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Figure 1: Exploring the local neighborhood of a hub node (‘UI46’) in three immersive interfaces. Baseline (left): the user inspects ‘UI46’
from close-distance. Ego-Highlight (middle): the user takes the position of ‘UI46’; direct neighbors are highlighted in yellow. Ego-Bubble
(right): direct neighbors are arranged equidistantly to the user; edges that cross the user’s bounding sphere are clipped.

Abstract
To exploit the potential of immersive network analytics for engaging and effective exploration, we promote the metaphor of

“egocentrism”, where data depiction and interaction are adapted to the perspective of the user within a 3D network. Egocentrism
has the potential to overcome some of the inherent downsides of virtual environments, e.g., visual clutter and cyber-sickness.
To investigate the effect of this metaphor on immersive network exploration, we designed and evaluated interfaces of varying
degrees of egocentrism. In a user study, we evaluated the effect of these interfaces on visual search tasks, efficiency of network
traversal, spatial orientation, as well as cyber-sickness. Results show that a simple egocentric interface considerably improves
visual search efficiency and navigation performance, yet does not decrease spatial orientation or increase cyber-sickness. An
occlusion-free Ego-Bubble view of the neighborhood only marginally improves the user’s performance. We tie our findings
together in an open online tool for egocentric network exploration, providing actionable insights on the benefits of the egocentric
network exploration metaphor.

CCS Concepts
• Human-centered computing → Visualization techniques; Empirical studies in visualization;

1. Introduction

Immersive analytics (IA) investigates “engaging and embodied
analysis tools to support data understanding and decision mak-
ing” [MSD∗18]. Particularly in network analytics, prior research
has empirically demonstrated many benefits of three-dimensional
immersive displays over traditional two-dimensional graph visualiza-
tion methods [WF96,BBHS03,WM08,HZBK08,GPK11,KMLM16,
KKM∗20]. In virtual reality (VR), users can interact with the data
as if they were a physical entity that they can approach and inspect.
They can navigate within a network instead of just looking at it.

Immersion in VR can reduce visual clutter [BM07] and provide
insightful complementary perspectives on a network [SWKA19].
Room-scale immersive networks can lead to more user engage-
ment compared to a table-scale network coupled with a zooming
interface [YCB∗20]. Indeed, there are numerous examples of immer-
sive network analytics interfaces presented in literature that allow
users to “dive into” and subsequently walk or fly through a 3D net-
work [ZHF∗16,DCW∗17,EMP19,SWKA19,YCB∗20]. While being
surrounded by a room-sized network can be interesting, it can also be
problematic. Navigation and interaction in abstract 3D data spaces
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is more challenging compared to 2D [MCH∗18], because abstract
data spaces do not have a natural scale and orientation [YCB∗20].
An immersive perspective can also require more positional changes
by the user to resolve occlusions and blind spots [KWO∗19] – a
challenge for data analysts who prefer to seamlessly enter and leave
the virtual environment while remaining at their desks [ZWB∗17].
Flying through a cluttered visualization can then lead to cyber-
sickness [SWKA19] caused by the sensory conflicts between the
static user and the visual sensation of a moving environment [LJ00].
We believe that with careful design around the user, which we re-
fer to as egocentric, these challenges can be alleviated while still
exploiting the beneficial capabilities of VR.

In graph visualization, egocentric network analysis techniques
support users in analyzing the part of the social network that is
closely related to the node that represents themselves in the net-
work [Fis05, Gol13]. We translate this principle to immersive net-
work analytics: by applying the egocentric network metaphor to 3D
node-link diagrams, users can take the perspective of any node –
they can “be the node” – and thereby gain an optimized view of
their local neighborhood, i.e., data points that are closely related
to “them”. Associating the user with a dedicated node allows us to
optimize the visibility of the local neighborhood, thereby resolving
occlusion problems and removing visual clutter. The egocentric
approach also has the potential for more efficient navigation within
the network: by using data points (nodes) as anchors for explo-
ration, users can change their egocentric perspective on the network
by “jumping” from node to node. Yet, the restriction of the user’s
movement and the introduction of local adaptions of the data rep-
resentation may cause disorientation during network traversal. In
this paper, we set out to systematically explore the trade-offs that
the concept of egocentricsm introduces to immersive network explo-
ration. Understanding the relevance of these trade-offs in analysis
tasks is crucial to conceive methods that provide an effective and
pleasant exploration experience to users. The contributions of this
paper are:

• Egocentric detail views as a new metaphor for immersive network
analytics, exemplified by two novel VR interfaces with varying
degrees of egocentrism;

• Results of a controlled user study systematically investigating
the effect of the proposed interfaces on visual search efficiency,
navigation performance, spatial orientation, cyber-sickness, and
user preference;

• A publicly available web application for immersive egocentric
network exploration synthesizing the insights from the study.

2. Related Work

The potential of network analytics in immersive environments has
been investigated since the nineties [CLFZ95], with first experimen-
tation on stereoscopic depth cues in the exploration of networks
by Ware and Franck [WF96]. The results of this study suggest that
the use of immersive technology could substantially increase the
size of the networks a user could grasp. These findings were later
confirmed and extended to AR [BBHS03], different VR display tech-
nologies [RBLN04,CDK∗16], and different analytical tasks, such as
cluster detection [GPK11,KWO∗19] or memorizing previously high-
lighted nodes [KKM∗20]. As VR devices increased in affordability

and popularity, so did the number of approaches for network visual-
ization and exploration. For example, Huang et al. [HFL∗17] and
Erra et al. [EMP19] presented gesture-based interaction techniques
for network exploration and manipulation. In terms of navigation
and visualization, immersive network techniques generally rely on
an outside overview perspective onto a 3D node-link diagram of the
network [OAS00, HFL∗17, YCB∗20, ZHF∗16, KKM∗20, SWKA19],
and/or they allow the user to fly through the node-link diagram
using conventional 6DOF controllers [DCW∗17, EMP19, SWKA19,
YCB∗20, ZHF∗16].

