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Figure 1: Comparisons between two post-reconstruction techniques, single-buffered deep combiner (DC) [BHHM20] (c) and ours (d), which
are integrated into stochastic progressive photon mapping (SPPM) [HJ09] (b). Both post-reconstruction techniques ((c) and (d)) effectively
reduce the high-frequency noise in SPPM estimates, but our method produces sharper results than DC for the caustics (the bottom row). The
number of iterations Npass, where we use 0.1M photons per iteration, is adjusted so that each method uses approximately equal-render times,
and we use relative mean-squared error (relMSE) [RKZ11] as a numerical measure.

Abstract
Photon mapping is a light transport algorithm that simulates various rendering effects (e.g., caustics) robustly, and its pro-
gressive variants, progressive photon mapping (PPM) methods, can produce a biased but consistent rendering output. PPM
estimates radiance using a kernel density estimation whose parameters (bandwidths) are adjusted progressively, and this re-
finement enables to reduce its estimation bias. Nonetheless, many iterations (and thus a large number of photons) are often
required until PPM produces nearly converged estimates. This paper proposes a post-reconstruction that improves the perfor-
mance of PPM by reducing residual errors in PPM estimates. Our key idea is to take multiple PPM estimates with multi-level
correlation structures, and fuse the input images using a weight function trained by supervised learning with maintaining the
consistency of PPM. We demonstrate that our technique boosts an existing PPM technique for various rendering scenes.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Photon mapping (PM) [Jen96] has been recognized as one of the
most effective global illumination methods since it can robustly
simulate complex rendering phenomena such as caustics. It per-
forms radiance estimation at hit points (e.g., intersection points be-
tween rays and a scene) where photons nearby the points are aver-

aged through a kernel function with a bandwidth parameter. While
the estimates can converge to the ground truth values given an in-
finite number of photons, in practice, this consistency cannot be
accomplished due to limited memory.

Progressive photon mapping (PPM) [HOJ08, HJ09, KZ11]
adapted the ordinary PM into a consistent method that generates
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the correct estimates given an infinite number of photons, but with-
out the memory requirement (i.e., infinite memory). PPM stores
only accumulated statistics (e.g., accumulated photon flux) instead
of keeping individual photons, and thus the memory overhead re-
quired is bounded. It allows shrinking the bandwidth of its kernel
function iteratively and leads to the main strength of the algorithm,
consistency.

It has been demonstrated that this progressive refinement of the
kernel bandwidth can be further optimized by selecting the parame-
ter adaptively [KD13,LLZ∗20]. Nevertheless, it requires a nontriv-
ial time until PPM produces nearly converged radiance estimates.
Otherwise, the rendered images can exhibit noise or over-blurred
artifacts in the estimates.

To reduce remaining errors in PPM estimates, a post-
reconstruction can be applied to the images. As an example, deep
combiner [BHHM20] enhanced reconstructed images through a
combination function that blends its inputs, independent and corre-
lated estimates (e.g., path-traced and reconstructed images). How-
ever, as shown in Fig. 1, this technique can produce suboptimal re-
sults for PPM estimates. It needs to generate its independent input
image using a separate light transport algorithm (e.g., path tracing),
leading to a significant increase in its computational overhead.

This paper proposes a more effective post-reconstruction that
takes the output images of a PPM technique as input and generates
an improved result. While the deep combiner previously addressed
such a post-reconstruction problem, our post-reconstruction is spe-
cialized for PPM techniques. Our main idea is to generate multiple
estimates with different smoothing levels by a chosen PPM method
without relying on a separate light transport, e.g., path tracing. It
allows us to mix these estimates with various structures more ef-
fectively than the recent post-reconstruction, as shown in Fig. 1.
We demonstrate that our technique can improve the reconstruction
results of existing PPM techniques (e.g., [HJ09,LLZ∗20]) for vari-
ous scenarios while maintaining the consistency of PPM.

2. Related Work

In this section, we briefly discuss photon mapping, its pro-
gressive variants, and image reconstruction related to our post-
reconstruction.

