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“Eve walks to the house” “In the room, an organized office 
desk is near a bed$.”

“Eve walks to the couch.”

“In the living room, there is a bookcase$. 
A couch is in front of a tv$. 
A chair is near a piano$.”

“camera front”“Eve sits on the couch.
and sings with the microphone”

Figure 1: Write-An-Animation interface and animation generation process. After initialization, the user can edit texts in the textbox to
specify the virtual scene, character motion, and virtual camera, etc. The dollar sign is added to the end of the script to distinguish scene
descriptions from character-motion commands. The 3D animation will be iteratively generated and updated according to the user’s input.

Abstract
3D animation production for storytelling requires essential manual processes of virtual scene composition, character creation,
and motion editing, etc. Although professional artists can favorably create 3D animations using software, it remains a complex
and challenging task for novice users to handle and learn such tools for content creation. In this paper, we present Write-An-
Animation, a 3D animation system that allows novice users to create, edit, preview, and render animations, all through text
editing. Based on the input texts describing virtual scenes and human motions in natural languages, our system first parses the
texts as semantic scene graphs, then retrieves 3D object models for virtual scene composition and motion clips for character
animation. Character motion is synthesized with the combination of generative locomotions using neural state machine as well
as template action motions retrieved from the dataset. Moreover, to make the virtual scene layout compatible with character
motion, we propose an iterative scene layout and character motion optimization algorithm that jointly considers character-
object collision and interaction. We demonstrate the effectiveness of our system with customized texts and public film scripts.
Experimental results indicate that our system can generate satisfactory animations from texts.

CCS Concepts
• Computing methodologies → Motion processing;

† Corresponding author: miaow@buaa.edu.cn

1. Introduction

With the pervasive use of mobile phones and social networks,

diverse video media such as vlogs, selfies and animated films
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have now become increasingly popular. Compared with tradi-

tional texts or pictures, an increasing number of people prefer to

watch and share animated films. However, the production of 3D

animation or animated films is complicated, which not only re-

quires a variety of professional software but also highly relies on

user’s skill and experience. With the development of deep learn-

ing technology in recent years, researchers have proposed various

cost-effective content generation methods such as language-driven

sketch colorization [ZMG∗19], facial animation [AHK∗02], video

montage [WYH∗19] and animation [HID∗14]. Among them, text-

driven animation has been a hot but challenging research topic.

Although several animation synthesis methods were pro-

posed [AHKM20,GCO∗21], to the best of our knowledge, no prior

work has focused on the combination of virtual scene editing with

character-motion synthesis. Some work was devoted to solving 3D

indoor scene generation [CSM14b, CSM14a], while others aimed

to improve virtual character motion realism [HKS17,SZKS19]. We

would like to argue that, seperate generations of high-quality vir-

tual scenes or character motions cannot guarantee the animation

quality of their combinations. On the one hand, characters can in-

teract with the virtual scene, on the other hand, scene layout can

implicitly affect character’s behavior like locomotion trajectory.

In this work, we present Write-An-Animation, a text-based ani-

mation editing system, where users can edit virtual scene layout,

control character locomotion in the scene and specify the inter-

action with scene models, all through texts. Our system supports

natural language texts, and allows users to edit texts for scene

layout and character motion editing. The interaction interface of

Write-An-Animation consists of a textbox and an execution but-

ton, which is simple yet effective. The user can iteratively edit the

text in the textbox and update the animation result (see Figure 1).

We clarify that our text-based animation editing is high-level and

friendly to novice users, where users do not need to set any param-

eters for character pose, walking trajectory, etc. Nevertheless, users

can futher fine-tune animation details with the help of commercial

software, which is not the foucs of this paper. Our system is com-

patible to motion capture (mocap) data, as long as the Biovision

hierarchical data (BVH) and corresponding action tags are indexed

to our system. We demonstrate our system using customized texts

and texts from public film scripts for single character animation in

indoor scenes. Experimental results including ablation studies and

subjective studies indicate that our system can produce satisfactory

animation. To summarize, the major contributions of this paper are:

• An interactive, high-level text-based 3D animation editing sys-

tem that drives human character animation in high-quality virtual

scene.

• An algorithm for scene layout and interactive character motion

optimization.

• A character-motion blending algorithm from generative locomo-

tion and template action representations. It facilitates the joint

optimization of scene layout and character motion and is com-

patible with new mocap data.

2. Related Work

Text-based Image and Video Synthesis. Recently, image and

video applications with natural languages as inputs have attracted

increasing attention, due to the advance of natural language pro-

cessing. Zhu et al. [ZGE∗07] proposed a text-to-picture synthesis

system to augment the input text with retrieved multiple images.