Immersive displays can also be used for effective node highlight-
ing. For example, Alper et al. [AHKMF11] introduce the principle of
stereoscopic highlighting, where stereoscopic depth is used to draw
relevant nodes “closer” to the user. Altarawneh et al. further develop
this concept with the Expand approach [AHE14] for compound
graphs, in which depth encodes the structural relationships between
nodes. The “deadeye” technique [KCWK19] renders relevant nodes
only on one of the stereoscopic displays, which strongly attracts the
user’s attention. While stereoscopic highlighting can be more accu-
rate and subtle than static visual cues [AHKMF11,KCWK19], these
techniques are not applicable for immersive 3D network exploration.

Other research efforts target specialized graph presentation and
navigation techniques for VR. In their early immersive graph visual-
ization system, Osawa et al. [OAS00] introduced “heat models” that
locally distort the representation of the force-directed graph layout.
Nodes in the graph are selected to be the “foci”, that can absorb
or emit heat. Halpin et al. [HZBK08] displayed graphs in 2D, but
allowed users to extrude selected nodes into the third dimension.
Kwon et al. [KMLM15] presented spherical graph layouts in VR
for seated exploration with mouse interaction, where the entirety
of the graph is laid out in the user’s field of view. Clutter is re-
duced by routing edges “away” from the user. The authors further
demonstrated how spherical projections outperform a 2D layout on
typical graph exploration tasks, such as finding common neighbors,
path finding, and recall of node locations [KMLM16]. Fish-eye
techniques are another way to expand the user’s field-of-view in im-
mersive environments [OWK∗14,DPHB15]. A case study by Sorger
et al. [SWKA19] suggests that, for real-world tasks, data scientists
appreciate complementary perspectives when analyzing their own,
well-known network data: an external overview as stable reference
point when starting the network exploration in VR and a detail view
as a novel perspective to explore local neighborhoods.

To evaluate navigation within 3D networks, Drogemuller et
al. [DCW∗18] evaluated teleportation and one handed flying against
two-handed flying [MBJS97] and “worlds in miniature” locomotion
techniques for local detail view navigation in 3D in networks. Their
results show that flying is more efficient for finding nodes or paths
between nodes in the graph, and that teleportation frequently causes
loss of orientation. In contrast, our proposed approach provides
data-adaptive egocentric navigation, which optimizes the network
representation for the user’s current perspective. In this work, we
present first evidence that this metaphor indeed facilitates local
network analysis in room-scale visualizations when compared to
traditional interfaces for network exploration in VR.
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3. Egocentrism in Immersive Network Analytics

We promote egocentrism in the context of immersive analytics to
better exploit the capabilities of VR technology for locally opti-
mized visual representation and interaction capabilities. In contrast
to traditional 2D viewing and interaction modalities, a VR applica-
tion can be made aware of the users’ position and scale in the virtual
scene, their field of view, and potentially even focus of attention
with respect to the data they are exploring. Adaptions to an inter-
face to support egocentrism can thus affect navigation, interaction,
rendering, or the spatial layout of the data.

We categorize network exploration techniques in VR along two
orthogonal axes, as illustrated in Figure 2: On the vertical axis,
we differentiate whether users explore the network from an ex-
ternal/global “overview” perspective, from where the entire graph
should be visible (see Fig. 3), or from an internal/local “detail” per-
spective within the network (see Fig. 1). On the horizontal axis, we
distinguish whether or not the network visualization and the interac-
tion techniques follow an egocentric approach, i.e., are optimized
to the user’s position and orientation in the virtual environment.
The spherical layout proposed by Kwon et al. [KMLM15], for in-
stance, can be classified as an egocentric overview interface, as it
offers an overview that takes the user’s position into account. The
overview+detail interface by Sorger et al. [SWKA19] and the table-
and room-scale visualizations by Yang et al. [YCB∗20] combine tra-
ditional overview and detail views (note that Yang et al. [YCB∗20]
refer to the traditional overview (Fig. 2 top left) as “exocentric” and
to the traditional detail view (bottom left) as “egocentric view”). To
the best of our knowledge, egocentric detail views (Fig. 2 bottom
right) have not been investigated yet. They are the focus of this paper.
We argue that an overview alone will lead to little benefit of using

VR. Especially when viewing large networks from an external per-
spective, nodes and clusters in the center could be occluded. Having
a detail view alone, on the other side, lacks the necessary overview
to identify interesting regions in the network topology or to put the
local environment into a global context. In line with the information
seeking mantra, egocentric network exploration interfaces should
therefore be coupled with an overview perspective that can serve
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Figure 2: Categorization of network exploration techniques. The
node used for the egocentric detail perspective (bottom right) is
colored orange in the other networks.

Figure 3: Overview perspective of a large graph used in the study:
the starting condition of the Find Path (FiP) task, showing the start
(yellow) and end (red) node of the path. Hubs and outliers can be
spotted more easily here, but local connectivity is hard to explore.

as a stable reference for analysts switching between immersive and
traditional desktop analytics [SWKA19].

4. A Study on Egocentrism for Immersive Network
Exploration

We expect that network exploration interfaces that support egocen-
trism can lead to a trade-off affecting several factors, such as visual
search efficiency, navigation performance, spatial orientation, and
cyber-sickness. To quantify these trade-offs, as well as to assess
the overall benefits and limitations of egocentrism for network ex-
ploration in IA, we conducted a controlled user study where we
compared the effectiveness and efficiency of typical low-level net-
work analytics tasks (see Sec. 4.3) between a traditional interface
(the "baseline") and two interfaces with an increasing level of ego-
centrism (“Ego-Highlight” and “Ego-Bubble”).

Our proposed interfaces target traditional data analysts that are
accustomed to network analysis in 2D and thus are also aware of the
limitations of conventional two-dimensional approaches. Consider-
ing the space requirements in conventional offices, our interfaces are
designed for desktop-bound VR setups rather than room-scale ones.
Free room-scale movement is possible but not required for navigat-
ing the networks in VR. This also facilitates frequent switching be-
tween desktop work and immersive analytics, which is required for
data analysis [ZWB∗17]. The types of networks commonly analyzed
in network analytics often correspond to small-world networks, e.g.,
social or financial networks, co-morbidity networks, or metabolic
pathways (see Sec. 4.4).

