In this work we
abandon the local equilibrium assumption, and redesign the computation workflow of the mixture model to explicitly track and
decouple the velocities of all phases. The phases still share the same pressure, with which we enforce the incompressibility for
the mixture. The phase transport is calculated with drift velocities, and we propose a novel correction scheme to handle the
transport at fluid boundaries to ensure mass conservation. Compared with previous mixture models, the proposed approach
enables the simulation of much more dynamic scenarios with negligible extra overheads. In addition, it allows fluid control
techniques to be applied to individual phases to generate locally dynamic and visually interesting effects.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Multiphase fluids are mixtures composed by multiple fluids that
are miscible or immiscible with each other, and are widely encoun-
tered in both daily life and industries. Among others, examples in-
clude making a cup of latte with coffee and milk, and mixing paints
of different colors in a palette to create more colors. Due to the
important applications in industries, especially for energy, manu-
facturing and chemical engineering sectors, multiphase fluids have
been extensively studied by using both experiments and numeri-
cal simulations. However, due to the wide range of materials that
can be involved in multiphase systems and the associated complex

microstructure, the simulation of multiphase fluids still poses great
challenges for researchers.

Multiphase fluids can be modelled in different ways, which can
be roughly divided into two categories. The first group are the mul-
tiphase models, where each phase is modeled with an individual
representation, for example a grid or a set of particles. The con-
tinuity and momentum equations of each phase are solved sepa-
rately, and the interactions between the phases are modelled ex-
plicitly as forces or boundary conditions. Classic approaches in
this group include the two-fluid model (or the Eulerian-Eulerian
model), where both phases are treated as separate fluids described
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by its own Navier-Stokes equations, and the Eulerian-Lagrangian
model, where the continuous phase is treated as a fluid described
by Navier-Stokes equations and the dispersed phase is treated as
discrete particles described by Newton’s law.

The second group of methods to simulate multiphase fluids are
the mixture models, where the mixture is modeled as a single con-
tinuum that contains many component phases. The motion of the
mixture is characterized by a mixture velocity, while the velocity of
each phase is described by a relative velocity to the mixture, which
is called drift velocity. The transport of individual phases inside the
mixture can then be computed by combining the drift and mixture
velocities. This approach simplifies the modeling by using a single
representation, and also saves the computation by solving only one
set of momentum equations. These methods have also been suc-
cessfully applied in graphics, and have shown their advantages in
the stability and efficiency.

However, the previous mixture models have limitations in han-
dling mixtures with dynamic motions between the phases. The rea-
son lies in the constitutive model of the drift velocity [RLY∗14],
which assumes the phases of the mixture are under a local equi-
librium state. In such state, the drift velocity is their terminal rel-
ative velocity, and can be determined by the drag force and com-
puted analytically. This assumption works well for those strongly-
coupled multiphase systems, such as fluid mixtures or stable sus-
pensions. However, in loosely-coupled systems, the phases may
never reach an equilibrium state, and the inertia-dominated rela-
tive motion could not be captured by this model. The following
works [YJL∗16, JLDH20] use the same technique for computing
the drift velocity and therefore share the same limitation. It is noted
that the model in [YCR∗15] uses a chemical potential instead of
the drift velocity for the phase transport, which completely ignores
the relative motion between different phases.

To solve this problem, we propose a novel dynamic non-
equilibrium mixture model that does not require the local equilib-
rium assumption. In this model, the velocity of each phase is ex-
plicitly tracked, and the mixture velocity is computed as a volume-
weighted average of the phase velocities. Like the original mixture
models, different phases share the same pressure, from which the
incompressibility condition can be enforced. The drift velocity of
each phase is calculated directly by its definition, and effectively
captures the dynamic relative motion of the phases. The main con-
tributions of this work include:

• A dynamic non-equilibrium mixture model that can capture a
much wider range of relative motions between the component
phases, and therefore much more dynamic visual effects.

• A robust phase transport scheme that corrects the transport at
the fluid boundaries to ensure mass conservation, controlling the
error to below 0.01%.

• A simple and flexible way to edit multiphase flows through con-
trol particles and force fields, enabling separate manipulation on
individual component phases.

2. Related work

2.1. Multiphase fluids

Multiphase fluids have been topical in computer graphics in re-
cent years, and some most relevant studies are briefly recapped in
this section to lay the proposed dynamic non-equilibrium mixture
model in perspective. For a detailed overview of multiple-fluid sim-
ulation we refer to [RYL∗18].