Photon mapping. Photon mapping (PM) [Jen96, Jen09] is a two-
pass rendering algorithm that traces photons from light sources
and then produces radiance estimates at hit points through a kernel
density estimation. Various optimization techniques have been pro-
posed to improve the radiance estimation. Examples are GPU ac-
celeration techniques for real-time density estimation [ZHWG08,
MLM13], an optimal bandwidth selection for the kernel density
estimation [Sch03], and anisotropic filters for the photon density
estimation [SSFO08]. In addition, Qin et al. [QSH∗15] demon-
strated that a reconstruction bias introduced by the kernel den-
sity estimation could be removed by replacing the density es-
timation with a path connection that directly links the eye and
light subpaths. Other notable examples include photon relaxation
techniques [SJ09, SJ13] and photon beams for participating me-
dia [JZJ08].

Recently, Zhou et al. [ZXJ∗20] proposed a learning-based den-
sity estimation that takes photons as input and outputs high-quality
radiance estimates. We also propose a learning-based method, but
our technique is a post-reconstruction that takes the results (i.e., im-
ages) of photon mapping methods as input, unlike the reconstruc-
tion method. It allows our method to be compatible with progres-
sive photon mapping, where new photons are added per iteration.

Progressive photon mapping. Progressive photon map-
ping (PPM) [HOJ08] is a biased but consistent photon mapping
that can generate correct radiance estimates with an infinite
number of photons. PPM was extended to a generalized one,
stochastic progressive photon mapping (SPPM) [HJ09], which
shares photon statistics at the hit points generated from a pixel.
The asymptotic errors (bias and variance) of PPM were analyzed
in [HJJ10, KZ11], and PPM was extended into gradient-domain
variants [HGNH17, GHV∗18, XSW∗20], which exploit estimated
image gradients additionally. In addition, adaptive bandwidth
selections [KD13, LLZ∗20] were explored to balance the bias and
variance of photon density estimation.

Nevertheless, these progressive methods can exhibit residual er-
rors in their resulting estimates. Zeng et al. [ZWW∗20] proposed
a learning-based technique using multi-residual blocks, which alle-
viates such errors in PPM estimates. The objective of our method
is also to reduce the residual errors in PPM estimates, but our tech-
nique maintains the consistency of the input estimates, unlike the
recent work.

Reconstruction and post-reconstruction for Monte Carlo de-
noising. Removing noise in a rendered image has been actively
studied, especially for Monte Carlo ray tracing [Kaj86]. We re-
fer to a survey [ZJL∗15] on this topic. Classical approaches
(e.g., [MCY14, BRM∗16]) using mean-squared error estimation
and recent learning-based techniques (e.g., [BVM∗17, VRM∗18,
XZW∗19]) demonstrated effective noise reduction for path-traced
images. One may apply these denoisers to PPM estimates for reduc-
ing its residual noise, but it cannot be effective since photon map-
ping estimates have both errors (bias and variance), unlike path-
traced images.

One can consider a post-reconstruction technique, deep com-
biner (DC) [BHHM20], as an alternative to such image denoising.
The recent method showed a performance improvement when it
combines independent (e.g., path-traced images) and correlated es-
timates (e.g., their denoised images). However, adopting this ap-
proach for PPM estimates can introduce suboptimal results (e.g.,
in Fig. 1) since its independent input needs to be generated by an
additional process, path tracing. We modify such a combination
process into a more effective form that considers multi-level corre-
lation structures in PPM estimates.

3. Background: Progressive Photon Mapping

This section provides a brief overview of progressive photon map-
ping (PPM) techniques. Our discussion focuses on stochastic pro-
gressive photon mapping (SPPM) [HJ09] that is an extended one
of the ordinary PPM [HOJ08]. SPPM is an iterative algorithm that
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(a) Bandwidths over iterations (b) Reference

(c) (d) (e)

Figure 2: SPPM estimates with different bandwidths. The plot (a)
shows the bandwidths bi,1,...,bi,5 (from the smallest to the largest)
over iterations. We compute the bandwidths using a recursive
rule (Eq. 4) but with different initial conditions, i.e., the bandwidths
in the first pass. As an example, we set the initials to 1/4, 1/2