4.1. Egocentric Network Exploration Interfaces

The three interfaces that we investigate in our study (the baseline
interface and the two egocentric interfaces), represent a continuum
of egocentrism, i.e., from no alterations in the baseline, over adap-
tions to the representation (Ego-Highlight), to local layout adaptions
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(Ego-Bubble). This continuum also leads to tension between two
conflicting aspects: 1) freedom of navigation vs. ease of navigation
and 2) layout fidelity vs. legibility. Both aspects are assumed to
have an impact on visual search efficiency, navigation performance,
spatial orientation, and cyber-sickness for topological graph analysis
tasks, as discussed in Section 4.3.

The baseline interface displays a traditional 3D representation
of the force-directed node-link diagram and features 6 degrees-
of-freedom (DoF) free-fly navigation (see Fig. 1, left). Nodes are
displayed as spheres, and links between the nodes are represented
as tubes. The interface serves as a baseline condition in our exper-
iments, so no egocentric adaptions are implemented. Navigation
is handled via touch-sensitive input on the two axes of a trackpad,
like the one on the HTC Vive controller. The user flies along and
perpendicular to his/her current viewing direction, as defined by the
HMD view-vector – just like moving and strafing in first-person
ego-shooters. Since the layout remains unaltered, nodes and edges
can serve as stable landmarks to support spatial orientation. How-
ever, edges can easily obstruct the user’s view, especially in close
proximity to nodes.

Ego-Highlight: In line with the principle of egocentric network
analytics [Fis05], the user can associate him/herself with a node (i.e.,
the user-node), and view the network from this particular perspective.
The user-node, as an explicit user defined reference point, allows us
to introduce egocentric adaptions to the interface: we explicitly high-
light direct neighbor nodes with a yellow halo (see Fig. 1, middle).
This in turn, allows us to remove the now redundant links to direct
neighbors to reduce visual clutter. This metaphor can further sim-
plify navigation by restricting movement to jumps between nodes.
By selecting a node with the controller’s laser pointer and initiating
a jump with the trigger button, the user is automatically transported
to the center of the selected node with an animated translation of
the user’s position. The user maintains control of the camera orien-
tation throughout, as it is linked to the HMD. This adaption trades
flexibility in navigation for ease of use, as navigation no longer
requires constant user input. Due to the nature of the force-directed
layout, some neighbor nodes can be far away from the user-node,
and might still be occluded through nodes and links that are not part
of the direct neighborhood. We aim to further address this issue with
additional egocentric adaptions in the next interface.

The Ego-Bubble interface extends the Ego-Highlight interface
by locally optimizing the network layout in respect to the current
user-node. In order to further alleviate potential occlusion in the
user’s local view, direct neighbor nodes are shifted to be evenly
distributed around the user. We use the Fibonacci sphere algorithm
on a bounding sphere centered around the user’s head. Edges that
cross the sphere are clipped (see Fig. 1, right) to avoid view obstruc-
tions through links passing by the vicinity of the user. The overall
layout is thereby still preserved and only locally distorted, aiming
to facilitate the local neighborhood analysis of the current user-
node. This type of node displacement is inspired by well-established
fish-eye techniques [SB94], employed in 2D visualizations of large
graphs [AKY04]. A trade-off for this cleaner display of local neigh-
borhoods is a potential negative impact on the user’s orientation
through the displacement of node positions. We therefore animate
the local node displacement when jumping between nodes, result-

ing in a morphing effect during navigation that is designed to help
users keep and update their mental map, partially remediating the
potential loss of orientation.

4.2. Hypotheses

We tested six hypotheses concerning the potential benefits and nega-
tive side-effects of egocentrism in immersive network exploration:

H1: Local visual search is the most efficient in the Ego-Bubble
condition and the least efficient in the baseline condition. Visual
search is the task to spot a known target within a set of distractor
items [WCF89]. If targets in the user’s local neighborhood (i.e.,
neighboring nodes or edges) are occluded or outside the user’s field
of view, visual search will be negatively affected. We therefore
expect to observe a considerable increase of visual search efficiency
during local neighborhood exploration using egocentric interfaces
that optimize the visibility of the user’s neighborhood.

H2: Global visual search is the most efficient using the baseline.
If the user’s task is to search for more global structures, such as a
path along multiple nodes through the network, it might be required
to freely adjust the viewpoint to improve visibility. In the baseline the
graph representation remains stable and navigation is not restricted
to node positions. Visual search for global structures therefore can
be expected to be more efficient using the baseline interface.

H3: Navigation performance is higher with egocentric network
traversal than with flying in the baseline. Navigation performance
is an important factor for the overall task efficiency when traversing
a network in VR, e.g., when following a path. Traditional flying like
in the baseline can lead to cyber-sickness [LLS18], with symptoms
worsening as the movement pace increases [SLH01]. In an informal
pilot study, we varied the animation speed between consecutive
jumps and flying, and asked users to report their subjective well-
being. As a result, the maximal flying speed is kept slow to maintain
acceptable cyber-sickness rates. Contrarily, the jumping speed al-
ways measures three seconds (including ease-in/out de/accelaration).
Using the baseline, flying along a path of five nodes in one of our
networks (see Sec. 4.4) requires around 25 seconds, while the jump
animations along five consecutive path nodes using the egocentric
conditions results in around 15 seconds overall travel time. It can
therefore be expected that navigation performance increases by a
factor of ∼ 1.7 for the egocentric network interfaces. This is also
suggested by prior work, which shows that jumping leads to signifi-
cantly faster travel times [WKFK18]. However, besides the motoric
aspect, navigation consists also of wayfinding, which is the cognitive
and stationary aspect of navigation [DP14]. We believe, however,
that a potentially negative impact of the egocentric interface on
wayfinding will not affect the clearly superior motoric aspect.