For immiscible fluids, the focus of the simulation is han-
dling the discontinuity of physical properties at the interfaces
between the fluid phases. These including the early grid-based
works [HK05, LSSF06], the more recently hybrid methods such
as FLIP [BB12], and the lattice Boltzmann method [LLD∗20] etc.
For miscible fluids, the phase transport in the mixture includes
both mixing and separation processes. The mixing process is rel-
atively easy to simulate, and was initially treated as diffusion in
the early works [KPNS10,LLP11]. For multiphase systems involv-
ing fluids and suspending phases, two-fluid approaches have been
used to simulate foam and water spray [NO13, MMS09], particle-
laden flows in sand-water mixtures and fluid-solid coupling sys-
tems [TGK∗17, GPH∗18, FQL∗20].

To fully capture the behavior of multiphase fluids, [RLY∗14] in-
troduced the mixture model with a SPH implementation, which
successfully simulates the mixing and unmixing with the drift
velocity. Alternatively, [YCR∗15] proposed a Helmholtz energy
based framework to guide the phase transport, providing direct
control of target mass fractions and capturing complex phenom-
ena such as fluid extraction. [YJL∗16] extended the mixture model
in [RLY∗14] to simulate fluid-solid coupling, where the solid diffu-
sion is treated uniformly with the phase diffusion. [YCL∗17] later
introduced phase-fields to the model in [YCR∗15] to capture the
phase transition. Recently [JLDH20] proposed a divergence-free
mixture model based on the model in [RLY∗14], enabling the use
of incompressible solvers in simulating multiphase fluids.

As stated above, the previous mixture models either depend on
the local equilibrium assumption or ignore the relative motion com-
pletely, failing to capture dynamic motions between phases. The
dynamic non-equilibrium mixture model in this work differs from
these models by computing the drift velocity in a completely dif-
ferent way, and fully represents the motions of phases that may or
may not be in an equilibrium condition.

2.2. Fluid control

Fluid control is a trending topic that is partially related to this work.
Again, only the most relevant works are briefly summarised here,
while we refer to recent works such as [LCY∗19] for a more de-
tailed overview on this topic. The previous works on fluid control
mainly focus on single phase fluids, while multiphase fluids are po-
tentially more challenging to apply control techniques.

A common approach in fluid control is using control particles.
To control the shape of fluids, [Mad,TKPR09] exert forces to fluids
with control particles to attract the fluid to target shapes. [LCY∗19]
also uses a control particle system to guide the shape deformation
of fluids. [HK04] uses a geometrical potential to coerce the fluids
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into target shapes. [YCR∗15] modifies the chemical potential with
a spatial pattern, producing colorful images with multiphase fluids.

In this work, we combine the control particles and force fields
to manipulate the target shape of multiphase fluids, where the force
fields are computed based on geometrical potential fields.

3. Mixture Model

In this section we briefly recap the standard mixture model,
which serves as the foundation for the proposed dynamic non-
equilibrium mixture model. Like the previous works [RLY∗14,
YJL∗16,JLDH20], we explain the mixture model with SPH imple-
mentation. It is noted that the mixture model itself is however com-
patible with other numerical methods such as grid-based or hybrid
methods.

In the mixture model, multiple fluids are discretized with one set
of SPH particles, where each particle contains multiple component
phases, described by their volume fractions and phase velocities, as
shown in Fig. 3. The relative velocity of each phase to the mixture
is called the drift velocity. Apart from these phase specific proper-
ties, the particles share properties with single phase fluid particles,
including mass, rest density, pressure and velocity, where the par-
ticle velocity corresponds to the mixture velocity and describes the
motion of the whole mixture.

Mixture models enforce the incompressibility of the mixture
by solving for the pressure on the particles. The mixture veloc-
ity in [RLY∗14] is not inherently divergence-free, and the pres-
sure is computed with the WCSPH method [BT07]. In the recent
divergence-free mixture model [JLDH20], incompressible SPH
solvers [BK15, ICS∗14] are used instead. Compared to multiphase
models, where each phase is solved with a separate set of equations,
mixture models can significantly save the computation.