√
2,

1/2, 1/
√

2, 1 for the bi,1,...,bi,5, respectively. Note that a change in
the initial condition can lead to a noticeable difference in the esti-
mates ((c) and (d)).

updates its output estimates ỹ of the ground truth y using newly gen-
erated photons per iteration. Specifically, the estimate ỹc at pixel c
can be written as a pixel estimation form [KZ11]:

ỹc =
1

Npass

Npass

∑
i=1

f (xi,ωi)

p(xi,ωi)
L̂(xi,ωi), (1)

where f (xi,ωi) is the weight function (e.g., pixel reconstruction fil-
ters) that controls the relative contribution of the radiance estimate
L̂(xi,ωi) at the i-th hit point xi. The p(xi,ωi) is the probabilistic
density of the i-th eye subpath constructed by distributed ray trac-
ing [CPC84].

The radiance estimate L̂(xi,ωi) is computed using photons gen-
erated in the i-th pass, and it can be represented as a kernel density
estimation [KZ11, KD13]:

L̂(xi,ωi) =
1

Nphoton

Nphoton

∑
j=1

Kbi(x j − xi)ψ j, (2)

which averages the contribution of the j-th photon ψ j, i.e., the pho-
ton value multiplied by the BRDF at xi. This local averaging at xi is
controlled by a kernel function Kbi(·) with a bandwidth parameter
bi, which adjusts the weight for the j-th photon at x j. An example
of the function is an isotropic kernel [HOJ08] that equally consid-
ers the photons whose Euclidean distances from the hit point xi are

less than the bandwidth bi:

Kbi(x j − xi) =

{
1

πb2
i

if ∥x j − xi∥< bi

0 otherwise.
(3)

It is required to reduce the bandwidth bi iteratively to make the
estimation consistent, and SPPM uses a bandwidth update rule that
can be written as a simple recursive form [KZ11]:

b2
i+1

b2
i

=
i+α

i+1
, (4)

where α (0 < α < 1) is a user-defined parameter that controls the
reduction rate of the bandwidth. One can set the parameter to the
asymptotically optimal one (α = 2/3) [KD13]. The initial band-
width b1 in the recursion is typically determined using a k-nearest
neighbor (k-NN) search with a user-defined parameter k.

The motivation of our post-reconstruction. One can further im-
prove the photon mapping estimates ŷ using an adaptive update rule
that uses an estimated optimal bandwidth (e.g., [KD13, LLZ∗20]).
Nonetheless, the initial bandwidth b1 has been determined heuris-
tically, e.g., k-NN search with a user-defined k. Fig. 2 shows that
SPPM estimates can be changed significantly by varying the ini-
tial bandwidth. In addition, PPM techniques often suffer from a
high variance introduced by distributed ray tracing, especially for
scenes that include glossy reflections. Technically, the ray-tracing
noise cannot be effectively eliminated by the photon density esti-
mation with a large bandwidth, since such noise is introduced by an
independent process (i.e., distributed ray tracing). We aim to handle
the technical challenges using a post-reconstruction (Sec. 4).

4. Post-Reconstruction for Progressive Photon Mapping

Our goal is to enhance the estimates of PPM techniques through
a post-reconstruction that takes the estimates as input and pro-
duces an improved output. We generate multiple photon mapping
estimates by varying the initial bandwidth b1 instead of using a
fixed one and then fuse the multi-level estimates via a combination
guided by a neural network.

4.1. Generation of Multi-Level Estimates

Let us denote a series of the initial bandwidth b1 as b1,1,...,b1,m
(sorted in ascending order). To determine the largest one b1,m, we
exploit a k-NN search from the hit point xi. Specifically, we search k
nearest photons at the xi and assign the Euclidean distance between
the k-th photon and the xi to the b1,m. We set the k to a large one (k =
20). Once we set the largest one, the others are shrunk by a factor
of 1/

√
2. For example, the second and third largest ones (b1,m−1

and b1,m−2) become b1,m/
√

2 and b1,m/2. We use five bandwidths
(i.e., m = 5).