H4: Orientation is affected negatively through egocentric adap-
tions, i.e., suffers least in the baseline, and the most using Ego-
Bubble. A study by Drogemuller et al. [DCW∗18] has shown that
flying causes less loss of orientation than teleportation when travers-
ing a 3D network in VR. Orientation loss can also be observed
for jumping, but to a lesser extent [WKFK18]. In contrast to these
studies, the appearance of our scene changes after a jump, which
can make it harder to keep oriented. Since the Ego-Bubble interface
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also changes the layout of the nodes between jumps, we assume that
users experience most orientation loss in this condition.

H5: Cybersickness symptoms are less severe when using Ego-
Highlight compared to the baseline and Ego-Bubble. Potential
causes for cyber-sickness are, among others, sensory conflicts of a
stationary user flying through a virtual environment [LJ00]. There
is prior evidence that jumping is less prone to cyber-sickness symp-
toms than omni-directional flying [LLS18]. However, this is based
on the assumption that the scene is static during the transition. In
the Ego-Bubble condition, the position of the surrounding nodes
also changes during the animated jump, which could have a negative
impact on the subjective well-being of participants compared to
Ego-Highlight.

H6: User preference will be significantly higher for the egocen-
tric interfaces than for the baseline. We assume that the expected
benefits with respect to visual search and navigation performance
will outweigh the expected draw-backs so that users prefer ego-
centric network exploration interfaces over the baseline. We also
assume that their perceived work load will be lower.

4.3. Tasks

To enable accurate performance measurements in terms of correct-
ness and completion times, we break the high-level task of network
exploration down into low-level analytical tasks. The selected tasks
are based on the well-accepted task taxonomy for graph visualiza-
tion by Lee et al. [LPP∗06], who categorize typical low-level graph
analysis tasks into four larger categories: topology-based tasks, such
as finding neighbors of a given node or finding common connections;
attribute-based tasks, such as finding nodes or edges with certain
associated attributes; browsing tasks, such as following a given path;
and overview tasks, where the goal is to estimate values, such as the
size of a network, very quickly.

We only investigate tasks that might benefit from local exploration
in a detail view, as the overview perspective that serves as the starting
point for certain tasks is identical across all interfaces. We therefore
do not investigate tasks that are presumably much easier to carry
out from an overview perspective, such as estimating the size of a
network. We selected typical low-level network analytics tasks by
Lee et al. [LPP∗06] that fall into the categories of topology-based
and browsing tasks. Below, we give a detailed description of our
experiment tasks in the order in which they were presented to the
users. Table 1 describes how these individual tasks relate to the
high-level factors addressed by our hypotheses. Figure 4 depicts the
individual tasks in the context of one of the networks used in the
study, using a 2D force-directed layout for illustration purposes.

Find Neighbor (FiN): The aim of the task is to probe the ability
of users to quickly query the local neighborhood of a hub node
in order to find a specific node. Hub nodes for this task had be-
tween 14 and 44 neighbors. Users started this task in the detail
perspective, from the center of the respective hub node. The task
description specified the label of the target node that the user had to
find. For reference, the target label was also displayed on the virtual
representation of the VR controller. The task was automatically
completed when the user found and selected the specified neighbor

Table 1: Factors addressed by the hypotheses and their associated
task measures.

High-Level Factor Task Measures
H1 Local visual search FiN completion time

efficiency FCN completion time
FCN correctness rate
END judgement error

H2 Global visual search FiP completion time
efficiency FiP path correctness

FiP path deviation
H3 Navigation performance FoP completion time
H4 Spatial orientation SO O→D angle deviation

SO D→D angle deviation
SO D→O angle deviation

H5 Cyber-sickness SSQ [KLBL93]
H6 User preference Preference ranking

NASA-TLX [HS88]

node with the laser pointer. We measured task performance in terms
of completion time.

Find Common Neighbors (FCN): Inspired by Kwon et
al. [KMLM16], the task is to find all common neighbors between
a given pair of highlighted nodes. Users started this task in the de-
tail perspective, from the center of the first node of the pair. The
respective other node of the pair was highlighted and visible when
the task was initiated. Each node pair had between one to five com-
mon neighbors across all experiment configurations. The user had
to pick all common neighbors using the laser pointer and signaled
task completion to the co-present study instructor. We measured the
completion time and logged the user-selected nodes. From the user
selection, we then computed the correctness rate, the miss rate, and
the false positive rate.

Estimate Node Degree (END): To assess the users’ ability to
identify hub nodes, we asked users to estimate the node degree
of a specific node, i.e., the number of neighboring nodes. Nodes
selected for this task had between 21 and 53 direct neighbors across
all experiment conditions. Users started in the detail perspective,
from the center of the hub node, and had to verbally report their
node degree estimate to the experimenter. This task required more
navigation in the baseline condition, as the user had to move to a
position from where the hub node and its neighborhood could be
observed. We therefore did not compare the completion time, and
only analyzed the absolute deviation of the user’s estimate from the
ground truth node degree.

Spatial Orientation Overview→ Detail (SO O→D): This task
measures spatial orientation after teleportation from the overview
to the detail perspective. The task was initiated from the overview,
where users were presented with two highlighted nodes, i.e., the
start and the end node of a path (see Fig. 3). Users had to press a
button on the controller to start the task, after which the highlight of
the end node was removed and the user was teleported to the detail
perspective at the center of the start node. There, users were asked
to point in the direction in which they estimated the end node’s
position. We measured the absolute angular deviation between the
ray cast by the user and the ground truth direction vector between
the controller position and the end node.
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Find Path (FiP): Finding the shortest path between two given
nodes is a common task in immersive network analytics stud-
ies [KMLM16, CDK∗16, HFL∗17, DCW∗18, BVD19]. This task
started from the end position of the previous task (SO O→D). Af-
ter indicating the direction estimate, the end node of the path was
highlighted again. From the detail perspective at the center of the
start node, the user was now required to find the shortest connected
path to the end node. The shortest path consisted of either four or
five nodes across all experiment conditions. The user had to verbally
report the identified nodes along the shortest path between the two
highlighted start and end nodes. We counted paths as correct if all
reported neighboring nodes were indeed connected by an edge. For
correct paths, we computed the path deviation as the number of
edges along the user-reported path divided by the number of edges
along the shortest path. We also measured the time from task onset
until the completed path report.