While their goal was to augment the communication, the gener-

ated results were separated images rather than a composed image

for storytelling. Built upon neural networks, Fu et al. [ZMG∗19]

proposed a text-based sketch colorization system. With simple text

instructions, the input sketch image was colorized step by step. Re-

cently, Wang et al. [WYH∗19] proposed a text-based video mon-

tage system to retrieve video clips from datasets and compose

videos that followed cinematographic guidelines. Text-based edit-

ing of talking-head video [FTZ∗19] was proposed to produce high-

quality portrait videos, especially for interview videos. The work

indicates that utilizing natural languages as inputs is a promising

direction for image and video synthesis.

Text-based Scene Generation. 3D scene generation methods

from various input types such as RGB-D images [CLW∗14],

sketches [XCF∗13], and languages [MPF∗18] have been proposed.

Among them, text-based scene synthesis has been a hot topic.

Chang et al. [CSM14b,CSM14a] transformed texts into graphs, and

then extracted the spatial knowledge of objects, such as occurrence,

hierarchy, surface and relative position, to generate a reasonable

layout. Chang et al. [CMS∗15] further extended this work by in-

troducing a dataset with natural language descriptions and learning

mappings from data to texts. Rui et al. [MPF∗18] described ob-

jects in scenes as semantic scene graphs to retrieve scenes in the

dataset that best matched the text. Although this approach depends

on semantic scene graph construction for the dataset, it can ensure

reasonable scene layout, which is convenient to add or delete mod-

els in scenes. For more work on scene synthesis, please refer to the

surveys [ZZLH19, WLLZ20].

Text-based Animation Creation. Text-based animation offers dy-

namic illustration of text-form storytellings. Irene et al. [AHK∗02]

proposed a rule-based method to convert text into an animation se-

quence of facial expressions, which is synchronized with speech.

Hayashi et al. [HID∗14] proposed a text-to-CG animation genera-

tion method based on TV program Making Language (TVML), but

the generated characters only perform pre-defined sets of actions at

fixed positions. Abrami et al. [AHKM20] proposed a text-to-scene

method that allows users to interactively build a virtual scene dur-

ing immersive exploration via VR headset and controllers. Ghosh

et al. [GCO∗21] proposed a text-driven skeleton animation method

based on deep neural networks, which can handle short sentences

composed by a single action or long sentences composed by a com-

bination of multiple consecutive actions. However, their method

may fail to generate continuous actions that are not adequately dis-

tributed in the dataset.

Generation of 3D Character Motion. Mocap solutions are usually

used to customize realistic character animation in industry. It is la-

borious and time-consuming to deploy mocap apparatuses and con-

duct the experiments. It is always expected to simplify or even auto-

mate the process [RLA∗18,LZL20]. Dietmar et al. [SPH11] simul-

taneously generated speech and CG animation based on the Hidden

Markov Model. Kapadia et al. [KFS∗16] proposed an optimization

algorithm to automatically fill in missing narration details for given

key plot points in a story to synthesize a complete 3D animation.
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There is a bedroom$.
There is a pair of table tennis paddle and 
a book on the table$.
Gump stands and looks at the table tennis paddle.
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Figure 2: The pipeline of the our system. The input texts are first parsed into semantic scene graphs by CoreNLP [MSB∗14] and
LDS [MPF∗18]. From the semantic scene graphs, our system extracts objects and template action motions from the scene dataset and
motion dataset respectively, and generates locomotion using NSM [SZKS19]. Finally, the virtual scene, locomotion and template action
motions are jointly optimized to create the final animation.

Recently, deep neural networks [CWY∗20,HYNP20,ZWP∗21] and

reinforcement learning methods [HHC∗19, PRL∗19] were used to

synthesize character animation. Fragkiadaki et al. [FLFM15] also

proposed LSTMs for mocap generation. However, the training for

sequence modelling using LSTMs could be challenging [BKK18].

Holden et al. [HKS17] proposed the phase-functioned neural net-

works (PFNN) architecture, which handles sharp movements of an-

imation better than sequential convolution. Compared with the sin-

gle fixed cyclic function of PFNN, Sebastian et al. [SZKS19] pro-

posed the neural state machine (NSM) that allows the network to

automatically learn phase functions for multiple actions. After that,

Sebastian et al. [SZKZ20] proposed the local motion phases (LMP)

that extends network capabilities to the generation of human-to-

human interaction. In this paper, we employ NSM as a character

lomotion generation method, and further formulate an optimization

model of joining scene layout and character motion.

