DOI: 10.1111/cgf.14409

Pacific Graphics 2021

E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Z-Thickness Blending: Effective Fragment Merging for
Multi-Fragment Rendering

Dongjoon Kim'

and Heewon Kye*?

I'School of Information Convergence, College of Software and Convergence, Kwangwoon University, S.Korea
2Division of Computer Engineering, Hansung University, S.Korea.

Abstract

An effective fragment merging technique is presented in this study that addresses multi-fragment problems, including fragment
overflow and z-fighting, and provides visual effects that are beneficial for various screen-space rendering algorithms. The pro-
posed method merges locally adjacent fragments along the viewing direction to resolve the aforementioned problems based
on cost-effective multi-layer representation and coplanar blending. We introduce a z-thickness model based on the radiosity
spreading from the viewing z-direction. Moreover, we present the fragment-merging schemes and rules for determining the vis-
ibility of the merged fragments based on the proposed z-thickness model. The proposed method is targeted at multi-fragment
rendering that handles individual fragments (e.g., k-buffer) instead of representing the fragments as an approximated transmit-
tance function. In addition, our method provides a smooth visibility transition across overlapping fragments, resulting in visual
advantages in various visualization applications. In this paper, we demonstrate the advantages of the proposed method through

several screen-space rendering applications.

CCS Concepts
¢ Computing methodologies — Rendering;

1. Introduction

The multi-fragment rendering technique [VVP20], which encom-
passes various algorithms to process a set of fragments of a sin-
gle image, operates on multiple fragments at the same pixel lo-
cation. Specifically, this technique performs two rendering pro-
cesses in a common graphics processing units (GPU) pipeline (i.e.,
raster-based graphics), including the storage of three-dimensional
(3D) geometric information into framebuffers and the generation
of final images by exploiting the stored geometric information
(i.e., screen-space information). The memory access capabilities of
modern graphics hardware allow multi-fragment rendering to uti-
lize screen-space geometric information, which helps increase the
demand for screen-space or deferred rendering algorithms [KG13,
MY 18] in real-time such as order-independent-transparency (OIT)
[VPF15, MKKP18], dynamic photorealistic rendering techniques
[BKKB13, MMNL14, FHSS18], and interactive scientific visual-
izations (e.g., multivariate surface data representations [RASS16]
or hybrid data representations for the fusion of multiple volumetric
and potentially transparent surface data [LFS*15]).

Several studies developed various approaches for storing the
bounded number of fragments using the k-buffer algorithm

* corresponding author

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

[BCL*07], which is an efficient GPU-based fragment level sort-
ing algorithm and is widely-accepted A-buffer approximations
[Car84]. This algorithm is capable of capturing k number of frag-
ments using a fixed-size GPU buffer and ensuring the correct oc-
clusion cues within the depth range of k-front fragments. However,
it suffers from fragment overflow, which occurs in complex scenes,
resulting in incorrect occlusion and flickering artifacts.

Various approximation approaches have been proposed in pre-
vious studies to address the aforementioned problem with frag-
ment overflow. A representative approach encodes multiple frag-
ments into the limited buffer memory based on the transmit-
tance function by heuristic [SML11, MM17] or theoretical method
[MKKP18]. This approach is reported to be effective in OIT appli-
cations [EveOl] by providing plausible rendering images [MB13,
MKKP18], and it can inherently resolve coplanar fragments that
result in z-fighting and unproductive storage required for redun-
dant depth layers. However, the representations of correct geome-
try intersections, which are important factors in certain visualiza-
tion tools, are limited when the correct visibility and depth of each
surface layer are not properly stored. In addition, the problems of
coplanarity and incorrect geometry intersections are highlighted in
Figure 1.

In this paper, we propose a novel fragment merging method that
introduces a new surface concept and the optical model-based vis-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0002-8446-6128
https://orcid.org/0000-0001-7951-3228
https://doi.org/10.1111/cgf.14409

150 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

(a) (b) ()

Figure 1: A white sphere and three cubes (red, green, and blue)
with intersections and coplanar surfaces. Transparency rendering
results using (a) individually stored fragments without handling
coplanarity, (b) parameterized transmittance function, and (c) in-
dividually stored fragments with coplanarity handling.

ibility decision operations. The proposed method can effectively
mitigate various problems such as fragment overflow and z-fighting
based on the cost-effective multi-layer representation and coplanar
blending. An optical model is applied to the fragments using the z-
thickness model where the virtual z-thickness is assigned along the
z-direction. This optical model can theoretically represent the vis-
ibility of an arbitrary interval inside a homogeneous medium (i.e.,
a fragment using the z-thickness model), and it has lesser com-
putational cost than the other methods. The advantages of the z-
thickness model are as follows. First, it provides a cost-effective
multi-layer approximation that locally merges adjacent overlapping
fragments along the z-direction and maintains separated fragments
far away, capturing abundant screen-space geometry information
in a limited buffer capacity. Second, it provides smooth visibility
transitions, which provide visual advantages in various visualiza-
tion applications, by considering the degree of the partial overlap
between fragments. The primary contributions of this study can be
summarized as follows.

e Z-fighting handling. Merging the adjacent fragments, whose z-
thickness values are determined based on the z-depth resolution
(Section 4.1.3), allows for a natural blending of coplanar layers.

e A cost-effective multi-layer representation with respect to mem-
ory. Local merging of adjacent fragments along the z-direction
while maintaining separated fragments far from each other cap-
tures the abundant screen-space geometry information in a lim-
ited buffer capacity (Sections 3 and 5.1).

e An efficient integration of the proposed method using two com-
petitive raster-based implementations, namely the bounded and
unbounded memory usage approaches (Section 4).

e Visual effects applicable to various visualization applications
such as point set surfel rendering, comparative visualization,
ghosted illustration, and volume/polygon hybrid rendering (Sec-
tions 5.2 and 5.3).

e Scalability to multi-layered screen-space rendering algorithms.
Leveraging the abundant screen-space geometry information en-
ables more precise rendering in the screen-space global illumi-
nation effects on a transparent complex scene (Section 5.4).

In a recent survey on multi-fragment rendering [VVP20], the au-
thors emphasized the need to develop encoding and decoding tech-
niques to represent more fragment information with limited buffer
capacity. They also discussed further directions for various visu-
alization effects based on multi-fragment rendering. In this paper,

we demonstrate that the proposed method can be leveraged in such
directions by introducing a novel z-thickness model and a set of
concepts that can be applied to a variety of screen-space-based ren-
dering algorithms.

2. Related Work

Several approaches have been reported to efficiently achieve multi-
fragment rendering [VVP20], where handling a large number of
fragments is the primary challenge. In GPU raster-based graph-
ics, such fragments concurrently enter the same pixel, resulting in
heavy contention and depth ordering problems [Cral0, MCTB11].