We provide the initial bandwidths to an existing PPM technique
so that it can generate multiple photon mapping estimates progres-
sively using its bandwidth update rule (e.g., Eq. 4), which uses
our initial bandwidths. Let us indicate that the sharpest estimates
with the smallest one bi,1, updated from its initial value b1,1, as
ỹ. Also, the others are denoted as z̃1,...,z̃m−1, which correspond to
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(a) Hit point generation

(c) Results with multiple bandwidths

(b) Photon density estimation

 with  with  with  with  with 

Non-diffuse

Figure 3: Generation of multi-level estimates that are the input of
our post-reconstruction. We generate two hit points xi and x j, using
distributed ray tracing (a), and the points can be arbitrarily distant
to each other when the eye subpaths contain a reflection on non-
diffuse surfaces (e.g., glossy objects). At the first one xi (in (b)),
we generate the sharpest estimates ỹ using the smallest bandwidth
bi,1. On the other hand, the other estimates are generated using
the second smallest to the largest one bi,2,...,bi,m (e.g., m = 5). The
resulting estimates (c) have different smoothing levels due to the
bandwidths of various sizes.

bi,2,...,bi,m, respectively. Intuitively, the ỹ is the nosiest but has the
most negligible bias, and the z̃m−1 has the slightest variance but
highest bias. We treat the sharpest one as an approximately inde-
pendent image and exploit the others as correlated images. Note
that adjacent pixel colors in the photon mapping estimates are cor-
related when photons are shared for the radiance estimation, and
the correlation in the sharpest estimates can be the lowest since the
number of the shared photons often decreases with smaller band-
widths.

The straightforward implementation for generating the multi-
level estimates is running a given PPM technique m times indepen-
dently, but its computational overhead would increase linearly with
the number of bandwidths. To mitigate the expensive overhead, we
generate multiple estimates while sharing the photons (see Fig. 3).
Note that we use the two different hit points xi and x j to decorrelate
the independent estimates ỹ and the correlated estimates z̃1,...,z̃m−1.
For example, the eye subpaths, which correspond to the hit points,
can be divergent when a glossy reflection constructs the subpaths. It
allows that the independent and correlated estimates have different
ray tracing noise for the glossy reflection case.

Moreover, our multiple estimates have different bias and vari-
ance errors due to the bandwidths of various sizes. It enables our
post-reconstruction to take advantage of the multi-level correlation
structures in the estimates (in Sec. 4.2).

Multi-level estimates

G-buffers

Variances of estimates

Convolutional layers

Final output

Combination
using multi-level

correlations

Figure 4: Overview of our framework that takes multiple photon
mapping estimates as input. We also feed the variances of the es-
timates and G-buffers (normals, albedos, and depth values) to the
convolutional layers, and the last layer produces per-pixel weights
for post-reconstruction. We fuse the input estimates with multi-level
correlations using a combination function for producing the final
output.

Figure 5: Example training images.

4.2. Combination of Multiple Estimates

Once the input estimates ỹ,z̃1,...,z̃m−1 are prepared, we combine the
estimates to produce our final output ŷ. To this end, we adopt the
multi-buffered combination [BHHM20] that combines the m − 1
pairs of independent and correlated images:

1
Wc

m−1

∑
j=1

[
∑

i∈Ωc

w j
i ỹ j

i + ∑
i∈Ωc

w j
i

(
z̃ j

c − z̃ j
i

)]
, (5)

where w j
i > 0 is the weight for ỹ j

i and z̃ j
i at pixel i in the j-th im-

age. Wc is a normalization term, Wc = ∑
m−1
j=1 ∑i∈Ωc

w j
i , and Ωc is

a pixel set that includes all the pixels within a local window cen-
tered at pixel c. The combination function above exploits a positive
correlation in correlated images through a difference term (z̃ j

c− z̃ j
i ).