3. The Write-An-Animation System

3.1. Overview

Write-An-Animation provides a text-to-animation solution that al-

lows users to edit 3D animation by simply writing and editing texts.

Our design objectives are multi-fold: first, we aim to generate vir-

tual scenes close to the daily life where objects can be interacted

with; second, we expect the character to be aware of the scene con-

text and adaptively locomote in the scene; third, diverse character

motions should be supported, such as waving arm angrily, playing

the piano, etc. To accomplish the objectives, we build our system

upon Language-Driven Synthesis [MPF∗18] and NSM-based char-

acter locomotion [SZKS19] to jointly optimize the scene layout and

character motion, and further generate vivid 3D animation by edit-

ing texts.

The text-based virtual scene is synthesized by LDS, while char-

acter motions are generated by the NSM. However, the NSM has

two shortcomings: First of all, the performance of NSM is sensitive

to the data, which will cause the network to generate unreasonable

motions if the scale of test models changes by more than 10%. For

example, when the height of the testing chair model is different

from the training data, the character usually first sits on the bor-

der of the chair, then gradually moves to the center of the chair.

Secondly, in order to control the character to perform 7 different

actions, the NSM captured 94 minutes of motion and divided it

into 452 motion clips. When the number of actions rose to several

hundred, the labeled data and training time required by the NSM

network greatly increased. In order to avoid these issues, we pro-

pose to optimize the layout of virtual scene objects based on gener-

ated motion trajectory, and incorporate template actions with NSM-

based character locomotion. Template actions are easily collected

from off-the-shelf mocap data in advance, which greatly reduces

the work of data collection and labeling.

3.2. System Pipeline

Our system includes major components of dataset preparation, text

parsing, initial generation of scene and character motion, and scene

layout and character motion optimization. The pipeline is shown in

Figure 2.

Dataset Preparation. We build datasets for 3D indoor scene ob-

ject retrieval and template character action motion retrieval respec-

tively. Our 3D indoor scene dataset includes SceneNN [HPN∗16],

SceneSynth [FRS∗12] and 3D-FRONT [FCG∗20]. All mod-

els in the scene dataset are annotated with the form used in

ShapeNetSem [CFG∗15] for object’s category, attributes and re-

lationship with other objects. Each scene is saved as a Seman-
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Figure 3: An example of dependency parsing by using CoreNLP.
Each node is tagged to perform part-of-speech, VB=verb,
NN=noun, IN=preposition, DT=determiner. Edges represent de-
pendencies, such as obj=object and nmod=nominal modifier.

tic Scene Graph (SSG), which records the model position, at-

tributes and relationship. The template action dataset contains

NSM [SZKS19] motion dataset, Mixamo 3D character mo-

tion [Inc21] and AMASS [MGT∗19] dataset. In total, we collected

10 characters, 149 template action motions (101 AMASS actions

and 48 mixamo actions) and 1883 indoor objects in 133 scenes.

Text Parsing. The part-of-speech (POS) of input text is first tagged

by CoreNLP [MSB∗14] and transformed into a dependency tree,

including all entities and their corresponding attributes and rela-

tionships which correspond to human actions, as shown in Fig-

ure 3. The entity represents characters, the attribute corresponds to

an action, and relationships record interactive models of the action.

Then, the dependency tree is converted into an SSG, which saves

descriptions of each object in the input texts and relationships be-

tween objects. In order to facilitate processing, we assume the user

appends a “$” sign at the end of a text to indicate a scene description

sentence. Moreover, our system also supports verbal commands.

We provide a set of weather, virtual camera and motion control

commands to facilitate animation creation. For example, command

“camera left” sets the virtual camera to the left of the character. The

user can iteratively write and edit texts to update the results.

Initial Generation of Scene and Character Motion. We use the

subgraph of the parsed text to match SSGs in the scene dataset for

scene object retrieval. We represent character motion as locomo-

tion and action motion (see Section 4.2), where the locomotion is

generated by a pre-trained NSM model and serves to perform ba-

sic motions and determine character positioning in the scene, for

instance, to walk, stand, run, etc. Action motions are mocap clips

retrieved from dataset, and can be performed during locomotion.

We fuse locomotion and action motion to produce diverse combi-

nations of character motions.

Scene Layout and Character Motion Optimization. In order to

ensure compatibility between scene layout and character motion,

especially for character-object-interaction, we propose a method

that takes the locomotion, action motion and scene layout as in-

puts, and iteratively optimizes the scene layout. In each iteration,

our method tries to avoid unnecessary collisions between the char-

acter body and virtual objects in the scene, meanwhile ensuring

body parts (i.e., finger tips) are close enough to the points of ob-

jects (i.e., keyboard). We formulate cost functions and employ the

simulated annealing algorithm for iterative optimization of scene

layout and character animation generation.