Several GPU-accelerated buffers have been introduced to ad-
dress this problem. A buffer [Car84] is the first method to capture
all fragments by constructing linked lists per pixel in a single ras-
terization pass. Specifically, the fragments in per-pixel linked lists
in the A-buffer algorithm are post-sorted based on their depth val-
ues. However, the requirement for unbounded memory when us-
ing these types of algorithms limits their practical applications.
Yang et al. [YHGT10] introduced a practical GPU-accelerated A-
buffer implementation using atomic memory operations built in
the GPU. To alleviate their read-modify-write hazards, Maule et
al. [MCTBI12] presented a memory-efficient buffer scheme based
on GPU-accelerated A-buffer techniques. This is the preeminent
method for multi-fragment rendering, despite the unbounded mem-
ory required for valid results.

Bavoil et al. [BCL*07] suggested a k-buffer algorithm to allevi-
ate the burden of excessive allocation and access to GPU memory.
Their algorithm is designed to capture the k foremost fragments
by employing a fixed-size buffer memory per pixel on the GPU
and minimizing read-modify-write hazards due to incoming frag-
ments concurrently mapping onto the same pixel (i.e., data con-
tention or races). Several studies have developed many k-buffer
variants [MCTB11] by performing multiple passes [LWXWO09]
or exploiting the GPU-accelerated pixel synchronization opera-
tions [Sall3]. Vasilakis et al. [VPF15] developed an efficient and
memory-friendly k-buffer algorithm called k" -buffer, which uses a
dynamic k value decision scheme and GPU-optimized implemen-
tation techniques.

As mentioned previously, fragment overflow is the most chal-
lenging problem in multi-fragment rendering based on bounded
memory approaches such as k-buffer. Discarding the overflowing
fragments is simple and widely accepted in many k-buffer meth-
ods but causes geometric information loss, resulting in unpleas-
ant images when rendering complex scenes. The OIT is a typi-
cal multi-fragment rendering application in which fragment over-
flow affects the image quality degradation. An alternative OIT ap-
proach is the blended OIT algorithm that performs blending over
fragments without sorting them [Mes07, BM08]. Stochastic trans-
parency [ESSL10] presents a transparency effect by a stochastic
representation of transmittance in a blended OIT manner. McGuire
and Bavoil [MB13] developed a weighted blending operator in
which the visibility contribution was determined based on the opac-
ity and depth of the fragment to improve their incorrect alpha cov-
erage and color. Their blending model is a transmittance function
simply parameterized by the opacity and depth of per-pixel frag-
ments.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering 151

virtual front surface <----- s o
dy T original surface

Figure 2: [lllustration of the z-thickness model in which d, » 3 the
depth value along each ray and t ; 3 indicates the z-thickness value
at each depth.

However, there are limitations in the determination of the cor-
rect visibility of intersecting surface layers due to the lack of con-
sideration for the discontinuous change in the transmittance func-
tion at the depth of the layer. The adaptive transparency algorithm
[SML11] approximates the incoming fragments as the transmit-
tance function along the view direction using a fixed number of
terms. However, the heuristic removal of transmittance terms re-
sults in inconsistent transparency across pixels. Miinstermann et al.
[MKKPI18] introduced a theoretical approximation of the original
transmittance function based on the moment. Recently, Friederichs
et al. [FEE20] employed a layered concept that locally blends ge-
ometries at even intervals along the viewing direction to improve
the weighted blending operator [MB13]. They demonstrated that
the local blending approach yielded better OIT results. However,
these approaches do not provide correct intersections in visually
distinguishable geometries that generally occur in the first few
semi-transparent layers.

The strategy that preserves the foremost fragments and approx-
imates the farthest fragments can be a simple but powerful alter-
native to this problem. Marilena et al. [MCTB13] introduced the
core-tail concept, preserving the foremost fragments in a sorted
order while accumulating the farther fragments into the tail frag-
ment. Moreover, Salvi and Vaidyanathan [SV14] utilized a core-tail
scheme with opacity encoding. However, the lack of consideration
of overlapping fragments results in poor images.

On the other hand, coplanarity of the fragments is also a typi-
cal problem in multi-fragment rendering. Binary z-test-based vis-
ibility decisions with floating-point round-off errors cause a z-
fighting problem for coplanar layers. Transmittance-function-based
approaches [WGEROS, MB13, MKKP18] inherently address this
problem. However, they lack a precise depth representation. In
buffer-based approaches that store individual fragments, special
care for coplanar primitives [VF12] can suppress speckling arti-
facts but require additional capacities and operations for extract-
ing coplanar fragments separately. Kim et al. [KKL*16] proposed
an intermixing technique to handle this problem in the context of
image-based blending, but it required an impractical number of ren-
dering passes to display multiple surface layers. Duff [Duf17] pre-
sented deep compositing operators that handle the overlap of volu-
metric elements such as clouds and smoke, which is similar to our
blending operators.

3. Method

It is important to represent and restore abundant geometric infor-
mation with a limited number of fragments in a multi-fragment

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Figure 3: Z-fighting handling. Two superimposed cubes (red and
blue) are rendered. The left image shows the z-fighting problem.
The right image shows the consistent and continuous blending.

closely located z-fighting closely located
g —— — ~surface layer
< [{((( [ Y [ (([ ("
I S
stored fragments: &—3 8 8 8 3 8

Figure 4: Illustration of how the fragments coming from coplanar
or closely located surface layers are stored into the buffer mem-
ory. The interval of the brackets indicates the z-thickness. The red
bracket indicates the merged fragment.

rendering. For example, many screen-space rendering algorithms
[BCL*07, BKKB13, MMNL14, FHSS18] use a limited number of
fragments to calculate the geometric interactions for dynamic ren-
dering effects in real-time.

Therefore, we introduce the z-thickness model and present the
fragment merging schemes based on this model. The proposed
method facilitates local merging of adjacent overlapping fragments
along the z-direction while maintaining separated fragments far
away from each other, capturing abundant screen-space geometry
information with a limited number of fragments. Moreover, the pro-
posed method considers the degree of partial overlap between frag-
ments, resulting in visual effects that can be beneficial for a variety
of visualization applications.

Note that a fragment has an opacity (i.e., alpha) and color infor-
mation. In this paper, we use the color information as the alpha-
multiplied color, and the term visibility represents the opacity (i.e.,
alpha) and alpha-multiplied color.

3.1. Z-Thickness Surface Model

The z-thickness model is designed by assigning a z-directional
thickness to each fragment (refer to Figure 2). The application of
the z-thickness to a surface simulates the surface as a translucent
band whose boundary is placed before the z-thickness length from
the surface. The z-thickness model leads to the virtual overlap be-
tween fragments whose depth locations are close to each other. The
virtual overlap provides the following advantages. First, it handles
the z-fighting problem by displaying continuous blending visibility
instead of unpleasant speckling and noisy dotted visibility (refer
to Figure 3). Second, it stores surface layers far enough from each
other instead of storing all overlapped surface layers close to each
other (refer to Figure 4). This allows screen-space algorithms that
use the bounded memory capacity to perform effectively in terms
of memory efficiency and geometric representation.