Since we have only one independent image ỹ in our case, we
assign it into the m−1 independent images ỹ j:

ŷc =
1

Wc

m−1

∑
j=1

[
∑

i∈Ωc

w j
i ỹi + ∑

i∈Ωc

w j
i

(
z̃ j

c − z̃ j
i

)]
. (6)

We employ the existing combination function, but the main differ-
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Figure 6: Visualization of the relative importance of multiple
SPPM estimates, where we show the sums of the combination
weights for the sharpest (b) and smoothest estimates (c). Our
method allocates more weights to the sharpest for high-frequency
areas and gives higher weights to the smoothest for smooth areas.

ence is that we generate the input estimates that have multi-level
correlation structures. For example, Back et al. [BHHM20] gen-
erated multiple path-traced results and photon mapping estimates
independently, using different random seeds. As a result, its corre-
lated images have a similar amount of smoothing since the prior
technique does not modify the initial bandwidths. On the other
hand, our correlated images contain different smoothing levels due
to the change in the initial bandwidth. It allows the combination
function to select the different correlation structures more effec-
tively using the combination weights w j

i (in Eq. 6), as shown in an
example figure (Fig. 6).

Consistency of our post-reconstruction. Our final estimate ŷc
goes to the ground-truth value yc, as the number of iterations, Npass,
goes to the infinite:

lim
Npass→∞

ŷc = yc, (7)

when our post-reconstruction takes consistent estimates as input.
Appx. A includes our proof. Note that we vary only the initial band-
width used in an existing PPM technique, and such a modification
does not break the consistency of input progressive methods since
the consistency depends on its bandwidth update rule (not its ini-
tial value). We refer to [KD13] that discusses the conditions re-
quired for the consistency of PPM. Technically, the consistency of
our technique is irrespective of the weights w j

i (in Eq. 6), and thus
it enables us to choose the weights freely without sacrificing the
asymptotic behavior.

4.3. Supervised Learning for Optimal Post-Reconstruction

To evaluate the combination function (Eq. 6), its parameters, the
combination weights w j

i , should be determined. We follow the
deep combiner [BHHM20] that estimates proper weights using the
kernel-predicting network [BVM∗17]. Fig. 4 illustrates our frame-
work that takes multi-level photon mapping estimates ỹ, z̃1..., z̃m−1

(m = 5 in our setting) as input, and produces a final output ŷ. We
additionally provide the variances of the estimates and G-buffers
(normals, albedos, and depth values) to the network.

Specifically, we average the color variances to reduce the number
of input channels, and thus the total dimension of the network input

is 27 (5× 3 for input estimates, 5 for their variances, and 7 for G-
buffers). We use ten convolutional layers, and each intermediate
layer uses 50 convolution filters of size 5× 5. The last one uses
(m−1)×|Ωc| filters of size 5×5 so that the combination weights
can be produced per pixel. We set the size of the post-reconstruction
window Ωc to 19×19. The total number of trainable parameters is
approximately 2.4M, given the network configuration. To train the
neural network, we use a relative L1 loss:

L=
1

3Npixel

Npixel

∑
c=1

3

∑
l=1

∣∣log(ŷc,l +1)− log(yc,l +1)
∣∣

ȳc +0.01
, (8)

where Npixel is the total number of pixels in input images. ŷc,l and
yc,l are the l-th color channels of ŷc and yc respectively, and ȳc =
1
3 ∑

3
l=1 log(yc,l +1). The loss function L uses tone-mapped values,

log(ŷc,l +1) and log(yc,l +1), for stable learning since the ŷ and y
are high dynamic range (HDR) images.

Training details. We have exploited twelve public scenes pro-
vided by [Bit16], [Jak10] and [LLZ∗20], and generated 60 scenes
in total by randomizing the camera and materials of the public
scenes. Fig. 5 shows examples of the randomized scenes. Given
the scenes, we have generated the network inputs (multiple esti-
mates, their variances, and G-buffers) using SPPM [HJ09]. Pre-
cisely, the variances have been calculated by Welford’s online algo-
rithm [Wel62], and the SPPM has used 0.1M photons per iteration.
We have selected three iterations (Npass = {100,200,400}), and
produced ten images per iteration by changing the random seed. As
a result, we have exploited 1800 (60× 3× 10) training data. The
training images have been split into smaller images of size 64×64
and used for our supervised learning. For the reference images, we
have employed SPPM estimates generated with large numbers of
iterations (e.g., Npass = 220K). We have initialized the network pa-
rameters using Glorot uniform initializer [GB10] and then trained
it for 100 epochs (approximately 16 hours on two NVIDIA RTX
3090 given our implementation with Tensorflow [AAB∗15]) using
Adam optimizer [KB15] with the initial learning rate of 0.0001.