Follow Path (FoP): In this task, users were asked to follow a
highlighted path through the network, as quickly as possible. The
task was initiated from the overview perspective, where users were
presented with a single highlighted start node. The user had to click
on the highlighted node, so that the next node in the task sequence
was highlighted. Depending on the interface, the click also initiated
a jump to the (clicked) node in the sequence (Ego-Highlight and
Ego-Bubble), or users had to manually navigate to the proximity
of the node (baseline). We measured the time between clicking the
start node and reaching the end node to assess the effect of jumping
vs. flying through the graph.

Spatial Orientation Detail→Detail (SO D→D): This task mea-
sures spatial orientation after network traversal. The task started
from the end position of the previous one (FoP). After reaching
the end node, users were asked to point the laser pointer on the
controller back into the direction of the start node (which was no
longer highlighted). We measured the angle deviation as described
for SO O→D. This task is similar to Kwon et al.’s “recall node
locations” [KMLM16].

Spatial Orientation Detail→ Overview (SO D→O): This task
measures spatial orientation after teleportation from the detail view
to the overview. The task started from the position of the previous
task (SO D→D): After estimating the direction to the start node,
users were teleported back to the initial overview position of the SO
O→D task. From this position, users had to indicate the direction of
the last node of the path they had followed. We measured the angular
deviation of their estimation towards the ground truth direction.

4.4. Data

In order to achieve meaningful results, we performed our study
on networks that resemble real world examples of networks of
scientific interest, such as the world-wide-web and authors citation
networks [AB02]. Such “scale-free” networks, have a node degree
distribution that follows a power law: the probability P(k) of having
a node with degree k decreases exponentially with the law P(k)∼
k−γ . This results in a small number of high degree nodes (hubs),
while the majority of nodes have a low degree. When 2 < γ < 3, the
network is an “ultra-small network”, with a relatively small diameter
(i.e., length of the longest shortest path) d ∼ ln ln(N), and N the size

of the vertex set [CH03]. We generated our graphs with the Barabási-
Albert random graph generator algorithm [AB02] (providing γ = 3)
using the NetworkX Python library [HSSC08]. We used six graphs in
our study experiments: three with 165 nodes and 326 edges (“small”
in the following), and three with 415 nodes and 826 edges (referred
to as “large”, see Fig. 4), where the linear density (number of edges
relative to number of nodes [YAD∗18]) is 2.

4.5. Apparatus

The presented interfaces and the study framework are implemented
as a client-only web application. The code is written in JavaScript
using three.js [thr] and A-Frame [afr]. The interface between the VR
application (i.e., the web-browser) and the VR hardware is handled
by SteamVR [ste] that natively supports the HTC Vive. Our system
builds on an open source library for viewing graphs in VR [for]. At
the time of writing, the core library handles loading, layout, and ren-
dering of the graph, while offering mouse and keyboard navigation.
We extended this core with the presented egocentric interfaces, the
study framework (i.e., scripting, scheduling task sequence), as well
as to improve the core system’s rendering performance. The most
notable extensions concern VR controller support for the HTC Vive,
perspective-dependent graph navigation and interaction modes, local
layout and rendering adaptions, and support for switching between
overview and detail perspectives.

All graph elements had the same color and size, i.e., node diame-
ter and edge thickness. A single HTC Vive controller was used to
handle user inputs via a trigger button, a trackpad and a virtual laser
pointer. The laser pointer could be used in all conditions to inves-
tigate the direct neighborhood of the closest intersecting node by
lowlighting the rest of the graph. Nodes could be discriminated from
each other through unique alphanumeric labels that were always
oriented towards the user (see Fig. 1). In our study, we excluded
any sort of artificial, stationary landmarks from the scene to be able
to better judge how well users can orient themselves based on the
network topology itself (see H4). To create a controlled setting, we
disabled teleportation between overview and detail view, except for
the start (or end) of tasks SO O→D and D→O.

4.6. Study Design

We used a within-subjects design where interface is the independent
variable and the individual task measures (see Table 1) are the
dependent variables. To counter-balance the order of appearance
of the three interface conditions between the participants, as well
as the association of graph data sets to the interface conditions, we
applied a Graeco-Latin square on these two factors. The task order
was always presented in the sequence as listed in Section 4.3.

4.7. Procedure

Before starting the study†, users had to sign a consent form and
fill out a demographic questionnaire. A general description of the
study procedure and of the VR controls were supplied as printouts

† The study was conducted before the global COVID-19 pandemic.
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Figure 4: A 2D representation of one of the three networks used for
the study, showing color-coded nodes for the different tasks: FiN
(yellow = selected, green = target), FCN (purple = selected, green =
target), END (blue = selected), FiP (cyan = start, salmon = target),
FoP (red nodes).

to participants. Each user had to complete the interface conditions
in the order specified by the Graeco-Latin square.

Before starting a condition, users were given a short textual de-
scription of the condition’s interface. After this, they had to complete
a short sequence of tutorial tasks that aimed at familiarizing them
with the controls, i.e., navigation and interaction within the current
interface. Users could remain in the tutorial until they felt comfort-
able with the controls and the visual encoding. Until the completion
of the tutorial, users were permitted to pose questions about the
interface and the study procedure. For each interface condition, the
users then performed the set of tasks described in Section 4.3 twice:
once on a small graph, and once on a large graph. Trials using small
graphs were treated as training rounds to allow users to familiar-
ize themselves with the tasks and the interface. Only the results of
the trials using large graphs were finally analyzed, as discussed in
Section 4.9, and presented in Section 5. After each interface condi-
tion, users were asked to fill out a Simulator Sickness Questionnaire
(SSQ) [KLBL93], and a NASA Task Load Index (TLX) [HS88]
questionnaire. At the end of the study, users were asked to rate
their preference for the three conditions for solving network analyt-
ics tasks. The study was concluded by a semi-structured interview,
where users were asked to describe what they liked or disliked about
the individual conditions, tasks, and VR network exploration in
general and report suggestions and improvements.