152 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

= fragment at the same pixel location

[ visibility mix-operator (Section 3.3.2)
[] visibility over-operator

ty ty

—L ot frame buffer —_——t, frame buffer
[— = —— [
e Y merge «C D SY—merge
< I X
L d dy dp
= ———
£ X E==mm——
(emeax )]
c Lo
(a) SFM (b) OFM

Figure 5: Fragment merging based on the z-thickness model. (a)
smooth fragment merging (SFM) and (b) order-independent frag-
ment merging (OFM). d,, and t,, (n = 1, 2) indicate depth and thick-
ness values of each incoming fragment, respectively.

3.2. Fragment Merging

We introduce two schemes for merging fragments based on the
proposed z-thickness model: smooth fragment merging (SFM)
and order-independent fragment merging (OFM). Figure 5 shows
these fragment-merging schemes. The SFM divides overlapping
fragments by the z-directional boundaries of each fragment and
then composites the visibilities of the subdivided fragments. The
OFM merges the partially overlapping fragments into one fragment
whose visibility is determined without considering the fragment
subdivision, thereby allowing an order-independent visibility de-
cision.

It would be better to use the SFM instead of OFM when the order
of fragments is sorted in depth order (e.g., fragments from the ray
tracing or resolve pass of multi-fragment algorithm) because the
SFM provides more elaborate visibility than the OFM. However, in
the raster-based graphics pipeline, the fragment merging performed
in the k-buffer algorithm, which uses bounded memory capacity,
should use the OFM because the order of fragments coming into
the shader is not deterministic. A detailed discussion is provided in
Section 4.

Fragment merging can be thought of as an approximation model
that merges N adjacent fragments along a ray into one fragment.
The merged fragment is defined by (i) the maximum depth value of
the adjacent fragments and (ii) the z-thickness value that covers the
adjacent fragments.

3.2.1. Smooth fragment merging (SFM)

The SFM provides smooth visibility transitions by considering the
degree of partial overlap between fragments. This is accomplished
by subdividing and compositing the fragments and their visibilities
(refer to Figure 5(a)). The visibility decision by subdividing and
compositing the fragments is described in Section 3.3. A primary
assumption to provide consistent visibility in the SFM is that the
depth order of the fragments coming onto the same pixel location
must be sorted. Otherwise, the SFM will yield inconsistent visibil-
ity across pixels and during an animation because the visibility is
calculated by the over operator [PD84] (i.e., front-to-back blending
operator).

Up to three subdivided fragments are generated when two frag-
ments partially overlap each other. In the SFM, we merge the sub-

Figure 6: Visual impact of the SFM and OFM. The z-thickness
value is set to 0.02 times the cylinder height.

divided fragments into one fragment whose visibility is determined
by applying the over-operator, providing smooth visibility transi-
tions.

3.2.2. Order-independent fragment merging (OFM)

In certain applications where only limited memory resources are al-
lowed, bounded memory must be used throughout the entire render-
ing pipeline. For example, general k-buffer algorithms [BCL*07,
MCTBI11, VPF15] use the bounded memory that stores k frag-
ments. The k-buffer algorithm can efficiently select the k-foremost
fragments among the unsorted fragments that concurrently enter
the same pixel using the GPU built-in atomic operators during the
store pass. Fragment merging can also be easily applied to the
store pass based on the k-buffer algorithm, and it gives the k frag-
ments rich per-pixel geometric information. Therefore, we suggest
the OFM depicted in Figure 5(b) to determine the visibility of the
merged fragment regardless of both the order of the incoming frag-
ments and their precedence in depth. The order-independent visi-
bility decision of the merged fragment is accomplished using the
mix-operator described in Section 3.3.2.

3.2.3. Visual impact of SFM and OFM

The SFM considers the degree of partial overlap between frag-
ments and provides smooth visibility transitions. On the other hand,
the OFM provides monotonous visibility transitions by consider-
ing only whether the fragments overlap but ensures visibility deci-
sions regardless of both the order of incoming fragments and their
precedence in depth. Figure 6 highlights the visual impact of over-
lapping surface layers with respect to OFM and SFM. The SFM
provides a continuous color change with respect to the degree of
overlap around pixels that represent surface intersection, resulting
in an anti-aliasing effect.

3.3. Visibility Decision

In this section, we present the optical operators that divide and com-
posite the visibility of overlapping fragments based on the proposed
z-thickness model.

3.3.1. Visibility subdivision

We assume that each fragment based on our z-thickness model rep-
resents a homogeneous medium, enabling the fragment visibility to
be subdivided with respect to the length inside the medium along
the viewing z-direction. Note that this operator is only available for
the SFM.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering 153

Figure 7: Visual impact of the SFM with respect to B of (4). A
bit large z-thickness value (0.05 times the sphere radius) is used to
highlight the visual impact.

A(2)

A
0.5 0.99 S————
- B =00
B=03
B =07
= /

0 d Z 0 d Z

Figure 8: Plots of opacities of (4) according to different B values
and fragment opacities (0.5 and 0.99).

Fragments can be divided into several subdivided fragments. The
merged visibility of these subdivided fragments must be identical
to that of the original fragment. The extinction coefficient T is con-
stant inside a fragment that is filled with the homogeneous medium.
Therefore, the opacity accumulated up to depth z inside the frag-
ment can be defined as

A(x) =1 —e % (1)

If the accumulated opacity of the medium with thickness d is given
as Ay = A(d), (1) can be rewritten as

AR =1-(1-47"  (0<z<a) 2)

Based on the simple emission-absorption optical model [Max95],
the accumulated color C(z) at depth z inside the medium with visi-
bility (C(d),A(d)) is calculated as

C(z2) =Ca—— 3

(3) is used to determine the visibility of the front subdivided frag-
ment. It can also determine the visibility of the back-subdivided
fragment using the thickness of the subdivided medium instead of
depth z.

The linear approximation of (2), A(z) ~ $Ag4, provides smoother
visibility transitions at the intersection of the geometries (refer to
Figure 7). Moreover, B is used as a control parameter to adjust the
visual effect between the smooth visibility transition and strictly
optical visibility:

AR =BJAH(I=P—(1-A)7")  (0<p<1) @)

Figure 8 shows a plot of (4) with respect to the depth inside the
fragment. The effect of f is insignificant if the opacity is low, while
B can be used as a control to make the inner structure visible if the
opacity is high (i.e., close to 1). Figure 9 shows the ghosted effect,
which makes the interior objects appear with low contrast based on
B, providing a depth cue.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

opacity opacity
0.99 — 0.99
Vo Ve
U3 vy

[ o500

e front-to-back blending <—|

00®

Figure 9: Illustration of the ghosted effect using the visual impact
of the SFM with respect to B. Three colored spheres inside a large
white sphere are rendered. A sufficiently large z-thickness value (the
radius of the white sphere) is used to reveal the interior spheres. All
surfaces have an opacity of 0.99.