5. Results and Discussion

We evaluate our post-reconstruction with the two PPM techniques,
stochastic progressive photon mapping (SPPM) [HJ09] and chi-
squared progressive photon mapping (CPPM) [LLZ∗20]. Note that
we have trained our neural network only with training images gen-
erated by SPPM (in Sec. 4.3), and thus our post-reconstruction for
CPPM is to verify whether our technique can improve the perfor-
mance of the unseen progressive method. Specifically, we generate
multi-level estimates for the combined techniques (Ours + SPPM
and Ours + CPPM) by varying the initial bandwidth used in SPPM
and CPPM, as described in Sec. 4.1. We assign the b1,2, which is
roughly corresponding to the one computed by the k-nearest neigh-
bor search with k = 10, to the initial bandwidth of the previous
techniques (SPPM and CPPM) without our method. The tested im-
plementations of the progressive methods (e.g., CPPM implemen-
tation provided by the authors) use the Mitsuba renderer [Jak10].
We have amended the public implementation to use direct light-
ing when primary rays intersect with glossy surfaces since we have
observed that this simple extension reduces ray tracing noise on
glossy objects for both SPPM and CPPM.
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(a) Reference (c) Ours + SPPM(b) SPPM (f) Reference(d) CPPM (e) Ours + CPPM

Figure 7: Equal-time comparisons with SPPM and CPPM. We integrate our post-reconstruction into the progressive methods, so that
improved estimates can be generated. The PPM techniques (SPPM (b) and CPPM (d)) exhibit high-frequency noise for the Bookshelf and
Breakfast Room scenes (in the top and third rows) and produce over-blurred artifacts for the Pool and Water Caustic scenes (in the second
and bottom rows). Our technique ((c) and (e)) mitigates such artifacts while improving their numerical accuracy.

We also compare our post-reconstruction with deep com-
biner (DC). Precisely, we show its single-buffered or multi-buffered
versions (referred to as DC (single) and DC (multi)), which use
single-pair or four-pairs of independent and correlated images, re-
spectively. To generate their independent images, we use bidirec-
tional path tracing (BDPT) [LW93,VG95] and adjust the rendering
time of BDPT to be approximately equal to generating its corre-
lated images. For a fair comparison, we have retrained the DC (sin-
gle) and DC (multi) using an extensive data set that includes their
original and our training scenes, respectively.

The relative mean-squared error (relMSE) [RKZ11] is used for
measuring the numerical accuracy of tested methods, and those er-
rors are computed using reference images generated by SPPM with
a large number of iterations. We use 0.1M photons per iteration. All
tests are conducted using the Mitsuba [Jak10] renderer on a desktop
with a CPU (AMD Ryzen 3990X) and GPU (NVIDIA RTX 3090).

We test the four scenes, Bookshelf (1280× 720), Pool (800×
600), Breakfast Room (1280 × 720), and Water Caustic (1024 ×

1024), shown from top to bottom in Fig. 7. The numbers in the
parentheses are the image resolutions for the scenes. In the Book-
shelf and Breakfast Room scenes, most scene regions are lit by indi-
rect illumination. Also, the Pool and Water Caustic scenes include
strong caustics. The test scenes were not included in our training.

Comparisons with PPM techniques. Fig. 7 shows our post-
reconstruction results with SPPM and CPPM. The progressive
methods without our post-reconstruction show high-frequency
noise on glossy surfaces (e.g., the top and third rows in the fig-
ure) since their radiance estimation cannot remove such noise intro-
duced by distributed ray tracing. Our technique effectively reduces
the noise for the methods and enhances their numerical accuracy.
In addition, the results using our technique are sharper than those
without ours for the caustics scenes. We also compare SPPM and
CPPM with and without our post-correction by varying the number
of photon iterations in Fig. 8. As shown in the figure, our tech-
nique enhances the numerical accuracy of the progressive meth-
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Figure 8: Numerical accuracy of SPPM and CPPM with and with-
out our technique (shown in a log-log scale).

ods over the tested range, thanks to the consistency of our post-
reconstruction (in Sec. 4.2).