Algorithm 1: Object Matching for Scene Composition.

Input: Query SSG Gq, Dataset SSG Gdb
Output: Match map M between Gq and Gdb, Match Score S
S ← 0

for relation node u in Gq do
for relation node v in Gdb do

G
′
q = {(u.active,u),(u,u.anchor)}

G
′
db = {(v.active,v),(v,v.anchor)}

if G
′
q ⊆ G

′
db then

m(u,v)→ M
m(u.active,v.active)→ M
m(u.anchor,v.anchor)→ M
Sreward =CalculateMatchScore(M)
S ← S+Sreward

for object node u in Gq do
for object node v in Gdb do

if u /∈ M && v /∈ M && v = u then
m(u,v)→ M
Sreward =CalculateMatchScore(M)
S ← S+Sreward

return M,S

4. Technical Details

In this section, we describe more technical details of major compo-

nents in our system.

4.1. Virtual Scene Composition

Our virtual scene composition method builds upon and extends the

original LDS [MPF∗18] method. We first parse the texts as a low-

level dependency tree using the CoreNLP framework, then con-

vert the dependency tree into a semantic scene graph, similar to the

LDS method. Finally, we match the semantic scene graph with the

graphs saved in the scene dataset, and extract corresponding ob-

jects from multiple matched candidates to compose a new scene.

Specifically, when matching semantic scene graphs, LDS matches

individual objects as the first step, then matches the spatial relation-

ships from the top returned objects. Despite that the LDS method

can find a suitable solution through a huge scene dataset and opti-

mize positions of the objects by commands, semantic relationships

could be lost, as shown in the first row of Figure 4. By contrast,

our method injects the relationship between objects to the match-

ing rule so that more accurate results can be found.

Each SSG contains object nodes and relation nodes, where the

relation node stores information of the spatial relationship between

two object nodes. Let (u,v) be the relation node between object

node u and v. For example, if a scene contains a cup on a table, the

preposition “on” indicates the spatial relation between the cup and

the table, where u.active denotes all incoming nodes, and u.anchor
denotes all outgoing nodes.

Let Gq denote the query SSG and Gdb indicate a dataset of SSGs.

Our method matches the relation nodes of query SSG Gq with the
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There is a desklamp on a table$. There is a chair at the left of the desklamp$.

LDS Ours

There are four chairs near a table$.

LDS Ours

Figure 4: SSG matching comparison between LDS [MPF∗18] and our method. Top: results from LDS. Bottom: our results.

dataset SSGs Gdb, and puts each matched subgraph into a match-

ing map M that stores the location of the scene SSG corresponding

to each text SSG node. If no matched subgraphs are found, our

method directly matches individual object nodes of Gq in Gdb, and

saves successfully matched objects into M. The pseudocode is pro-

vided in Algorithm 1. Scene composition results of our method are

shown in the second row of Figure 4. LDS directly matches re-

lationships from top returned objects. However, the relationships

between the table and desklamp, and the chair and desklamp are

not included. As the relationship between the table and chairs is

ignored, objects are separately placed in the scene. Scene composi-

tion results of our own method correct objects and relationships.

4.2. Motion Synthesis

After the construction of SSG, our system extracts all action types

and their corresponding interactive objects in parallel to scene com-

position. We first filter out locomotion types, and then retrieve ac-

tion motion files (BVH format) in the motion dataset. Let Ml and

Ma denote the locomotion and action motion, and the virtual scene

constructed by SSG is denoted as E that encodes the spatial po-

sition and three-dimensional scale of objects. We feed Ml and E
into a pre-trained NSM network to synthesize a preliminary mo-

tion Mp = NSM(Ml ,E).

Next, we blend the retrieved action motion Ma and preliminary

motion Mp to generate a blended motion Mo that represents the

motion trajectory of body joints in the entire action. Specifically,

we rotate locomotion and action motion skeletons to the standard

T-pose respectively, and then get the blended motion Mi
o = M̂i

b×T i
o ,

where i is a joint, and M̂i
b can be either locomotion T-pose or action

motion T-pose. To represents the global rotation matrix from T-pose

to Mo. In our experiment, we blend the upper body (joints above the

hip) of template actions with the lower body (joints below the hip)

of generative locomotions. Finally, the inverse kinematics (IK) is

used to ensure that the combined action Mo conforms to laws of

kinematics.