B =00

The visibility of the back subdivided fragment (Cp,,A;) must be
determined to ensure that the accumulated visibility across the sub-
divided fragments is identical to the visibility of the original frag-
ment since the visibility of the subdivided fragments using the ap-
proximation in (4) does not restore the visibility of the original
fragment. This is achieved by substituting (3) and (4) into the over
operator (i.e., front-to-back blending operator) of two sequential
visibilities given as

)= (Ca,Ad) = (C(2),A(2))

(Co (1-AG))

(&)

3.3.2. Mix operator

Given completely overlapping fragments, individual fragments that
overlap each other contribute equally to the final visibility of the
merged fragment, regardless of the order in which the visibility is
received for compositing. Therefore, we introduc a mix-operator
that accumulates the opacity and color separately.

First, the accumulating opacity Agcc is calculated based on the
accumulated effect of incoming opacity A;:
Agee = 1-TJ(1-4) ©)
i
The accumulated color cqcc is calculated by normalizing the sum of
the participating color ¢; (not opacity-weighted color) with respect
to incoming opacity A;, which can be represented by the visibility
color C; (opacity-weighted color). The accumulation of the visibil-
ity color Cycc is then obtained as

YiciAi Y. G
Yidi LA
The order of the incoming opacity does not affect accumulation
opacity. This enables order-independent visibility compositing if
the opacity summation Agum = ) ;A; is given. The formula can be
expressed as a recurrent extension of (6) and (7):

Xacc =1- (1 —Aacc)(l _Anew)7
$5 A sum + Coew ~ ®

Cacc = acc

Asum +Anew

Cace = caccAace (7

Cacc =




154 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

where (Cace,Aace) and (Cpew, Anew ) are the new accumulating visi-
bility and the new incoming visibility, respectively.

In the proposed method, this operator is applied to the red rect-
angles in Figure 5 in which Ay, is assigned as an element of a
fragment.

4. Implementation

The proposed method can be easily applied to any GPU-based ren-
dering pipeline, such as ray-tracing and raster-based graphics, pro-
viding that they handle individual fragments. We apply the pro-
posed method to multi-fragment rendering based on raster-based
graphics, which is widely supported by general GPUs and provides
efficient performance. Generally, multi-fragment rendering based
on the raster graphics pipeline requires two sequential rendering
passes, namely the store pass and resolve pass. The store pass cap-
tures fragments from the same pixel in a streaming, while the re-
solve pass sorts the fragments stored in the framebuffer and then
performs additional screen-space rendering operations. In this sec-
tion, we introduce GPU-based implementations for efficient inte-
gration of the proposed method using two competitive raster-based
approaches, namely a limited memory usage approach (Section
4.2) and an unlimited memory usage approach (Section 4.3).

4.1. Common operations

First, we introduce the common techniques used in both implemen-
tation approaches before discussing the detailed implementation.

4.1.1. Fragment merging

The OFM can be directly implemented because of its order-
independent property and the simple approximation that does not
consider fragment subdivision. In addition, the SFM is easy to im-
plement since it sequentially merges two overlapping fragments
sorted in depth order. Specifically, we output N fragments into M
fragments (M < N) by merging the overlapping fragments when
using the resolve pass. This has the linear computational complex-
ity O(N) was used in our implementation, as shown in Algorithm
1.

The following rules should be considered when integrating the
proposed fragment merging with the multi-fragment rendering
based on the raster graphics. First, the OFM should be used when
performing the fragment merging in the store pass because the or-
der of fragments coming into the shader is not deterministic. On
the other hand, there is no need to consider fragment merging in
the resolve pass because the adjacent fragments are already merged
once the OFM is performed in the store pass. Second, it would be
better to use SFM rather than OFM in the resolve pass because (i) it
provides more elaborate visibility than the OFM and (ii) the resolve
pass allows the fragments to be sorted in depth order. Algorithm 1
presents the integration of the SFM into the resolve pass.

4.1.2. Tail-handling

The multi-fragment rendering, which uses a limited number of
fragments, inherently suffers from fragment overflow in com-
plex scenes although the proposed method can effectively mit-
igate the fragment overflow problem. We employ fail handling

Algorithm 1 Output fragments (resolve pass)
I FulNI= f1, far o v
2 Four [M]

3: fi=Fp[0],c:=0
4: for i:=0;i < N;i:=i+1do
Jnext = null | finerge = null
if i+ 1 < N then
Jnext = Fiy, [i-i— 1]
if f; and fex overlap then
fmerge = SFM(fi, fnext)
10: if finerge is null then

> N fragments sorted in depth order
> maximum M fragments for output
> ¢ counts valid output fragments

0 W

> see Section 3.2.1

11: if c <M — 1 then

12: Foutlc] == fi,c:=c+1

13: Ji = fnext

14: else if fyeq is not null then > tail-handling case
15: fi-v := OVERC(f;.v, fuext.v) > over operator,.v: rgba
16: fit = fnext.2— fi-z+ fit > .t: z-thickness
17: iz = foext 2 > .z: depth (original surface)
18: fi-a = fi.a+ frext.a > .a: Agum (refer to (8))
19: else

20: Fi := fmerge

21: if f; is not null then

22: Foutlc] == fi,c:=c+1

23: (optional) over operator for Fy,: [0, ...,c — 1]’s visibilities (OIT)
24: (optional) store Fy,, for the screen-space rendering pass

[MCTB13, Kub14], which merges the fragments further away than
k-front fragments into one fragment (i.e., tail fragment), to provide
plausible rendering images. We use different operators based on
the store pass, where the order of fragments is not deterministic,
and resolve pass, where the fragments are sorted in depth order, to
determine the visibility of the tail fragment. The store pass uses the
mix operator (refer to Section 3.3.2), while the resolve pass uses
the over operator (refer to the 15th line in Algorithm 1).

4.1.3. Z-thickness value determination

We consider a z-value precision determined by a single-precision
floating-point, which provides 24-bit precision, to address the z-
fighting problem. In addition, we consider the floating-point z-
buffer behavior, which is nonlinear, indicating that the precision
of z is proportional to the reciprocal of the z value. In other words,
there is a lot of precision close to the eye and considerably lesser
precision in the distance. The near and far clip planes of the view
frustum affect the z-precision at various ranges in the graphics
pipeline. The smallest depth separation that can resolve at depth z
of the view frustum range is called the z-resolution of the z buffer,
which is calculated as [Bak]:

b nZf

P(2) = —7 2 (b=
g—% n—zf

) 9)

where zj, is the depth value of the near clip plane, zy is the depth
value of the far clip plans, and » is the number of precision bits
(conventionally 24 in the single-precision floating-point). We set
the z-thickness value at z to two times the z-resolution, 2 X P(z),
to provide sufficient z-resolution for z-fighting handling. Note that

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering 155

our implementation uses 2 X P(z) in the normal multi-fragment ren-
dering. Moreover, the z-thickness value can be manually adjusted
by the user based on the visualization purpose and geometry com-
plexity.