4.8. Participants

Based on the results of a power analysis after a pilot study, we
recruited 25 subjects (19 males, six females) from a local university
and an inter-universitary research facility. Participants were aged
23 to 64, with a median age of 31. All participants had normal or

corrected to normal vision. 17 participants had a background in
computer science, others in physics or finance and economics. Four
participants reported never to have played any computer games and
not to have any experience with VR. Most users had tried out VR on
one or multiple occasions. While 15 users reported to play computer
games regularly, six users also play VR games regularly. All 25
participants completed the study. They were compensated with 10
Euros for their time.

4.9. Analysis

All obtained responses (completion times, correctness measures,
and questionnaire responses) were analyzed individually per task.
Completion time responses (tasks FiN, FCN, FiP, FoP) were log-
transformed to reduce skewness and the effect of outliers [Rat93],
while completion time charts show the untransformed data. All
obtained measures were tested for normal distribution. Normally
distributed responses were analyzed using a repeated measures AN-
COVA with the three conditions as within-subjects factor and the
order of the conditions, given by the Graeco-Latin Square, as co-
variate. If the normal distribution was violated, we removed outliers
(samples higher or lower than 1.5 · IQR). If the filtered responses
still did not follow a normal distribution, we performed a Friedman
Test. All pairwise post-hoc comparisons were Bonferroni-adjusted.

5. Results

We report the results of the study with respect to the factors listed
in Table 1 as F- and χ2-scores, as well as partial η2 effect sizes for
statistically significant results. The supplemental material contains
the results of all performed tests. To put the quantitative results into
a qualitative context, we also report user preferences and feedback
from a semi-structured interview (see Sec. 5.6).

5.1. Local Visual Search Efficiency

For finding a specified neighbor (FiN), we found that users were
significantly slower using the baseline than Ego-Highlight or Ego-
Bubble (F2,42 = 25.722; p < .001; η2 = .551). On average, users
needed around 9 seconds to find the given neighbor using Ego-
Bubble, 20 seconds using Ego-Highlight, and more than 100 seconds
using the baseline (see Fig. 5).

Baseline

Ego-Highlight

Ego-Bubble

completion time (seconds)

Figure 5: The completion times in seconds for the FiN task.

Similarly, we found a large and significant difference in
terms of completion time for finding common neighbors (FCN):
F1.455,29.101 = 20.853; p < .001; η2 = .510. On average, users re-
quired 55 seconds to complete the task using the baseline, which is
significantly slower than using Ego-Highlight (32 seconds) or Ego-
Bubble (29 seconds), which are not significantly different, as shown
in Figure 6. In terms of correctness, we did not find any significant
differences for the FCN task. On average, though, users could reach
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the highest correctness using Ego-Highlight (92%) and the lowest
using the baseline (74%). The high error rate of the baseline was
mainly caused by missed common neighbors (28% miss rate), while
Ego-Bubble had the highest false positive rate (18%), as shown in
Figure 6.

Baseline

Ego-Highlight

Ego-Bubble

completion time (seconds)

Baseline

Ego-Highlight

Ego-Bubble

Baseline

Ego-Highlight

Ego-Bubble

Figure 6: Completion times in seconds, miss rates, and false positive
rates for the FCN task.

We also found a significant difference between node degree esti-
mation (END) errors (χ2(2) = 6.720; p = .035), where user reports
were significantly more deviating from the ground truth node de-
grees using the baseline (26%) than when using Ego-Bubble (15%).
For all three conditions, users tended to underestimate the number
of neighbors rather than overestimate them (see Fig. 7).

Baseline

Ego-Highlight

Ego-Bubble

Figure 7: Judgement error (deviation from ground truth, END task).

Overall, our hypothesis concerning the effect of egocentrism on
local visual search efficiency is partially supported (H1): Indeed,
users are less efficient when analyzing the local neighborhood using
the baseline. The benefit of the Ego-Bubble interface in comparison
to the Ego-Highlight interface regarding efficiency, however, is
rather small and does not reach significance.

5.2. Global Visual Search Efficiency

For finding the shortest path, we first removed those users who
did not report a correct path in either condition (i.e., they reported
non-adjacent nodes or they gave up before reaching the target node).
In total, nine responses by six users were incorrect paths, evenly
distributed across the three conditions, and nine of the correct paths
were longer than the shortest path. The average deviation from the
ground truth path length was highest for Ego-Bubble (7%) and
lowest for the baseline (3%), but this difference is not statistically
significant. There is a large, yet statistically insignificant difference

in terms of completion time for those users who reported correct
paths: F2,32 = 2.956; p = .066;η2 = .156 (see Fig. 8).

Baseline

Ego-Highlight

Ego-Bubble

Figure 8: Completion times in seconds for the FiP task.

Therefore, our results do not support H2: Users were only in-
significantly more accurate but also slower when trying to find the
shortest path between two nodes using the baseline compared to the
egocentric interfaces.

5.3. Navigation Performance

As expected, for the path following task (FoP), we found a large
and significant effect of the interface on completion time (F2,44 =
49.243; p < .001; p η2 = .691). However, the observed speed differ-
ences between the interfaces were larger than expected: Using the
baseline, users required significantly more time to follow the high-
lighted path (40 seconds, on average) than with both, Ego-Highlight
(23 seconds) and Ego-Bubble (21 seconds); see Figure 9.

Baseline

Ego-Highlight

Ego-Bubble

Figure 9: Completion times in seconds for the FoP task.

This supports our hypothesis (H3) that jumping through the net-
work along a highlighted path is faster (almost twice as fast) than
flying through it. This indicates that egocentrism does not add extra
effort for wayfinding.

5.4. Orientation

In general, the measured angle deviations for node-direction esti-
mations were quite large, ranging from 19◦ average deviation after
jumping from the overview to the detail view (SO O→D) to an
average error of 35◦ when estimating the direction of the start node
after following the path in task FoP (SO D→D). However, for none
of the three spatial orientation tasks, we could find any statistically
significant difference between the conditions.