The previous mixture models are based on the local equilibrium
assumption, under which the drift velocities are the terminal veloc-
ities of the phases relative to the mixture. By using a linear drag
force formulation, the drift velocities of the component phases can
be estimated directly from the acceleration of the mixture. This
approach has proved effective in handling strongly coupled multi-
phase systems, where the interaction between the phases dominates
the behavior of the mixture. Such systems include many liquid-
particle mixtures and liquid-liquid mixtures. A common example
of these mixtures is the ink, where the ink pigments are tiny par-
ticles suspending in water, whose behavior is dominated by the
drag force rather than the inertia effect. However, such approach
could not capture the behavior of more dynamic scenarios, where
the phases are far from reaching their terminal velocity and have
much more vigorous relative motion. The previous drift velocity
model ignores the inertia effects of the component phases, and fails
to describe such movements.

In this work, we solve this problem with a different mixture
model that abandons the local equilibrium assumption and focuses
on the inertia effects. The workflow of the proposed mixture model
is shown in Figure 2, where we also give the comparison between
our approach and the previous approaches. The drift velocity defi-
nition and the phase transport scheme are retained in the proposed

dynamic non-equilibrium mixture model, but the drift and mixture
velocities are both computed differently. Specifically, the compu-
tation process is redesigned to explicitly track the phase veloci-
ties, which allows capturing the inertia effects of phases with neg-
ligible overhead. Due to the absence of the local equilibrium, we
also need to explicitly compute the drag force between the phases,
which directly affects the speed of the mixing and unmixing of dif-
ferent phases. Our method can also be applied to those strongly
coupled systems by using a large drag force coefficient, and there-
fore provides a flexible solution to different multiphase scenarios.
We can further apply external forces to manipulate the individual
phase velocities, and generate artist-controlled animations of mul-
tiphase fluids. The technical details of the new model is explained
in the next section.

4. Dynamic Mixture Model

We assume all component phases are incompressible, and the
mixing and unmixing of phases do not introduce extra volume
change. Under this assumption, we adopt the mixture velocity of
the divergence-free mixture model [JLDH20], which is defined as

um = ∑
k

αkuk, (1)

where um is mixture velocity, and αk and uk are the volume fraction
and the velocity of phase k, respectively. This mixture velocity is
divergence-free by definition, and incompressible solvers are still
applicable for our model. In this work we use WCSPH to com-
pute fluid pressure for its simplicity, but it is straightforward to im-
plement an incompressible solver as described in [JLDH20]. The
derivation of the momentum equations and the phase transport are
explained in detail in § 4.1 and § 5.4, respectively.

4.1. Momentum equations

Following [MTK96], the momentum equation of phase k is given
by

αkρk(
∂uk
∂t

+uk∇uk) =−αk∇pk +αk∇ ·τττk +αkρkg+Mk, (2)

where pk is the fluid pressure, τττk the viscosity tensor, g the grav-
ity, and Mk the momentum exchange with other phases. The main
source of Mk is the drag force between phases, and it should satisfy
the momentum conservation, that is ∑k Mk = 0. Using a linear drag
force model similar to [JLDH20], we define the Mk as

Mk =−kdρmαk(uk −um), (3)

where kd is the drag coefficient, and ρm = ∑k αkρk the mixture
density.

The material derivative Duk
Dt at a fluid particle is defined using

the mixture velocity, which is Duk
Dt = ∂uk

∂t +um ·∇uk. Here we use
an approximation uk ·∇uk ≈ um ·∇uk, indicating that the advec-
tion caused by drift velocity is insignificant compared to advection
caused by the whole motion. With this assumption we rewrite the
left hand side of Eq. (2) with the material derivative and get:

Duk
Dt

≈− 1
ρk

∇pk +
1
ρk

∇ ·τττk +g+ 1
αkρk

Mk. (4)
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Figure 2: The pipeline of our non-equilibrium mixture model. The non-equilibrium part is highlighted with orange color, and we also provide
the previous equilibrium version for comparison.

phase velocity

mixture velocity

drift velocity

Figure 3: The particles in a mixture model carries the volume frac-
tions of the component phases, where each phase has its own ve-
locity. The drift velocity is defined as their relative velocities to the
mixture.