4.2. Bounded memory usage approach

The k-buffer algorithm is a conventional approach that uses a
bounded memory capacity (in Algorithm 1, M = N = k, k is nor-
mally set to 4 or 8 [Kub14]) in the entire rendering pipeline. How-
ever, it suffers from data races during the store pass as it per-
forms read-modify-write operations of fragments. Therefore, we
use a pixel synchronization technique [Sal13] in which other frag-
ments coming towards the same pixel must wait for the processing
of an occupying fragment to end. In our implementation, we use
atomic processing using a rasterizer-ordered-view supported in Di-
rect3D 11.3 or higher. Furthermore, we use the k™ buffer techniques
[VPF15], namely the max array buffer and the fragment culling, to
optimize the implementation. The max array buffer works by as-
signing a slot to the fragment with the maximum depth value prior
to the tail in a stream, and fragment culling conditionally performs
memory read/write to efficiently replace the k-front fragments. We
also assign a slot to the max array buffer to handle the tail fragment.

4.3. Unbounded memory usage approach

The store pass suffers from data races of the incoming frag-
ments. Therefore, we employ the dynamic framebuffer approach
[MCTB12], which uses only an atomic count instruction to avoid
data races efficiently, because the k-buffer algorithm requires a
heavy pixel synchronization task. In addition, this approach re-
quires the count pass, where the atomic count instruction counts
the number of fragments per pixel before the store pass and en-
ables the store pass to store the incoming fragments into the frame-
buffer without the read-modify overhead. Although it requires an
unbounded memory (we employ the preallocated chunk that can
store a maximum of 1024 per-pixel fragments, that is, N = 1024
in Algorithm 1 and M = 4 or 8), it provides a smooth visibility
transition across the overlapping geometries and results in correct
OIT images with considerably faster performance than the k-buffer
algorithm.

5. Experiments

The proposed fragment merging (SFM and OFM) can be applied to
any rendering method that handles individual fragments, providing
a bounded number of fragments to effectively perform screen-space
rendering algorithms in terms of memory efficiency and geometric
representation. In our experiments, we set the bounded number to
8 (M = 8 in Algorithm 1), satisfying both performance and quality
[Kub14]. We considered the following techniques to demonstrate
the validity of the proposed method:

e The dynamic fragment buffer (DFB) [MCTB12] is a preeminent
GPU buffer-based method that can handle all fragments with the
fastest rendering performance. However, this method requires
unbounded memory. The SFM should be used when applying
the proposed method to the DFB (DFB+SFM) based on the inte-
gration rules discussed on Section 4.1.1.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

52 layers

-

avg. layers: 10

avg. layers: 42 avg. layers: 14

Figure 10: Heatmap-coded differences between the image gener-
ated using the dynamic frame buffer (DFB) [MCTBI12], which is
used as a reference, against the images using the Moment-based
transmittance approximation (MBT) [MKKP18], static kT buffer
(SKB) [VPF15], SKB+OFM, and DFB+SFM (from left to right).
The sportscar data contains 1075 mesh objects, calling 1075 draw
functions. The hairball data is a single mesh object containing high
[frequency details. The floor data is a dense point set, which is dis-
played by large size surfels.

e The k™ -buffer [VPF15] is an efficient k-buffer approach that uses
both static and dynamic k values with an optimal GPU imple-
mentation. In our experiments, we employed the static version of
the k" -buffer (SKB). The OFM should be used when applying
the proposed method to the SKB (SKB+OFM) because fragment
merging is performed in the store pass based on the integration
rules presented in Section 4.1.1.

e The moment-based transmittance approximation (MBT)
[MKKP18] theoretically encodes all fragments along a ray
into the transmittance function defined by a small number of
variables. This enables high rendering speeds while providing
plausible OIT results unless geometry intersections are consid-
ered. The proposed fragment merging method is not applied to
this method because it does not handle individual fragments.

All experiments were implemented using shader programs,
leveraging the GPU raster-based graphics pipeline. The experi-
ments were conducted on a computer with an Intel Core 177700
3.6 GHz CPU with 32 GB of RAM, an NVIDIA GeForce GTX
1080 GPU, and a Windows 10 x64 operating system.

5.1. Order Independent Transparency

Various comparisons were conducted to prove the validity of the
multi-layer representation based on the proposed method in terms
of the OIT performance (i.e., improved image quality) of the ap-
proximation model. The DFB provides the reference image, while



156 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

(c) SKB

(d) SKB+OFM

Figure 11: Distinguishable occlusion test with transparency. A
point set of bunny model is represented by large size surfels, re-
sulting in a lot of overlapping layers. The intersecting planes are
superimposed on the bunny model. The text primitives are coplanar
with the intersecting planes.

the SKB and MBT provide the approximated OIT images. Further-
more, we used a z-thickness value of 100 x P(z) (refer to (9)) to
demonstrate the effect of merging adjacent fragments along the z
direction on the OIT. Fragment merging was applied differently in
SKB and DFB. The OFM was applied to the store pass of SKB,
and the SFM was applied to the resolve pass of DFB.

5.1.1. Visual analysis

Figure 10 shows the results of the comparisons rendered with high
transparency. It is apparent from the results that the proposed
method improves OIT results when only a limited memory is avail-
able (see the results obtained by SKB and SKB+OFM). Moreover,
the proposed method provides OIT results with a negligible loss
of quality when a limited number of fragments from all fragments
(see the results obtained by DFB+SFM) was generated. This im-
plies that local merging of adjacent fragments along the z-direction
can well encode the entire fragments with a limited number of frag-
ments.

Figure 11 shows that the proposed method is effective in ren-
dering a complex scene that contains overlapping geometries. Sur-
fels [PZVBGOO0] from a point set surface produce densely adja-
cent layers along the z-direction when using a large surfel size to
cover the point set surface. Therefore, the SKB suffers from frag-
ment overflow early in the depth layers, producing incorrect occlu-
sion cues (refer to Figure 11(c)). An approximation approach to the
transmittance function, MBT, does not capture correct depth values,
resulting in indistinguishable intersections (refer to Figure 11(b)).
We applied the OFM with the default z-thickness value, 2 x P(z),

70
60
50
40
30

20
I n

1024x1024

ors [N
ore+sFv [N
sk [
ske+orv NN
.

o
ore I
pre+sFv [N
ske [N
sks+orm [
sk [

MBT
MBT
MBT

ske+orv [N
|
ors [N

ore+skv [N

sports car hair ball surfels

2048x2048

100
80 — I ]
60 I I
40 = .
gl DR 11 11
0
P 5 2 5 5 2 T 2 3 5 B o5 8 3 &5
a % 7 s s a & © s s o ) @ 5 s
@ ] @ ] @ &
= 4 = 4 = b~
a @ a * a @
sports car hair ball surfels

Hcount Mstore Mresolve moment generation B moment reconstruction

Figure 12: Performance evaluation, in milliseconds, at image res-
olutions of 1024 x 1024 and 2048 x 2048 for all methods.