Comparisons with Monte Carlo denoising. In Fig. 9, we com-
pare our method with an alternative that denoises path-traced esti-
mates using a recent Monte Carlo denoiser, kernel-predicting con-
volutional networks (KPCN) [BVM∗17]. We have fine-tuned its
pre-trained neural network, provided by the respective authors, us-
ing our training dataset for a fair comparison. While the alternative
shows a better output than our technique with SPPM for the Break-
fast Room scene, it shows over-blurred artifacts on the caustics area
for the Water Caustic scene. On the other hand, our method signif-
icantly improves the latter case since our input technique (SPPM)
is more robust than path tracing for the caustics.

Comparisons with DC. Fig. 10 compares our technique with
the previous post-reconstruction, DC, given a progressive method,
SPPM. As can be seen in the figure, DC (single) and DC (multi) use
smaller iterations than our method given the equal-time budgets
since the prior should generate their independent images through
an additional process (BDPT). DC (single and multi) effectively
enhances the performance of SPPM, mainly when BDPT gener-
ates high-quality images for the independent inputs to the method
(in the top and third rows of the figure). For example, DC (single)
produces a slightly lower error than our method for the Breakfast
Room scene.

Nonetheless, it fails to improve the caustic areas where BDPT
does not produce enough information on the details (especially in
the bottom row). On the other hand, we improve the visual quality
and numerical accuracy of SPPM for the tested scenes, including
the caustic scenes. Our robust behavior is mainly because that our

Figure 9: Equal-time comparisons with KPCN that denoises path-
traced estimates. KPCN shows smoother results than our technique
with SPPM for the Breakfast Room scene, but it does not preserve
the strong caustics for the Water Caustic scene.

Bookshelf Pool Breakfast R. Water C.

Npass 1000 7000 5000 2000

Dual (ỹ, z̃1) 0.0026 0.0061 0.0018 0.0021
Dual (ỹ, z̃2) 0.0020 0.0061 0.0018 0.0018
Dual (ỹ, z̃3) 0.0017 0.0063 0.0018 0.0017
Dual (ỹ, z̃4) 0.0017 0.0066 0.0018 0.0018

Multi (ỹ, z̃1, ..., z̃4) 0.0017 0.0052 0.0017 0.0014

Table 1: Numerical accuracy of our method with different numbers
of input estimates, generated by SPPM with the iteration counts in
Fig. 7. The tested variant of our method, Dual(·), exploits only two
correlation levels, i.e., a single pair of independent and correlated
estimates.

technique generates multi-level estimates only using the progres-
sive method while adjusting its smoothing parameters.

Ablation study. Our technique uses separate hit points xi and x j
(in Fig. 3) where we generate independent ỹ and correlated esti-
mates z̃1, ..., z̃m−1, in order to decorrelate the ray tracing noise in
the two types of input estimates. Fig. 11 compares our choice with
an alternative that does not separate the eye subpaths. As shown in
the figure, this separation enables us to remove the ray tracing noise
effectively since our combination can down-weight either indepen-
dent or correlated estimates.

We also test a variant of our method that uses only two input im-
ages, an independent ỹ and only a correlated image (in Table 1).
Specifically, we select its correlated image by picking only one
from our correlated images in turn. As shown in the figure, the best
level for the variant differs across the scenes, and it can be tricky to
choose a proper one in practice. On the other hand, our choice of
using multiple correlated estimates alleviates the difficulty.

Computational overhead. We report the runtime overheads of
our post-reconstruction in Table 2. The most expensive part in our
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(a) Reference (d) Ours + SPPM(c) DC (single)
 + SPPM

(b) DC (multi)
 + SPPM

(b) SPPM (c) Input of DC
(BDPT)

(e) Reference

Figure 10: Comparisons with DC. DC (single) uses an independent image (c), and DC (multi) uses four independent images generated by
BDPT. The image (c) corresponds to the average of the four images for DC (multi). DC (multi) uses 4× smaller iterations than DC (single)
given the equal-time budget. The previous technique (DC (single) and DC (multi)) produces high-quality reconstruction results when BDPT
gives high-quality independent input to the method (the top and third rows). Nevertheless, it smooths the caustics overly (the second and
bottom rows) that are not captured effectively by BDPT. On the other hand, our method reduces the residual errors of SPPM consistently.

post-reconstruction is generating multiple input estimates, but as
shown in the table, it does not drastically increase the render times
per iteration since the input images are generated while sharing
photon maps. As a result, our overheads over the input methods
(SPPM and CPPM) are in the moderate range of 8.67% to 32.10%.