With Eq. (4) the phase velocity uk can be directly updated. To
achieve this, we partly follow the previous mixture models by as-
suming all phases share the same fluid pressure p and viscosity
stress τττ, namely pk = p, τττk = τττ. With these assumptions, and using
the mixture velocity definition, we can obtain the following rela-

Figure 4: Pouring bubbly wine. The fluid being injected contains a
fluid phase and a lighter gaseous phase. The gaseous phase sepa-
rates and rises rapidly, forming a foam like layer.

tions:
Duk
Dt

=− 1
ρk

(∇p−∇ ·τττ)+g+ 1
αkρk

Mk,

Dum

Dt
=−∑

k

αk
ρk

(∇p−∇ ·τττ− 1
αk

Mk)+g+Mt , (5)

where Mt = ∑k uk
Dαk
Dt is the velocity change induced by phase

transport. Unlike the previous methods, we do not directly update
um, but update the phase velocities uk instead. The mixture velocity
is computed with Eq. (1) when needed, as explained in § 5.3.

The velocity updating is split into two parts, namely the predict-
ing part and the pressure part. Since the WCSPH scheme is used
for computing pressure in this work, these two parts are computed
simultaneously. Note that if an incompressible solver is chosen in-
stead, we can first predict uk and um, and then compute the pressure
p to ensure ∇ ·um = 0. The implementation detail is given in § 5.3.

4.2. Phase transport

After updating the phase velocity uk and mixture velocity um,
we compute the drift velocity umk and the phase transport. As
in [JLDH20], the drift velocity is defined as

umk = uk −um. (6)

Then, the volume fraction of phase k is updated as follows:

Dαk
Dt

=−∇ ·αkumk. (7)

This formulation only captures the transport due to the relative mo-
tion of the phases, while in reality the diffusion due to the multi-
phase turbulence and Brownian motion can also make a substantial
contribution to the phase transport. Therefore, we introduce an ex-
tra diffusion term to Eq. (7), and obtain

Dαk
Dt

=−∇ ·αkumk −Cd∇2
αk, (8)

where Cd is the diffusion coefficient.

However, using Eq. (8) to update the volume fractions of the par-
ticles directly gives undesirable result due to the particle discretiza-
tion. The phase transport flux between particles, estimated as the
weighted divergence of drift velocities, can cause negative values
at fluid boundaries. A simplified one dimensional case is shown in
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problematic problem-free

Figure 5: The phase transport is computed as fluxes between particles. Due to the particle discretization, the fluxes estimated with drift
velocities at fluid boundaries can cause negative values, which are marked as problematic in the figure.

Fig. 5 to demonstrate this problem. In this figure, the leftmost parti-
cle does not contain yellow phase, but the flux between the leftmost
particle and the middle one can be non-zero. This flux causes the
leftmost particle to have a negative volume fraction of yellow phase
and a volume fraction of green phase that exceeds one. Clamp-
ing these erroneous values back to [0,1] restores the stability, but
breaks the law of mass conservation. These cases are common near
boundaries or interfaces between different phases. We propose an
iterative correcting scheme that effectively addresses this problem,
while keeping the relative error below 0.01%. The details are ex-
plained in § 5.4.

5. Implementation

The proposed dynamic non-equilibrium mixture model is imple-
mented with multiphase SPH framework as in previous works,
where the main difference between our new model and the previous
works lies in the computation of the drift velocity and the mixture
velocity. The overall workflow is basically unchanged, making it
easy to adapt a previous multiphase framework to use our novel
mixture model. The explicit tracking of the phase velocity requires
no extra memory consumption and negligible additional computa-
tional effort compared to the previous methods, as discussed below.

Figure 6: We simulate the phase transport driven by artificial phase
velocity fields in a static armadillo-shaped geometry. By changing
the direction of the velocity fields, the transport can be freely mod-
ified.

ALGORITHM 1: Simulation Workflow for Dynamic Non-
equilibrium Mixture Model with WCSPH

sort particles;
forall particles i do

estimate density with Eq. (11);
compute pressure with Eq. (12);

end
forall particles i do

compute pressure force with Eq. (13);
compute viscous force with Eq. (14);

end
forall particles i do

compute intermediate phase velocities with Eq. (15);
compute mixture velocities;
apply drag force with Eq. (16);
compute mixture velocities again;
advect particles;

end
compute phase transport (Algorithm 2);

5.1. Workflow

The simulation workflow of our model contains the following steps:

• Sorting particles with a uniform grid, which is later used for
searching neighboring particles.

• Computing particle density with Eq. (11). The pressure is also
estimated if using WCSPH.

• Computing acceleration with Eq. (15) and get intermediate phase
velocities. The drag force is then applied to get the final phase
velocities, as in Eq. (16).

• Updating particle velocities ui as the mixture velocity with
Eq. (1), and updating particle positions.

• Computing phase transport with an iterative flux correction, as
explained in § 5.4.