1
(opacity) s

0.8
0.6

0.4

0.2

0
d; dy

—DFB —MBT —SKB —SKB+OFM

Figure 13: Absorbance functions (right) along a ray (red dotted
arrow) of the scene. The scene is from the floor data (full view) used
in Figure 10. The viewing ray passes through 52 layers of overlap-
ping surfels and 10 separated geometry layers in space when ren-
dering is performed using the ray as a viewing direction.

to the SKB to show that the proposed method can mitigate such
problems.

5.1.2. Performance analysis

We evaluated the computational overhead of OIT methods that are
previously discussed by measuring rendering passes, such as the
count pass, store pass, and resolve pass. Specifically, the count pass
is required for the DFB to count the number of per-pixel fragments
and generate an offset table that efficiently maps per-pixel frag-
ments to the GPU memory. Sorting the stored fragments in depth
order in the resolve pass of the DFB and SKB is performed using
the insertion sort or shell sort. The insertion sort is used when the
number of sorting fragments was less than 16; otherwise, the shell
sort was chosen [VPF15].

Figure 12 shows the execution times of each rendering pass of
comparison methods for the scenes in Figure 10. The computational

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering 157

ﬂi'igmh%ﬁnsm

A Mty

Ilmaq 'u
o o
g ﬁlﬂ‘
""Wrm,, Wﬂ:'"":’

iy mrnl& t'mm fmf? i

ammrblm'm Di‘

ab/umal: "m;f,'r
¢

(e) DFB+SFM

Figure 14: Local depth blending effects of the SFM. The top row
images show a manuscipt-textured mesh model. (a) A reference im-
age rendered from the polygons of the mesh model. (b)(c) Images
rendered from large surfels representing the point set of the mesh
model. The middle image among the zoomed images of (b) and (c)
highlights the point resolution (surfels scaled to 3 the size of the
original resolution sufels). The bottom images show the aligned
geometries containing partially overlapping surfaces. (a)(b)(d) Im-
ages rendered using foremost surface rendering, which uses a bi-
nary z-depth test.

overhead of the SFM performed in the resolve pass of the DFB was
negligible compared to the sorting overhead. The merged fragments
can change the order and number of read-write-modify operations,
affecting the performance, in the pixel synchronization when stor-
ing the k-front fragments from the incoming and read-back frag-
ments. However, the performance loss was insignificant compared
to the visual benefit of the proposed method.

We showed that the local merge of adjacent fragments based on
the proposed method could properly represent the multi-layered ge-
ometry information by comparing the absorbance functions (i.e.,
1 —transmittance) obtained from the comparison methods. Fig-
ure 13 shows the absorbance functions along the z-direction at a
pixel of an image where densely adjacent surfels are rendered as
overlapping layers. We used the absorbance function obtained from
the combination of SKB+OFM, which handles the fragments that
concurrently and randomly come onto the shader, to evaluate the
robustness of the local merging based on the proposed method. It
enables the representation of physically separated geometries ap-
parent in the absorbance function of DFB with a limited number of
fragments.

5.2. Varying Z-Thickness Effects

We demonstrated that the proposed method (SFM) offers visual ad-
vantages in special-purpose non-photorealistic rendering by vary-
ing the z-thickness values. Furthermore, B was set to 1 because a
smooth visibility transition is an important factor.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Figure 15: Ghosted illustration. The upper images show trans-
parency rendering (alpha = 0.3) using DFB. The bottom images
show the ghosted effect obtained by our method (DFB+SFM).

5.2.1. Local depth blending

SFM allows the blending of images based on the depth order and
degree of overlap of the fragments along the viewing direction. The
common method of rendering a point-set surface without surface
reconstruction is the point set rendering using surfels. A straight-
forward way to minimize holes is to use large surfels, which results
in speckling artifacts due to z-fighting occurring at densely over-
lapping points. The SFM effectively resolved this problem. The top
images in Figure 14 highlight this. We chose a z-thickness value of
10 x P(z).

Comparative visualization provides a distance cue of the lo-
cal geometry for users to recognize the differences in shapes and
sizes [BBF*11]. Conventionally, color mapping based on the differ-
ences in shapes and sizes is a widely used visualization technique.
In this study, the proposed method provides local distance cues with
a smooth visibility transition in overlapping areas instead of using
color mapping, as shown in the bottom images of Figure 14. In the
figure, the stronger the red color indicates that more red surface is at
the front, and vice versa. On the other hand, the closer the blending
colors are, the closer the two surfaces are located. This is accom-
plished using SFM. We set the z-thickness value as the maximum
difference to display.

5.2.2. Ghosted illustration

The ghosted illustration is an effective tool for simultaneously visu-
alizing interior and exterior structures while preserving clear shape
cues. In particular, the traditional approach to realize ghosted illus-
tration is based on a series of composition stages that modulate the



158 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

Figure 16: Hybrid rendering. Synthetic 3D models with multiple
transparent thin polygonal surfaces (ellipsoids) and thick volumet-
ric surfaces (cubes) are rendered using (a) 100 times supersam-
pling without SFM, (b) normal sampling without SFM, and (c¢) nor-
mal sampling with SFM. A real-world volume data with superim-
posing planes is rendered using normal sampling (d) without and
(e) with SFM.

transparency factors of exterior surfaces [BRV*10]. The smooth
visibility transition based on the SFM offers ghosted effects by ad-
justing the visibility contrast of the occluding or occluded geome-
tries with respect to transparency and depth. Examples are shown
in Figure 15. To reveal the interior geometry, we applied a large z-
thickness value to the fragments to make them overlap with each
other instead of mitigating geometry occlusions by transparency.

5.3. Hybrid Rendering with Volumetric Object

We successfully demonstrated the applicability of the proposed
method for the hybrid rendering of multiple volumetric and polygo-
nal surfaces with transparency. Generally, polygon rendering is per-
formed prior to volume rendering. Moreover, the sorted and merged
fragments in the resolve pass should be stored back into the frame-
buffer similar to the screen-space rendering algorithms. The SFM
in the volume-rendering pass is applied to the read-back fragments
and volume samples at every sample step of the ray-casting algo-
rithm [KWO3].

The geometric intersections between thin transparent layers
(polygonal surfaces) and thick translucent layers (volumetric sur-
faces) are shown in Figure 16. Figure 16(b) shows the banding
artifact caused by discontinuous sampling. The SFM yields a
high-quality image similar to the supersampling result because a

Figure 17: Example of the multi-layered screen-space rendering
of the dynamic ambient occlusion and depth-of-field effects. The
multi-layered representation of merged fragments (top-left) is used
for the dynamic ambient occlusion (top-right). A semi-transparent
scene (bottom) with the ambient occlusion and depth-of-field effects
is rendered using the multi-layered representation of the merged
fragments and ambient occlusion values.

smooth visibility transition of the SFM reduces such jaggies. Fig-
ures 16(d)(e) highlight the visual effect of the SFM in real-world
hybrid rendering cases.