4.3. Scene Layout and Character Motion Optimization

Although a plausible scene can be generated using the method in

Section 4.1, there can be artifacts during character-object interac-

tion, because the scene and character actions are computed sep-

arately. For instance, there can be a spatial gap between specific

actions and interactive objects at contact points; the generated ac-

tions cannot avoid obstacles and are distorted when interacting with

distant targets, etc. To make the scene and character motion com-

Algorithm 2: Scene Layout and Character Motion Opti-

mization.

Input: Virtual Scene Layout E, Blended Motion Mo
Output: Optimized Scene Ê, Optimized Motion M̂
Rs ← SearchRoute(E,Mo)
Rg,Mg,Eg ← NSMGenerate(Rs,E,Mo)
Sold ← GetRunStatus(Rg,Mg,Eg)
OldError ←CalculateError()
for each step do

Scur ← AddDisturbance(Sold)
Rg,Mg,Eg ← NSMGenerate(Scur)
Scur ← GetRunStatus(Rg,Mg,Eg)
error ←CalculateError()
error ← AcceptanceProbability(error)
error,OldError,Sold ←
U pdateStatus(Scur,Sold ,error,OldError)

patible, we design cost functions and perform joint optimization

based on simulated annealing.

Collision Cost. During locomotion, the character should avoid un-

necessary collision with scene objects. To this end, we design col-

lision costs to compute the collision level of the character with the

scene. Instead of using only one axis-aligned bounding box to rep-

resent an object, we use multiple small fixed-size bounding boxes

to represent an object, which is approximate to the object’s shape.

The collision cost is computed as the number of collisions between

character body and the bounding boxes during movement:

CD =
1

|O| ∑
o∈O

nc
o

na
o
, (1)

where O is the set of objects which collided with the character, nc
o

is the number of collided bounding boxes of object o, na
o is the total

number of bounding boxes of object o.

Contact Cost. There is usually a large gap between the locomo-

tion generated by the NSM and the object model. We define con-

tact cost to penalize distances between action motions and inter-

active objects. For each interactive object, we follow the NSM to

obtain contact points, including the hip, left/right middle fingers,

and left/right wrists. In each iteration of the optimization process,

we compute the average position of the skeleton joint in the entire

cycle of the template action corresponding to a contact point, and
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“In a gallery there is a horsesculpture
and a oilpainting$. There is also a 

sculpture and a picture$. ......”

“Susan walks to the oilpainting.
Susan stands in the front of oilpainting

and is looking at it.”

“Susan walks to the horsesculpture.
Susan is thinking before

the horsesculpture.”

“Susan walks to the picture
and plays with the phone.”

“There is a blackboard in a
meetingroom$. There is an arranged 

table in the meetingroom$.......”

“Tom turns right.
Tom stands and writes
on the blackboard.”

“Tom sits on a modernchair.
Tom sits and calls with phone.
Tom sits madly. Tom stands.”

“The man walks unbelievably
 to the road.”

“There is a boxing ring above which 
a boxingbag hangs$. There is a stool 
and a desk$. There is a bottle ......” 

“Mary is warming.” “Mary is punching boxingbag.” “Mary is drinking soda.”

“There is an organized working shop$.
A hammer and a wood is on the table$.
A shelf and a sofa are in the front ......” 

“Worker is sawing the wood.” “Worker is hammering the nail
into the wood.”

“Worker draws the design diagram.”

“There is a music room$. A computer
and a recorder are on a desk$. There
is a piano and a chair in front ......” 

“Anny walks to the recorder
and pushes the record button.”

“Anny sits on the chair
and sings with microphone.”

“Anny stands and is listening
to music with the headphones.”

Figure 5: Iterative creation of animation with customized text.

compute the average distance for all pairs of skeleton joints and

contact points:

CT =
1

|P| ∑
p∈P

‖ j(p)− p‖2, (2)

where P is the set of contact points of an object, j(p) is the average

position of a skeleton joint corresponding to p in an action motion.

Optimization. Our goal is to minimize the overall cost function:

C = λDCD +λTCT , (3)

where λD and λT are constant parameters. We use the simulated

annealing algorithm to optimize the spatial position and three-

dimensional scale of objects E and the motion trajectory of all

joints Mo in Section 4.2.

Algorithm 2 shows the pseudocode of the optimization algo-

© 2021 The Author(s)

Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

222



Zhang et al. / Write-An-Animation: High-level Text-based Animation Editing with Character-Scene Interaction

“Gump walks to the bed.
Gump stands.”“camera front” “Gump sits on the sofa.” “Gump runs to the road.”