The simulation workflow is also summarized in Alg. 1 to provide a
quick reference for implementation.

5.2. SPH discretization

The basic SPH formulation is briefly recapped below, which is
helpful to explain the discretization of momentum equations and
phase transport. In SPH method, a property A and its spatial gradi-
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ent at position xi is estimated by

A(xi) = ∑
j

V jA jW (xi −x j), (9)

∇A(xi) = ∑
j

V jA j∇W (xi −x j), (10)

where A j is the property carried by particle j, V j denotes the vol-
ume of particle j, and W is the SPH kernel function. Note that in
the multiphase SPH method, the density of particle i is estimated as

ρi = mi ∑
j

Wi j, (11)

where mi is the mass of particle i. This formulation is proposed
by [SP08], and adopted by the previous mixture models.

Using the WCSPH method, the pressure is computed by an equa-
tion of state:

pi = κρm,i((
ρi

ρm,i
)7 −1), (12)

where κ is the stiffness coefficient, and ρm,i = ∑k αk,iρk the rest
mixture density of particle i. If the estimated pressure is negative,
we clamp it to 0 to eliminate the undesired cohesion, as in previous
SPH methods.

5.3. Velocity update

The velocity update is performed in a two-step procedure, where
in the first step the pressure and viscous force are applied to get
an intermediate velocity, and in the second step the drag force is
applied to obtain the final velocity. After computing the pressure,
we compute the pressure force as

Fp
i = ∑

j
ViV j(pi + p j)∇Wi j, (13)

where the volume of particle i can be estimated with Vi =
mi
ρi

. The
viscous force is computed with the artificial viscosity proposed in
[BT07]:

Fv
i =−∑

j
mim jΠi j∇Wi j,

Πi j =− 2η

ρi +ρ j

min(0,ui j ·xi j)

xi j ·xi j + εh2 , (14)

where ui j = ui − u j is velocity difference, η the viscosity coef-
ficient, ε a small constant to prevent singularity, and h the SPH
smooth radius.

According to Eq. (5), an intermediate phase velocity u∗
k is first

computed as

u∗
k,i = un

k,i +

(
1

ρkVi
(Fp

i +Fv
i )+g

)
∆t, (15)

where the superscript n denotes the nth time step. The intermediate
mixture velocity is then calculated as u∗

i = ∑k α
n
k,iu

∗
k,i.

We then apply the drag force to the intermediate velocity to get
the phase velocity at n+1th time step as

un+1
k,i = u∗

k,i − kd∆t
ρm,i

ρk
(u∗

k,i −u∗
i ). (16)

Finally, the mixture velocity is calculated as un+1
i =∑k α

n
k,iu

n+1
k,i .

We use an explicit integration of drag force here, as it is normally
small in loosely-coupled multiphase systems. For handling arbi-
trarily large drag coefficients, a backward-Euler integration could
be used instead. The time step in our model is mainly restricted
by the velocity update. As discussed in [BT07], the time step is
related to the speed of sound cs, and therefore related to the stiff-
ness κ. We found the CFL condition in the original WCSPH can be
too strict, and we use a reference value as ∆t = cCFLh/cs, where
cs = 88.5m/s, and the factor cCFL is set in range [0.5,2].

5.4. Phase transport

The volume fraction update is discretized as

Dαk,i

Dt
=−(∇ ·αkumk)i − cd(∇2

αk)i (17)

where

(∇ ·αkumk)i = ∑
j
(αk,iumk,i +αk, jumk, j)V0∇Wi j,

(∇2
αk)i = 2∑

j
(αk,i −αk, j)V0

xi j ·∇Wi j

xi j ·xi j + εh2 . (18)

The rest volume V0 is used to ensure the symmetry of the flux be-
tween particles, which helps to reduce the influence of fluid com-
pression to the phase transport. These formulations are very similar
to those in [JLDH20], and the phase transport is exactly discretized
as the volume exchange between the particles.

To solve the aforementioned problem at fluid boundaries, the
transport is corrected by assigning a scaling factor λi to each par-
ticle, and the inter-particle fluxes are adjusted with this factor. The
adjusted phase transport is given by

Dαk,i

Dt
= ∑

j
λi j(Tm,i j +Td,i j),

Tm,i j =−(αk,iumk,i +αk, jumk, j)V0∇Wi j,

Td,i j =−2cd(αk,i −αk, j)V0
xi j ·∇Wi j

xi j ·xi j + εh2 , (19)

where λi j = min(λi,λ j), Tm,i j and Td,i j denote the fluxes due to the
relative motion and the phase diffusion, respectively.