Therefore our hypothesis (H4) that local adaptions introduced
through egocentrism lead to decreased spatial orientation in the
network is not supported. However, the high angle deviation clearly
shows that explicit spatial orientation cues are required for immer-
sive network exploration, irrespective of the detail interface.
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5.5. Cyber-sickness

We derived three metrics from the SSQ, as described by Kennedy
et al. [KLBL93]: nausea (e.g., sweating and stomach awareness),
oculomotor (e.g., fatigue, headache, and eye strain), and disorien-
tation (e.g., vertigo and dizziness). Note that, due to the within-
subjects study design, we compared the scores directly to each
other, not to a pre-exposure baseline. While we did not find any
differences between the interface conditions in terms of nausea,
we found a significant effect on the oculomotor-related responses
(χ2(2) = 8.195; p = .017) and disorientation symptoms (χ2(2) =
8.617; p = .013). Contrary to our hypothesis (H5), post-hoc com-
parisons for both metrics revealed a significant difference between
the baseline and Ego-Bubble. On average, Ego-Bubble received
slightly lower oculomotor and disorientation symptom scores than
the baseline, but the difference between Ego-Highlight and the other
two conditions is small and insignificant (see Fig. 10).

Baseline

Ego-Highlight

Ego-Bubble

Baseline

Ego-Highlight

Ego-Bubble

Baseline

Ego-Highlight

Ego-Bubble

Figure 10: SSQ scores related to nausea (top), oculomotor (middle),
and disorientation (bottom).

5.6. User Preferences and Feedback

We computed an aggregated task load index, as described by Ru-
bio et al. [RDMP04], to assess the perceived work load of users
per condition. The difference between the interface conditions with
respect to the perceived task load is significant (F2,48 = 6.546; p =
.003; η2 = .214). The baseline received significantly higher task
load scores (3.8 on average) than Ego-Bubble (3.3) and Ego-
Highlight (3.4).

Analogously to the perceived task load, users also ranked
their preference for the baseline considerably lower than for Ego-
Highlight and Ego-Bubble. Only four users ranked the baseline
first; these users appreciated the fact that they were able to move
and look around freely and that the interface was very simple. Ego-
Highlight and Ego-Bubble were ranked first by eleven participants
each (with one vote tied between them). Users appreciated Ego-
Highlight mainly because of its implicit highlighting of direct neigh-
bors. Three users mentioned that they felt less nausea or vertigo in
the Ego-Bubble condition, and five described it as “tidier” or less
cluttered compared to the other conditions. Two users preferring

Ego-Highlight stated that they did not find any advantage of the
Ego-Bubble condition compared to Ego-Highlight. One user pre-
ferring the baseline found it hard to orient in the Ego-Bubble view,
presumably due to the “nodes moving towards oneself”.

Users suggested several improvements for the immersive inter-
faces. Almost half of the users (10) suggested to enable permanent
highlighting of user-selected nodes. Three users wanted to have
color-coding based on the geodesic distance towards their current
location. Three other users suggested to have additional information
about the graph nodes and edges (such as their node degree), for
instance as a details-on-demand label on the controller. Six users
explicitly mentioned that they do not want to be (exclusively) inside
the network, but would like to gain some overview from an outside
perspective as well. Eight users requested persistent landmarks in
the scene to support spatial orientation, and three users would have
preferred to have a combination of jumping and flying navigation.
Overall, our hypothesis H6 is supported: Egocentric immersive net-
work exploration is clearly prefered by the users and also leads to a
lower subjective task load.

6. Discussion

The results of our study support our basic assumption: immersive
egocentric network exploration interfaces are more efficient and
more effective than their non-egocentric counter-part. Below, we
discuss our findings in regard to the aspects investigated in our study.

Visual search in the local neighborhood is clearly facilitated by
a decluttered egocentric interface. For instance, finding a neighbor
node with a given label takes around five times as long using the
baseline interface. Clearly, the implicit highlighting of neighbors in
the egocentric conditions facilitates the identification of connections
in the local neighborhood. However, such highlighting is only possi-
ble if the user is associated with a chosen node. While the implicit
highlighting of neighbors in Ego-Highlight has a large effect, the
local layout optimization of the Ego-Bubble interface has only a
small effect, indicated by slightly less underestimation in the de-
gree estimation task. Interestingly, only a few participants found
Ego-Bubble “tidier”, while many users did not notice the difference
between the two egocentric interfaces, or they found it irrelevant.

Global visual search for paths between two distant nodes was
considered a hard task. The baseline interface was insignificantly
more accurate for finding paths, presumably due to edges being
always visible and due to unconstrained navigation. From informal
user feedback, we conclude that path finding in a detail perspective
is generally not efficient without dedicated interaction support.

Navigation performance was significantly lower in the baseline
than in the egocentric interface conditions, where users could jump
between nodes. The navigation performance was effectively dou-
bled when jumping through the network, comparable to results of
a prior study using natural scenes [WKFK18]. Due to the lower
navigation speed and manual steering in the baseline, this was ex-
pected, yet not to the observed extent. It has to be noted that different
flying methods for immersive network exploration have been investi-
gated [DCW∗18,ZHF∗16], which could slightly improve navigation
performance compared to our classic ego-shooter-like navigation in
the baseline interface.
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In our study, we observed orientation loss after teleportation
between the overview and the detail view for all interfaces. Orien-
tation loss after teleportation can be expected [MBR18, DCW∗18].
However, we also observed considerable loss of orientation after
traversing the network in the detail view – irrespective of whether the
user was continuously flying or jumping between nodes. Contrary
to our expectations, orientation loss is not higher in the egocentric
views than in the baseline condition. This is a strong indication that
in abstract detail views additional orientation aids, such as static
landmarks, are required to support orientation.

As expected, the baseline received the highest average cyber-
sickness ratings. The low cyber-sickness ratings for the Ego-Bubble
interface were surprising, despite having additional morphing ani-
mations during navigation. A speculative explanation could be the
reduced scene complexity [SHL01] and the less pronounced optical
flow effect, caused by a constant, farther distance of the neighboring
nodes to the camera. In the future, it might be interesting to investi-
gate the effect of visualization decluttering on the users’ well-being
during immersive analytics.