Limitations and future work. Our technique takes multiple es-
timates generated by a progressive method, and thus the qual-
ity of our final output relies on the input estimates. As shown in
Fig. 12, our method can fail to preserve high-frequency details
(e.g., caustics) when all the input estimates do not have the fine
details appropriately. To mitigate such a problem, we would like
to design a unified framework that optimizes the bandwidth up-
date rule of a progressive technique while considering the errors in
our final image. In addition, exploiting temporal coherence in ani-
mated sequences can be considered as future work. It is also inter-

esting to test our post-reconstruction with gradient-domain variants
(e.g., [HGNH17]) for enhanced output.

6. Conclusions

In this paper, we have presented a post-reconstruction technique
that reduces remaining errors in PPM estimates without sacrificing
the consistency of the input methods. We generate multiple input
estimates by feeding different initial bandwidths to a progressive
method, and it allows us to take into account multi-level correlation
structures through a combination process. Besides, we produce in-
dependent and correlated images using two separate hit points to
decorrelate ray tracing noise in the two input types.
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Figure 11: Comparisons with an alternative that does not decorre-
late the independent and correlated estimates, generated by SPPM
with Npass = 1K (top) and Npass = 5K (bottom). The alternative (a)
leaves the high-frequency noise since its input images share the
noise generated by distributed ray tracing. Our decorrelation (b),
however, allows us to reduce such noise adequately.

Figure 12: Failure case of our post-reconstruction for CPPM with
Npass = 400. Our input estimates ((b) to (f)), generated by CPPM,
do not fruitfully contain the high-frequency information (i.e., caus-
tics) and lead to over-blurred artifacts in our final output.

scene: Bookshelf (Tiziano Portenier), Breakfast Room (Wig42),
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Appendix A: Consistency of our post-reconstruction

Recall that our combination (Eq. 6) is represented as

ŷc =
1

Wc

m−1

∑
j=1

[
∑

i∈Ωc

w j
i

(
ỹi + z̃ j

c − z̃ j
i

)]
. (9)

Let us consider a pixel i = Iu and image index j = Ju that make the
(ỹi+ z̃ j

c− z̃ j
i ) the maximum, i.e., (ỹi+ z̃ j

c− z̃ j
i )≤ (ỹIu + z̃Ju

c − z̃Ju
Iu
) for

all i and j. Then, an upper bound of the estimate ŷc can be obtained
as the following:

ŷc ≤
1

Wc

m−1

∑
j=1

[
∑

i∈Ωc

w j
i

(
ỹIu + z̃Ju

c − z̃Ju
Iu

)]
= ỹIu + z̃Ju

c − z̃Ju
Iu
.

(10)

The limit of the upper bound is as follows.

lim
Npass→∞

(
ỹIu + z̃Ju

c − z̃Ju
Iu

)
= yIu + yc − yIu = yc, (11)

thanks to the consistency of our input estimates. Also, let i = Il and
j = Jl make the (ỹi+ z̃ j

c− z̃ j
i ) (in Eq. 9) the minimum. Then, a lower

bound of the ŷc can be computed:

ŷc ≥
1

Wc

m−1

∑
j=1

[
∑

i∈Ωc

w j
i

(
ỹIl + z̃Jl

c − z̃Jl
Il

)]
= ỹIl + z̃Jl

c − z̃Jl
Il
.

(12)

Its limit lim
Npass→∞

(
ỹIl + z̃Jl

c − z̃Jl
Il

)
= yIl + yc − yIl = yc. Note that

the limits of both lower and upper bounds of the ŷc go to the correct
solution yc. Consequently, lim

Npass→∞
ŷc = yc by the squeeze theorem.
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