The maximum flux based on the current volume fraction and the
flow state around particle i is controlled by λi. For example, in the
situation depicted in Fig. 5, we would expect λ = 0 for the left-
most particle. By picking the minimum value between λi and λ j,
we ensure the flux is valid for both particles.

An iterative approach is adopted to compute λ. Before the iter-
ation starts, we set λi = 1 for each particle. During each iteration,
we predict the volume fraction as

α̃
l
k,i = α

n
k,i +∆t(∑

j
λ

l
i j(T

n
m,i j +T n

d,i j)), (20)

where the superscript l denotes the lth iteration step.

If no negative volume fraction occurs, the iteration ends. Oth-
erwise, if for particle i, the volume fraction of certain phases are
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negative after diffusion, we update λi as

λ
l+1
i = λ

l
i min

k∈S
(

α
n
k,i

−∆αl
k,i
),

S = {k|α̃l
k,i < 0} (21)

where ∆α
l
k,i is the volume fraction change calculated in Eq. (20).

After each iteration, we can estimate the error by summing all
negative values in α

∗
k,i. If the relative error is lower than a threshold,

we can terminate the iteration process. In all our experiments, we
find fixing the maximum iteration number to l = 2 is sufficient to
keep the relative error below 0.01%.

When the iteration ends, we set α
n+1
k,i = α̃k,i, where α̃k,i is the

predicted value in the last iteration. We need to normalize α
n+1
k,i to

eliminate the accumulation of the numerical error, which otherwise
would lead to the sum of volume fractions to drift away from 1.
Finally we update the mass and rest density of particle i according
to the volume fractions.

ALGORITHM 2: Phase Transport

let max_iter = 2;
forall particles i do

λi = 1;
end
let l = 1;
while l < max_iter do

forall particles i do
predict phase transport with Eq. (20);
update λi with Eq. (21)

end
l = l +1;

end
forall particles i do

update αk,i with α̃k,i in the last iteration;
normalize volume fractions;
update ρm,i and mi ;

end

6. Experiments & Results

The proposed dynamic non-equilibrium mixture model is imple-
mented with the Nvidia CUDA toolkit, and the experiments pre-
sented in this paper are all conducted on a PC platform with an
Nvidia Geforce GTX1080 graphic card and an 8 core Intel i7-
6700K CPU. The performance data are summarised in Table 1.

6.1. Dynamic phase motion

The phase separation due to the density difference is first exam-
ined. We use a two-phase mixture, where the densities of the two
phases are 500 kg/m3 and 1000 kg/m3, respectively. The drag co-
efficient is set as kd = 0.01, which produces very weak coupling
between the phases and therefore rapid separation. In the following
experiments, a volume ratio of 1:1 is used to initialize the mixtures.

Pouring wine. In Fig. 4 the mixture is poured into a wine glass,

Figure 7: The external force fields can be applied to individual
phases to achieve multiphase fluids control. Here the red phase is
forced to separate from the other phase and form different shapes.
When being released, the red phase drops back to the water tank.

and the two phases separate from each other immediately when
reaching the bottom of the glass, forming two layers. Bubbling
scenes have been well studied with discrete particle method such
as [PPK], while here we achieve similar phenomena with the
continuum-based approach. The diffusion term is not enabled in
this case, and we can observe the bubbles of the lighter phase ris-
ing inside the water body, producing interesting visual effects. The
lighter phase is rendered as a gaseous foam-like fluid, and the mix-
ture mimics a sparkling wine pouring into a glass.

Rapid mixing. In Fig. 8 we demonstrate that our model also cap-
tures the fast motion-induced mixing. In this experiment we use a
rather small diffusion coefficient Cd = 0.0005, and set the densities
of the two phases to 800 kg/m3 and 1000 kg/m3 to slightly weaken
the phase separation effect. We observe that in this scenario, the rel-
ative motion of the two phases and the overall mixture movements
significantly increase the mixing process.