5.4. Extension to Screen-space Rendering

Fragments that represent the screen-space geometry must be stored
in the frame buffer for the screen-space rendering. Subsequently, it
reads the stored fragments and calculates the geometric interactions
to produce the rendering effects. A single-layer representation in
the screen space is not sufficient for geometric interactions, result-
ing in problematic rendered images. Various multi-layered screen-
space rendering approaches [BS09, YWSM13] have been devel-
oped to address this problem.

The proposed method enables screen-space rendering using cost-
effective multi-layer information, as demonstrated by the OIT.
However, this can result in having distorted geometry that causes
artifacts in screen-space rendering. Therefore, we calculated the
geometric occlusion of two surface boundaries, namely the vir-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering 159

tual front boundary where the shape of the original geometry is
maintained and the back boundary whose depth value is equal to
the depth value of the original geometry, based on the z-thickness
model (refer to Figure 2) at the merged fragments with z-thickness
values greater than 10 x P(z).

To prove that the proposed method is valid in such multi-layered
screen-space rendering algorithms, the fragments based on pro-
posed method were applied to the dynamic ambient occlusion (AO)
and depth-of-field (DOF) effects performed in the screen space.
Figure 17 shows that screen-space rendering effects can be suc-
cessfully applied to a scene containing semi-transparent primi-
tives based on the proposed method. For this, we first applied the
merged fragments to the multi-layered horizon-based ambient oc-
clusion [BS09] by assigning the computed ambient occlusion val-
ues to each fragment. Subsequently, we applied the screen-space
ray-tracing algorithm [LES09] to the fragment layers for a depth-
of-field effect. Note that the geometry interaction must be calcu-
lated on the geometry configured by both the front and back surface
boundaries of the z-thickness model for merged fragments with
large z-thickness values.

6. Conclusions

In this paper, we presented a novel fragment-merging technique
that merges partially overlapping fragments into one based on the
proposed z-thickness model. We demonstrated that the proposed
technique can be easily applied to multi-fragment rendering that
handles individual fragments, such as DFB and SKB. We also pre-
sented the following advantages based on the proposed method.
First, it mitigates the early problems on fragment overflow from
which the SKB algorithm suffers, improving the OIT performance
in terms of speed and quality. Second, it effectively suppress z-
fighting problems by blending coplanar and coplanar-like surfaces.
Third, it allows a smooth visibility transition (SFM), providing
varying z-thickness effects that are useful in rendering overlapping
and intersecting geometries. Finally, it was successfully applied to
multi-layered screen-space rendering while delivering a wide depth
range of screen-space geometry.

Moreover, we presented two approaches (i.e., DFB+SFM and
SKB+OFM), which are based on the raster graphics pipeline, used
for implementing the proposed method. These approaches were
found to be efficient based on various experimental studies, includ-
ing the comparison between the earlier models of the presented
approaches (i.e., DFB and SKB) and a recent competitive imple-
mentation (i.e., MBT). Furthermore, we implemented a method to
determine the z-thickness value based on the z-resolution of view
frustum, which can be effectively address the problems in copla-
narity such as the z-fighting and storage waste of coplanar-like frag-
ments. Furthermore, our implementation allowed users to adjust the
z-thickness values for special-purpose visual effects.

Although the proposed z-thickness model enables effective frag-
ment merging, two additional information for a fragment (i.e., z-
thickness value (4 bytes float-type) and accumulated opacity (4
bytes float-type)) result in unnecessary memory usage in scenes
where overlapping layers are not critical.

Future studies will focus on the determination of the visibility of

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

the merged fragment and its subdivided fragment. The proposed z-
thickness model in this study may be combined with a higher-order
approximation [MKKP18] of merging fragments, providing a more
elaborate visibility determination of the subdivided fragment. Fur-
thermore, an attention-based level-of-detail approach may be ap-
plied when determining the z-thickness values with respect to the
pixel area. This reduces the fragment storage in areas that are not
noticed by an observer [LKCO8]. An approach of estimating scene
complexity in screen space may be used to selectively apply the
proposed method to pixels where complex gemometries generate
overlapping fragments.

Acknowledgements

We thank the reviewers for their insightful comments and recom-
mendations pertaining to proofreading. This work was supported
by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. 2021R1F1A1063740)
and by the Research Grant of Kwangwoon University in 2021
(Dongjoon Kim). This research was also financially supported by
Hansung University (Heewon Kye).

References

[Bak] BAKER S.: Learning to love your z-buffer. https://sjbaker.
org/steve/omniv/love_your_z_buffer.html. Accessed:
2021-06-01. 6

[BBF*11] BUSKING S., BOTHA C. P., FERRARINI L., MILLES J.,
PosT F. H.: Image-based rendering of intersecting surfaces for dynamic
comparative visualization. The visual computer 27, 5 (2011), 347-363.
9

[BCL*07] BAvOIL L., CALLAHAN S. P., LEFOHN A., COMBA J. L.,
SILVA C. T.: Multi-fragment effects on the gpu using the k-buffer.
In Proceedings of the 2007 symposium on Interactive 3D graphics and
games (2007), pp. 97-104. 1,2, 3,4

[BKKB13] BAUER F., KNUTH M., KUIJPER A., BENDER J.: Screen-
space ambient occlusion using a-buffer techniques. In 2013 International
Conference on Computer-Aided Design and Computer Graphics (2013),
IEEE, pp. 140-147. 1, 3

[BMO08] BAvVOIL L., MYERS K.: Order independent transparency with
dual depth peeling. NVIDIA OpenGL SDK (2008), 1-12. 2

[BRV*10] BRUCKNER S., RAUTEK P., VIOLA I., ROBERTS M., SOUSA
M. C., GROLLER M. E.: Hybrid visibility compositing and masking for
illustrative rendering. Computers & Graphics 34,4 (2010), 361-369. 10

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution screen-space
ambient occlusion. In SIGGRAPH 2009: Talks. 2009, pp. 1-1. 10, 11

[Car84] CARPENTER L.: The a-buffer, an antialiased hidden surface
method. In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques (1984), pp. 103-108. 1, 2

[Cral0] CRASSIN C.: Opengl 4.0+ abuffer v2. 0: Linked lists of fragment
pages. Personal Blog, July (2010). 2

[Duf17] DUFF T.: Deep compositing using lie algebras. ACM Transac-
tions on Graphics (TOG) 36, 3 (2017), 1-12. 3

[ESSL10] ENDERTON E., SINTORN E., SHIRLEY P., LUEBKE D.:
Stochastic transparency. IEEE transactions on visualization and com-
puter graphics 17, 8 (2010), 1036-1047. 2