“camera right.”“A man sits on the chair 
and is typing the laptop.” “A man sits on the armchair.”

“There is an organized office room$. 
An organized bookcase is in the room$. 

There is a desk and a chair ......”

“Tom is pulling the sofa.”“Tom is washing the dishes.” “Tom walks to the window.”
“There is a complete room$. There is 
an organized office desk and a chair$.

 On the desk, there is a printer and ......”

Figure 6: Animation results from film scripts. In each example, the first row are the input texts, the second row shows results generated by
our system, and the third row shows corresponding frames of the The Secret Life of Walter Mitty, Forrest Gump, and Limitless.

rithm. In the optimization, the vertical positions of objects are con-

strained to be fixed, while the heights are allowed to be modified

by changing the vertical scale of objects. First, we search a feasible

locomotion route Rs from the character’s position to the interac-

tive object using A∗ algorithm, and then feed the searched route

Rs, virtual environment E and blended motion Mo into the NSM

to compute an initial solution Sold = {Rg,Mg,Eg}, where Rg, Mg
and Eg are initial locomotion route, blended motion, and virtual

scene layout respectively. In each iteration, we update the current

scene layout Eg according to strategies introduced below to get a

new scene Ed . The current scene Ed and action Mg are fed into the

NSM again to get a new solution Scur = {Rg,Mg,Eg}. After opti-

mization, the new scene Ê and character motion M̂ are obtained.

Our algorithm accepts or rejects the solution based on

Metropolis-Hastings acceptance rule. As the distance between the

character and the interactive object is closer, the character is more

likely to collide with and pass through the object model during

movement. Therefore, in order to ensure that the character touches

interactive objects, we set λD to 1.0 and λT to 10.0 in our experi-

ments. The initial value of temperature is set as 1, and it decreases

by 0.002 in each iteration until it reaches zero. The maximum num-

ber of iterations is set to 100.

© 2021 The Author(s)

Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

223



Zhang et al. / Write-An-Animation: High-level Text-based Animation Editing with Character-Scene Interaction

“Jenny sits on the chair 
and is playing games.”

“A man is dancing.” “A man is looking around
with a flashlight.”

“John is shaving
in the front of the mirror.”

“A boy is looking 
for the file.”

“A man is throwing rugby.”

“Anna is hanging a 
photo frame.”

“Jim is lifting weights.”

Figure 7: Actions in different scenes with customized text. With the input scripts, our method can generate animations in daily scenarios.

We use the following strategy to produce change of status in each

iteration. Spatial translations and scales are used to change the con-

tact positions of an object and its adjacents. By adjusting the scale

of related objects together, our method can ensure contextual se-

mantics between interactive objects and adjacent objects. We sam-

ple positions (x+Δx,z+Δz) and scales (s+Δs) using truncated

normal distribution with boundary set to (−3σ,3σ) as follows:

X ∼N (μ, σ2,−3σ,3σ), (4)

where μ = 0 and σ = 0.02.

5. Results and Evaluation

In this section, we show and discuss visual results generated by

Write-An-Animation. To adequately evaluate the effectiveness of

our method, we not only use customized texts, but also run expri-

ments using public film scripts. We invite users to watch animated

video clips and evaluate the results of our method from different

aspects.

5.1. Implementation Details

In order to allow characters to perform actions in the scene, colli-

sion bounding boxes of all scene object models are computed in ad-

vance. Meanwhile, contact points of interactive objects are marked.

Unlike the original NSM method, we use five contact points corre-

sponding to character model joints, including left and right wrist

joints, middle finger joints and a hip joint. The location of contact

points are used to determine how the character interacts with the

object. In addition, character models used in our experiments are

all from Mixamo [Inc21], and the user needs to select an appropri-

ate character model for a virtual scene before the initialization. We

use Unity3D as the main development tool and use Blender to edit

models and mocap data. We run all experiments on a Windows PC

with Intel Core i7-9700k CPU, 32 GB RAM with Intel(R) UHD

Graphics 630.

During the test, our system generates an average of 3 minutes

animation for each customized text, at a 20 to 30 fps framerate. The

average processing time for each input text is about 1 second. The

runtime mainly depends on the number of actions and interactive

objects in the text.

5.2. Results

We test our system with texts describing single-character daily in-

door activities and text-form scripts of classic film clips. Figure 5

shows representative frames of five iteratively created animations.

Each character is controlled to locomote in an indoor scene and in-

teract with objects. In order to test if our system can work with film

scripts and generate correct animations compared to film clips, we

search public scripts from the Internet, and add objects related to

the script to the scene dataset. We then write and edit text-form

scripts to build the scene and generate the animation. Figure 6

shows an example of the generated animation for the film clip, in-

cluding Forrest Gump, Secret Life of Walter Mitty and Limitless.