7. Actionable Insights From Our Study

Our study allowed us to investigate the effects of egocentrism on
immersive network exploration, but it also helped us to identify open
challenges that could not be sufficiently resolved by this metaphor
alone. Many aspects of network exploration remain challenging in
an immersive detail perspective, despite egocentric optimizations:
node degrees tend to get underestimated, common neighbors can be
missed, non-existing edges are sometimes inferred, and maintaining
spatial orientation is difficult. In an effort to alleviate these issues,
we developed an online tool for immersive network exploration,
leveraging the following insights from our study [Ego]. In our web
application, overview and detail perspectives can be switched at
any point during the exploration. The overview is represented by
a camera object that can be selected with the laser pointer. The
switch is executed through a smooth transition, to avoid potential
disorientation after instant teleportation (see Sec. 6).

Permanent node selection: Almost half of the users suggested
such a feature as a means to “bookmark” potentially interesting
nodes, which could, for instance, help to identify paths.

Geodesic distance encoding: Path identification was challenging
in all interfaces. However, by leveraging information on the node,
the user is currently associated with, we can visually encode the
geodesic distance to all other nodes to better support such tasks. We
encode the distance in a color range from yellow to red: the closer
a node’s geodesic distance, the closer is its color to red – clearly
showing connected nodes and their path length in respect to the user,
which does not necessarily correspond to the Euclidean distance in
a force-directed graph layout.

Node Info Display: As many users requested more quantitative
information during their exploration, we added a head-up display
attached to the controller displaying information about the current
user node’s node degree.

Flexible Navigation: In our study, we enabled flying or jumping
for network navigation. The feedback of some study participants

indicates that, in practice, a combination of both modalities could
be beneficial for more experienced users. As users are not uniquely
associated with a dedicated node during free-flying, our implemen-
tation currently applies egocentric adaptions automatically to the
closest node in respect to their position within the network. However,
informal feedback revealed that fish-eye distortions in combination
with free flying induces considerable cyber-sickness.

Landmarks: Since orientation in the 3D network proved chal-
lenging during navigation and after teleportation across all interfaces,
we provide a skybox displaying a ground- and sky-plane as a static
landmark. As additional optional aid we provide visual cues by high-
lighting all visited nodes when viewing the graph from the overview
perspective. It will be necessary to investigate how such measures
will fare in supporting spatial orientation in the future.

8. Study Limitations and Future Work

In our study, we only investigated a small fraction of the vast design
space of egocentric network exploration interfaces. Here, we discuss
some of the limitations of our study and suggest specific future work.
We deliberately limited our tasks to those that would potentially
benefit from an immersive detail perspective, as the overview per-
spective was identical in all three tasks. It is clear that many tasks not
investigated in this study could be solved more efficiently from an
overview perspective, such as estimating the number of communities
(similarly as performed by Greffard et al. [GPK11]) or finding the
most central node in the graph. Investigating the benefits of egocen-
tric optimizations for network overview- and hybrid-visualizations
would be an interesting avenue for future work. We currently only
use the user-selected node (or the user’s position in the network) as
information on which egocentric optimizations are based on. Further
research is needed to evaluate the potential benefits of including
other user-centered information, such as the field-of-view or even
the user’s gaze-focus.

Our goal was not to formally evaluate the benefit of 3D net-
work representations in VR in respect to classic 2D networks.
We relied on ample prior evidence suggesting benefits of stereo
and immersive 3D networks – at least as complementary analy-
sis environment – for path finding, especially with a larger num-
ber of nodes [WF96, BBHS03], community detection in complex
graphs [GPK11, KWO∗19], for distance assessments between 3D
points [WFRFN18], and for a generally improved mental model of
the graph [KKM∗20].

In our study, we assumed that many users do not have the re-
quired space to use a room-scale VR system. Such a setup would
allow users to navigate the graph simply by walking through it.
Room-scale navigation potentially reduces the amount of cyber-
sickness [UAW∗99, LLS18]. Yang et al. [YCB∗20] recently con-
ducted a study where users could walk in room-sized immersive
networks. A formal comparative study between walking, flying, and
jumping through a node-link diagram has not yet been conducted.

According to a survey by Yoghourdjian et al. [YAD∗18], the
networks we used in our evaluation were very large in terms of the
number of nodes but sparse in terms of their density. We deliberately
limited the number of edges after some informal pilot tests to be able
solve local visual search tasks in the baseline condition, which would
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have been increasingly difficult in denser graphs (cf. Fig. 1, left).
In the future, it will be important to conduct a similar experiment
comparing egocentric clutter reducing interfaces in denser networks.
Our expectation is that clutter reduction techniques, such as the
fish-eye distortion or edge bundling [Hol06, HVW09], will become
more important with increasing graph density.

9. Conclusions

In this work, we promoted egocentrism as a metaphor for user-
centered optimizations in immersive network exploration interfaces.
We introduced two simple instances of egocentrism and system-
atically investigated their effects in a user study in comparison
to a traditional network exploration interface. We obtained initial
insights about the metaphor’s performance on typical network explo-
ration tasks and potential caveats. The study showed how interfaces
implementing egocentrism considerably increase local visual search
efficiency by locally de-cluttering and highlighting the direct node
neighborhood. While additional local layout optimizations yield
comparably fewer advantages, users reported slightly lower symp-
toms of cyber-sickness compared to the traditional interface. Users
prefer the egocentric de-cluttered perspective of the network. Sacri-
ficing free navigation is reported to be only a minor trade-off. We
speculate that the benefit of a local distortions will be evident in
denser networks, which needs to be studied in the future.

We conclude from our study that egocentric visualization and
interaction design that is carefully tailored towards the user’s relation
to the data can yield significant benefits for immersive detail views in
network exploration. We therefore see the design and investigation
of further effective egocentric metaphors as a great open research
challenge in the field of immersive analytics.
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