Model comparison. A comparison between the previous mixture
model [JLDH20] and the proposed dynamic non-equilibrium mix-
ture model is conducted. As shown in Fig. 9, a uniform mixture
cube is released into a glass tank. The diffusion coefficient is set as
Cd = 0.001 for both models, the drag is kd = 10, and the separation
coefficient is 0.05 for the previous approach, which is close to the
maximum value permitted for stable simulation. The fluids are ren-
dered as particles to better illustrate the phase distribution. It can be
observed that the previous method fails to capture the phase sepa-
ration, and the lighter phase is partially trapped inside the denser
phase. This is due to the heavy damping effect of the local equilib-
rium assumption. On the contrary, the proposed method produces a
neat separation effect for the two phases.

It is worth noting that when dealing with high density ratio mix-
tures, as achieved in [JLDH20], a smaller drag coefficient kd is re-
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Table 1: Performance data.

case N spacing(m) ∆t(ms) momentum(ms) transport(ms) ms/time step sec/frame

wine 91.0K 0.005 0.1 5.76 10.76 20.16 8.06
transport 65.6K 0.005 0.1 5.50 10.26 19.02 7.61
→ no fix - - - 5.51 4.59 13.03 5.21
→ old fix - - - 5.47 4.61 13.10 5.24
unmixing 99.2K 0.005 0.1 6.01 14.11 23.27 9.31

→ old unmixing - - - 5.40 11.26 19.71 7.88
fast mixing 111.0K 0.005 0.1 6.71 17.57 27.82 11.13
armadillo 122.2K 0.005 0.1 - 14.78 14.78 5.91

shape control 222.0K 0.006 0.1 13.04 26.18 43.90 17.56
pattern control 117.3K 0.007 0.1 5.95 14.46 23.46 9.38

filtration 147.0K 0.005 0.1 8.03 19.87 33.23 13.29

Figure 8: Rapid mixing. In this experiment, two fluid blocks are
released in a tank without being stirred (the first row), and the mix-
ing process is rather slow. In the other case we add a moving glass
wall to help the mixing (the second row).

quired to ensure convergence. We observe that for two phases with
density 10 and 1000 kg/m3, kd less than 10 is desirable. While for
cases with density ratio less than 10, kd can be arbitrary value.

Verification of transport correction. The effect of our transport
correction scheme is examined in this experiment. A simple cor-
rection scheme was proposed in [JLDH20], where the flux between
particles is directly cancelled in the case of negative volume frac-
tions. When using this simple treatment in the proposed dynamic
mixture model, it cannot fully prevent the negative volume fraction
values, as the flux is much more vigorous and complicated in our
method. We find that even if the flux between particles does not
lead to negative values itself, the accumulated flux may still lead
to negative values. Our correction scheme handles this case well,
as shown in Fig. 10. We compare the three cases: dam break with
or without our correction, and the third one with the previous cor-
rection scheme. The errors of all three cases are plotted in Fig. 11.
Severe mass loss can be observed without correction, our method
controls the error around 0.01%, while the previous method only
controls the error to around 1%.

Figure 9: We compare our method with the previous one in
[JLDH20]. The previous method (the first row) does not fully cap-
ture the rapid unmixing effect, while our method (the second row)
creates a neat separation.

6.2. Multiphase fluid control

In previous models only the mixture velocity is tracked and up-
dated, and therefore the external force can only be applied to the
whole mixture rather than individual component phases. The previ-
ous drift velocity formulation does not consider such control forces
either, making it impossible to control the mixing and unmixing
effects. In our model, since the phase velocities are tracked and up-
dated by separate momentum equations, we can add control force
or manipulate the velocity field of the phases individually for artist
controlled effects. In the following experiments, the densities of
both phases are set to 1000 kg/m3 such that the mixture does not
separate due to the density difference.

Transport in static geometry. By designing proper velocity fields
of the phases, the mixture model can be used to simulate the trans-
port of physical properties in static geometry objects. In Fig. 6, we
define the following velocity fields:

u1 = (1− (α1 −α2))u,
u2 =−(1− (α1 −α2))u,

where the two phases are denoted with the subscripts {1,2}. The
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Figure 10: Transport comparison. The first row is without correc-
tion scheme, and the second row is with our correction scheme. The
third row is with the correction scheme in [JLDH20]. We observe
severe mass loss in the first case, while the other two give visually
plausible results.

mixture velocity is um = α1u1 +α2u2 = 0, corresponding to the
fixed position of the geometry. As shown in Fig. 6, the transport
of phases inside the armadillo is controlled by adjusting the direc-
tion of u. An interesting trial that deserves further research is to
transport other physical fields such as heat or electricity using this
mechanism supported by the dynamic mixture model.