The results indicate that although the generated virtual scene and

character motions are not exactly the same as those in the film,

the semantics of the animation is similar to the film clip. In total,

we generate 5 animation clips for customized texts and 3 anima-

tions for film clip scripts, all driven by text editing via Write-An-

Animation.

It is worth noting that NSM should be retrained when dealing

with a new model with different skeletons. However, in our system,

different character body skeletons are first mapped to Unity’s avatar

skeleton through retargeting. Then the fused motion is mapped to

the corresponding skeleton of the avatar. Note that during the map-

ping process, our method takes into account the geometry differ-

ences of skeletons. Figure 7 shows the thumbnails of actions in 8

different scenes with different characters.

5.3. Ablation Studies

We conduct ablation studies to evaluate the key components of our

system. In Section 4.1 and Figure 4, we have demonstrated the ef-

fectiveness of the refined SSG matching method that can reflect the

relationships between scene objects. Moreover, we also perform
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Figure 8: Box plots of SSG matching scores between
LDS [MPF∗18] and our method for 5, 10 and 15 query SSGs re-
spectively.

quantitative comparisons. Specifically, we randomly select 5, 10

and 15 SSGs out of 20 scripts to test the matching results of the

LDS and our method with the matching scores plotted in Figure 8.

We find that our method can obtain better matching scores than

LDS, and this improvement becomes more obvious as the number

of SSGs increases.

The joint scene layout and character motion optimization play

a key role in producing correct animations. When the distance be-

tween the character and the interactive object (e.g., a chair) is very

large, there the character motion can be distorted during the char-

acter’s locomotion towards the object. Figure 9 shows character

locomotion trajectories before and after optimization. Without the

optimization, the locomotion generated by NSM can collide with

objects in the scene. On the contrary, in our result, the character

locomotion is aware of the objects in the scene, and can hence

avoid unnecessary collisions, see Figure 10. Figure 11 shows the

character-object interaction results before and after the joint scene

layout and character motion optimization. In the top row, there are

gaps between the character’s hand and objects (i.e., the piano and

the laptop). With the optimization, the character-object interactions

in the bottom row are correct. We illustrate the cost changes during

optimization of the character typing in Figure 12. The red curve

represents the collision between characters and objects, and the

green curve represents the distance between the character joint and

contact points of interactive objects. The blue curve indicates the

overall loss.

5.4. User Study

Subjective experience of animation results are important for evalu-

ation. We conducted a web-based user study to evaluate our results.

We invited 30 participants (16 males and 14 females) to evaluate

our system generated results. Their average age is 23 years old,

with the youngest being 20 years old and the oldest being 28 years

old. Animations corresponding to 5 customized texts and 3 film clip

scripts were generated interactively through our system, and saved
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Figure 9: Effect of the joint optimization on motion distortion
avoidance during distant locomotion. Sampled character motions
are illustrated during the locomotion to a chair.

Before optimization After optimization

Figure 10: Effect of the joint optimization on obstacle collision
avoidance during locomotion. Sampled character motions are il-
lustrated during the locomotion to an occluded chair.

as videos. The film clips are from The Secret Life of Walter Mitty,

Forrest Gump, and Limitless.

In our web-based user study, each text and the corresponding ani-

mation video generated by our system are displayed on web pages.

Additionally, the original film clip for film script are shown. All

participants were asked to rate the 8 test samples using 11-point

Likert scales (0-worst, 10-best) from the following aspects:

• Semantics: The semantic matching between input text and gen-

erated animation.

• Diversity: The diversity of generated scene models.

• Reality: The similarity between the generated character motion

and real human motion.

• Fluency: The smoothness of motion in generated animation.

• Accuracy: The accuracy of motion details in generated anima-

tion.

Throughout the evaluation process, users can fast forward or

slow down the video playback at will, and can change the scores

of videos that have been evaluated at any time. The entire evalua-

tion process takes an average of 30 minutes. After the evaluation

was completed, the participants were thanked and payed.
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Figure 11: Character-object interaction results before and after
the joint optimization. The first row presents the results before opti-
mization, and the second row shows the results after optimization.

Figure 12: Cost function values for character interacting with a
laptop during optimization. Two intermediate results are visualized
on the bottom.