[EveO1] EVERITT C.: Interactive order-independent transparency. White
paper, nVIDIA 2, 6 (2001), 7. 1

[FEE20] FRIEDERICHS F., EISEMANN E., EISEMANN E.: Layered
weighted blended order-independent transparency. In Graphics Interface
2021 (2020). 3


https://sjbaker.org/steve/omniv/love_your_z_buffer.html
https://sjbaker.org/steve/omniv/love_your_z_buffer.html

160 D. Kim & H. Kye / Z-Thickness Blending: Effective Fragment Merging for Multi-Fragment Rendering

[FHSS18] FRANKE L., HOFMANN N., STAMMINGER M., SELGRAD
K.: Multi-layer depth of field rendering with tiled splatting. Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques 1, 1
(2018), 1-17. 1,3

[KG13] KARIS B., GAMES E.: Real shading in unreal engine 4. Proc.
Physically Based Shading Theory Practice 4, 3 (2013). 1

[KKL*16] Kim D.-J., KiM B., LEE J., SHIN J., KiIM K. W., SHIN
Y.-G.: High-quality slab-based intermixing method for fusion render-
ing of multiple medical objects. Computer methods and programs in
biomedicine 123 (2016),27-42. 3

[Kubl4] KuBISCH C.: Order independent transparency in opengl 4. x. In
Proceedings of the 2014 GPU Technology Conference (2014), vol. 3. 6,
7

[KWO03] KRUGER J., WESTERMANN R.: Acceleration techniques for
gpu-based volume rendering. In IEEE Visualization, 2003. VIS 2003.
(2003), IEEE, pp. 287-292. 10

[LES09] LEES., EISEMANN E., SEIDEL H.-P.: Depth-of-field rendering
with multiview synthesis. ACM Transactions on Graphics (TOG) 28, 5
(2009), 1-6. 11

[LFS*15] LINDHOLM S., FALK M., SUNDEN E., BOCK A., YNNER-
MAN A., ROPINSKI T.: Hybrid data visualization based on depth com-
plexity histogram analysis. In Computer Graphics Forum (2015), vol. 34,
Wiley Online Library, pp. 74-85. 1

[LKCO8] LEE S., KiM G. J., CHOI S.: Real-time tracking of visually
attended objects in virtual environments and its application to lod. IEEE
Transactions on Visualization and Computer Graphics 15, 1 (2008), 6—
19. 11

[LWXW09] Liu B., WEI L.-Y., XU Y.-Q., WU E.: Multi-layer depth
peeling via fragment sort. In 2009 11th IEEE International Confer-
ence on Computer-Aided Design and Computer Graphics (2009), IEEE,
pp. 452-456. 2

[Max95] MAX N.: Optical models for direct volume rendering. /EEE
Transactions on Visualization and Computer Graphics 1, 2 (1995), 99—
108. 5

[MB13] MCGUIRE M., BAvoiL L.: Weighted blended order-
independent transparency. Journal of Computer Graphics Techniques
(2013). 1,2,3

[MCTB11] MAULE M., CoMBA J. L., TORCHELSEN R. P., BASTOS
R.: A survey of raster-based transparency techniques. Computers &
Graphics 35,6 (2011), 1023-1034. 2, 4

[MCTB12] MAULE M., CoMBA J. L., TORCHELSEN R., BASTOS R.:
Memory-efficient order-independent transparency with dynamic frag-
ment buffer. In 2012 25th SIBGRAPI Conference on Graphics, Patterns
and Images (2012), IEEE, pp. 134-141. 2,7

[MCTB13] MAULE M., COMBA J., TORCHELSEN R., BASTOS R.: Hy-
brid transparency. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2013), pp. 103—-118. 3,6

[MesO7] MESHKIN H.: Sort-independent alpha blending. GDC Talk
(2007). 2

[MKKP18] MUNSTERMANN C., KRUMPEN S., KLEIN R., PETERS C.:
Moment-based order-independent transparency. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 1, 1 (2018), 1-20. 1,
3,7, 11

[MM17] MCGUIRE M., MARA M.: Phenomenological transparency.
IEEE transactions on visualization and computer graphics 23,5 (2017),
1465-1478. 1

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Fast global illumination approximations on deep g-buffers.
NVIDIA Corporation 2,4 (2014). 1,3

[MY18] MALLETT I., YUKSEL C.: Deferred adaptive compute shad-
ing. In Proceedings of the Conference on High-Performance Graphics
(2018), pp. 14. 1

[PD84] PORTER T., DUFF T.: Compositing digital images. In Proceed-
ings of the 11th annual conference on Computer graphics and interactive
techniques (1984), pp. 253-259. 4

[PZVBGO0] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.:
Surfels: Surface elements as rendering primitives. In Proceedings of
the 27th annual conference on Computer graphics and interactive tech-
niques (2000), pp. 335-342. 8

[RASS16] ROCHA A., ALIM U., SiLVA J. D., SOUSA M. C.: Decal-
maps: Real-time layering of decals on surfaces for multivariate visual-
ization. IEEE transactions on visualization and computer graphics 23, 1
(2016), 821-830. 1

[Sall3] SALVI M.: Advances in real-time rendering in games: Pixel syn-
chronization: Solving old graphics problems with new data structures. In
ACM SIGGRAPH (2013). 2,7

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive trans-
parency. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics (2011), pp. 119-126. 1, 3

[SV14] SALVI M., VAIDYANATHAN K.: Multi-layer alpha blending. In
Proceedings of the 18th meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (2014), pp. 151-158. 3

[VF12] VASILAKIS A.-A., FUDOS I.: Depth-fighting aware methods for
multifragment rendering. IEEE transactions on visualization and com-
puter graphics 19, 6 (2012), 967-977. 3

[VPF15] VASILAKIS A.-A., PAPAIOANNOU G., FuDpOS 1.: k*-buffer:
An efficient, memory-friendly and dynamic k-buffer framework. IEEE
transactions on visualization and computer graphics 21, 6 (2015), 688—
700. 1,2,4,7,8

[VVP20] VASILAKIS A., VARDIS K., PAPAIOANNOU G.: A survey of
multifragment rendering. STAR 39, 2 (2020). 1,2

[WGERO5] WEXLER D., GRITZ L., ENDERTON E., RICE J.: Gpu-
accelerated high-quality hidden surface removal. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
(2005), pp. 7-14. 3

[YHGT10] YANG]J. C., HENSLEY J., GRUN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the gpu. In Computer Graph-
ics Forum (2010), vol. 29, Wiley Online Library, pp. 1297-1304. 2

[YWSM13] Yu K., WU S., SHENG B., MA L.: Layered depth-of-field
rendering using color spreading. In Proceedings of the 12th ACM SIG-
GRAPH International Conference on Virtual-Reality Continuum and Its
Applications in Industry (2013), pp. 77-82. 10

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