Shape control. In Fig. 7 we demonstrate a shape control tech-
nique for multiphase fluids. This is achieved by combining a force
field with control particles, where the former acts as a far field at-
traction, and the latter is the near field effect. Denoting the phase
being attracted with the subscript k, the force field is defined as
F f (xi) = −k1mk,i

xi−x0
|xi−x0|2 , where x0 is the attraction center, k1 is

the far field attraction factor, and mk,i is the mass of the fluid phase
being attracted. The near field force on fluid particle i is computed
by summing up the force from control particle j in its neighbor-
hood, given by

Fn(xi) =−mk,i ∑
j

k2(ρ j + k3)
−1 cos(

π

4
xi j

h
)

xi j

xi j
,

where k2 is the near field attraction factor, xi j = xi − x j, and xi j is
the distance. ρ j is a fake density of the control particle j, estimated
as ρ j = V0 ∑i αi,kW ji, where the summation includes all fluid par-
ticles in its neighborhood. We use this fake density to weaken the
attraction of control particles that have been surrounded by fluid
particles, as done in [TKPR09]. The constant k3 is set to 0.1 to pre-
vent from singularity. With these two control forces, we achieve
controlled separation and shape deformation for multiphase fluids
in Fig. 7, where the red phase is pulled up by the force fields and
deforms into different shapes driven by the control particles.

Pattern control. In this experiment, we apply a spatial force field

defined by an image patterns to control the color of multiphase flu-
ids, as shown in Fig. 12. The force field is defined as

Fc(xi) =−mk,ik4∇c(xi),

where c(x) is the single-valued color field, acting as the energy
potential, and k4 is a coefficient adjusting the strength of the control
effect. In this case we only control one of the two phases, which is
adequate for generating clear image patterns.

Water filtration. In the last experiment we pour the mixture into
a funnel with a filter fitted to its bottom neck. When the mixture
reaches the filter, we apply the near field attraction and extra drag
force to the red phase. As a result, only the green phase can pass
through the filter, and the two phases are separated in this filtration
process. This experiment shows the capability of our framework
to create a wide range of multiphase phenomena by adding proper
controls to the individual phases.

Figure 11: When we plot the error, we see the volume fraction in
the first case dropping down rapidly, while the third case still suf-
fers from a slight mass loss. With our correction scheme the loss is
controlled near 0.01%.
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Figure 12: By applying a spatially varying force field to one of the
two phases, we can control the color of the multiphase fluids and
generate image patterns.

7. Conclusion & Discussion

In this work we present a dynamic non-equilibrium mixture model
for multiphase fluids with highly dynamic relative motions. By
abandoning the local equilibrium assumption and redesigning the
computation workflow of the mixture model, we explicitly track
and decouple the velocities of all phases. The phases share the same
pressure, with which the incompressibility of the mixture is en-
forced. The combination of the explicit velocity tracking and the
shared pressure allow us to capture highly dynamic scenes with
negligible overheads. We have also proposed a novel transport cor-
rection scheme to handle the transport error at fluid boundaries,
ensuring the mass conservation. By decoupling the phase veloci-
ties, we can achieve multiphase fluid control by exerting external
forces to individual component phases. We have conducted a series
of experiments demonstrating the capability of our mixture model,
producing interesting visual effects.

The new method is not without limitation. Since we use a single
set of particles to discretize the whole mixture, the resolution of the
simulation is limited. When the phases in an isolated particle have
separating motions, the particle itself could not split, and therefore
these sub-particle scale motions are not well represented. Adaptive
sampling could alleviate this problem, however the resampling of
multiphase fluids is non-trivial and it requires further research.

Like previous methods, we use Fourier diffusion for the phase
diffusion, which is more suitable for equilibrium cases. For
more dynamic diffusion, a non-Fourier diffusion model is desired
[JGE10,NNH14,XSH∗20], which requires further research. We as-
sume the component phases are under the same pressure and vis-
cous stress tensor, which does not always hold true. As a result,
the current method is not suitable for fluids with different viscosity
values, which can be solved by introducing a viscous model that
is suitable for multiphase fluids. Besides, we have only considered
Newtonian fluids in this work, where the viscosity is handled sim-
ply by the artificial viscosity model. Extending our mixture model
to handle other materials including solids or non-Newtonian fluids
is an interesting topic, and will be pursued in our future work. Also,
we would like to explore the integration of our mixture model with
phase transition or chemical potential guided phase transport.
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