We compute the avarage ratings for customized texts, film

scripts, before and after optimization, respectively. Figure 13 (a)

and (b) show the visualizations of user study results, which are con-

ducted in 5 customized texts and 3 film scripts. Participants gener-

ally thought that our system generated correct animations for the

corresponding text, and created diverse scene objects for both cus-

tomized texts (Semantics: 8.05, Diversity: 7.79) and film scripts

(Semantics: 8.12, Diversity: 7.84). Although participants only on

average rated 7.45 points for Reality and 7.34 points for Fluency

of generated animations, the results are acceptable to the partici-

pants. Figure 13 (c) and (d) show the participant’s evaluation of the

eight actions before and after optimization (see Figure 7), which

indicates a significant user rating improvement after optimization.

In addition, participants generally agreed that the details of anima-

tions can be further improved.

Comparing animations generated from customized texts and film

scripts, participants on average rated customized text with 7.44

points for Fluency and 7.29 points for Accuracy. For animations
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Figure 13: Visualization of the user study result. (a) Avarage rat-
ings of animations generated by customized text; (b) Average rat-
ings of animations generated by film scripts; (c) Avarage ratings of
animations before optimization; (d) Average ratings of animations
after optimization.

generated from film scripts, participants on average rated 7.24

points for Fluency and 6.92 points for Accuracy. Although the av-

erage rating of Fluency and Accuracy are lower than other metrics,

participants still rated more than 6.9 points and were generally sat-

isfied with the animations.

6. Conclusions, Limitations and Future Work

In this paper, we present a text-to-animation framework Write-
An-Animation. With Write-An-Animation, the user can iteratively

write and edit texts to animate a human-like character in an indoor

virtual scene. We employ a refined scene object matching method

to constrain spatial relationships during scene object retrieval and

scene composition. By dividing character motion as generative lo-

comotion and template action, our method can work with new tem-

plate mocap data. To make the scene layout compatible with the

character motion, we propose a joint optimization method of the

scene and character motion and generate optimized animation re-

sults. Visual comparisons, ablation studies and user study results

varified the effectiveness of our method.

Limitations and Future work. While Write-An-Animation is a

novel tool for novice users to produce plausible animations, we ac-

knowledge that it is a prototype system and has a few limitations

for future reseach.

First, the quality of animation results are highly dependent on

the datasets. In our system, we build a scene object dataset and a

template action motion dataset for scene object and motion retrieval

respectively. If the object or motion corresponding to the text does

not exist in the datasets, our method can fail to generate correct

scene or animation. We have included several recognized datasets
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(b) Action collision (a) Locomotion collision 

Figure 14: Limitation: character-object collision. (a) The char-
acter collide with the chair during locomotion. (b) The template
action of the character collide with the chair.

such as 3D-FRONT [FCG∗20] and AMASS [MGT∗19], and can

incorporate with other datasets in the future.

Second, our system at current only supports single-character

animation and several character-object interaction types. Multiple

character interaction and object-object interaction are not included.

Besides, for each character-object interaction, the contact points of

the interactive object and the corresponding skeleton joints of the

character should be annotated in advance. For example, when the

character is expected to pick up a cup, the contact points on the

cup need to be annotated first. Automatic contact point annotation

or inference for character-object interaction is a promising research

direction.

Third, currently in our system, once composited, objects are

fixed in the scene. This can cause inevitable collisions between the

character and objects in some cases. For example, if the objective

animation is “Emily sits on the chair and plays keyboard”, the op-

timized scene layout guarentees the correct spatial relationship be-

tween the finger tips and the keyboard, and between the hip and the

chair. However, if the character walks to the chair and sits down,

collision will happen. Moreover, because our method does not ma-

nipulate template actions, the template action can conflict with ob-

jects. Figure 14 shows examples of typical collision artifacts. Such

artifacts can be solved in the future by introducing movable objects.

We regard it as a future work.

Fourth, as a text-based tool mainly designed for novice users,

Write-An-Animation avoids professional operations that are diffi-

cult to learn and use. In our implementation, a dollar sign is ap-

pended to the end of the script to distinguish a scene description

from a character-motion command. For example, the script “Put a

vase and a teapot on the table$” is executed by the system to synthe-

size the scene instead of animating the character. However, precise

controls of scene layout and character motion can be lost. Combina-

tions of text editing and other editing operations from professional

software for animation generation are expected.

Last but not least, our system processes each text with a multi-

stage pipeline. Nevertheless, we expect end-to-end generations of

character animations in the virtual scene. Text parsing can be pro-

ceeded by transformers [VSP∗17] in natural language processing,

scene layout can be generated from graph neural networks, and ac-

tion generation can be learned from the local motion phases net-

work [SZKZ20]. How to efficiently fuse the networks and modules

is a promising research direction.
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