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Figure 1: We use our elasticity model, based on high-order interpolants, to homogenize 2D microstructures. As shown in these images of two
different microstructures, the coarse homogenized materials match accurately the mesoscale deformation response of the microstructures. In
these examples, we simulate the microstructures with periodic boundary conditions; this results in uniform mesoscale strain, which we use
to deform the purple-white pattern. The left microstructure exhibits auxetic behavior, which is accurately captured by our model.

Abstract
We propose a novel formulation of elastic materials based on high-order interpolants, which fits accurately complex elastic
behaviors, but remains conservative. The proposed high-order interpolants can be regarded as a high-dimensional extension of
radial basis functions, and they allow the interpolation of derivatives of elastic energy, in particular stress and stiffness. Given
the proposed parameterization of elasticity models, we devise an algorithm to find optimal model parameters based on training
data. We have tested our methodology for the homogenization of 2D microstructures, and we show that it succeeds to match
complex behaviors with high accuracy.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Accurately representing the elastic response of complex materials
is an ongoing challenge across computer graphics and computa-
tional mechanics. This problem has application in fitting material
models to physical tests of real-world objects [BBO∗09, WOR11,
SSBL∗22], developing mesoscale models for microscale materi-
als [SBR∗15], or designing simulation models with nonlinear re-
sponse [XSZB15].

A common approach to designing complex elastic material be-
haviors is to define elastic energy or parameters of stress-strain
functions using weighted scalar basis functions [BBO∗09,WOR11,
MMO16, SNW20, WDK∗20]. However, as we demonstrate in this
paper, this approach suffers various problems. Some variants fail to
represent the elastic behavior accurately, while other variants lack
fundamental properties of elasticity, such as energy conservation.

In this paper, we develop a novel formulation of elastic materi-
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als based on high-order interpolants, which fits accurately complex
elastic behaviors, but remains conservative. The contributions of
our work are:

1. The design of tensor basis functions to interpolate derivatives
of elastic energy (Section 3). These basis functions can be re-
garded as a high-dimensional extension of radial basis functions
(RBFs).

2. Based on the tensor interpolants, we design a parameterization
of elasticity models (Section 4). This paramterization provides
suitable degrees of freedom to fit both the stress and stiffness
behavior of complex materials.

3. An algorithm to optimize the parametric elasticity model based
on training data (Section 5), which finds the control points and
coefficients of the elasticity interpolants.

4. The application of the methodology to homogenization of 2D
microstructures (Section 6). This includes the generation of rep-
resentative training data and the application of the estimation
algorithm mentioned above.

In the paper, we evaluate the accuracy of our method, we com-
pare it to other variants, and we analyze the effect of various design
choices. As a conclusion, the proposed methodology for the design
of elasticity models succeeds at capturing complex behaviors, such
as those shown in Fig. 1. We have tested the methodology on 11
2D microstructures with different deformation behaviors, and we
discuss the full results.

2. Related Work

2.1. Elasticity Interpolation

The baseline approach to model elastic behaviors is to design
expressive constitutive models. Research in this direction is am-
ple, covering both the ability to reproduce interesting behaviors
(nonlinearity, anisotropy, volume conservation), as well as robust-
ness [LB15,SGK18,Kim20a,Kim20b]. However, designing consti-
tutive models is built on the inherent assumption of homogeneous
materials, and is not meant to accurately represent the complex
nonlinearities of heterogeneous materials.

The common approach in computer graphics to represent com-
plex nonlinearities and anisotropy is to interpolate elasticity mod-
els. There is a large variety of methods to do so, with different
features. Some methods model nonlinear stress-strain relationships
through interpolation. Examples include RBF interpolation of ma-
terial parameters [BBO∗09], interpolation of stiffness values at
control points in strain domain [WOR11], or stress interpolation
based on RBFs [WDK∗20]. Unfortunately, modeling the stress-
strain function through interpolation lacks energy conservation, as
the stress-strain function is not integrable. This can produce arti-
facts through energy gain or loss, and prevents the use of attractive
optimization-based numerical integrators [GSS∗15]. One excep-
tion [MBT∗12] models the stress-strain curve for individual strain
values, hence it remains conservative, but it largely limits the ex-
pressiveness of the material.

Other methods model the elastic energy function through inter-
polation, and therefore remain conservative by construction. Ex-
amples include formulating energy addends that depend on dif-
ferent subdomains of strain [MMO16], and modeling such energy

addends using spline interpolation [SNW20]. Xu et al. [XSZB15]
used spline interpolation to model energy addends within the
Valanis-Landel isotropy assumption. They handled anisotropy sep-
arately, but with limited expressiveness.

When modeling microscale heterogeneous materials, numerical
coarsening [NKJF09, KMOD09, TREO16, CBW∗18] is an alterna-
tive to elasticity model design. In numerical coarsening, the mate-
rial models are evaluated at high-resolution spatial discretization,
respecting the heterogeneous material distribution. However, the
simulation is computed at a coarse mesoscale and interpolated to
the microscale through complex nonlinear shape functions.

2.2. Microstructure Simulation

2D and 3D microstructures are a powerful way of controlling
mesoscale deformation behavior under limited material choices,
and have therefore become a major tool in computational fab-
rication of deformable objects [BBO∗10, SBR∗15, PZM∗15,
KLPCP18]. However, the simulation of large objects at microscale
resolution is computationally costly, and it challenges the use of
microstructures within design optimization algorithms.

Homogenization is a powerful tool for computational design
with microstructures, as it fits mesoscale material models that ac-
curately represent the aggregate microscale behavior [LS16]. We
test our material modeling approach in the context of material
homogenization for microstructures, and in this regard we fol-
low a popular homogenization methodology. Same as previous
works [SMGT18, SNW20], we simulate microstructures under pe-
riodic boundary conditions. This makes the mesoscale strain uni-
form, and enables easy transfer of training data from microstructure
simulation to mesoscale.

3. Conservative Derivative Interpolation

We want to design a parametric function (the elastic energy) such
that it interpolates given values of its derivatives, i.e., its gradient
and Hessian (stress and stiffness). To do this, we leverage RBF in-
terpolation, but we face the question of designing a good parame-
terization such that the resulting function is conservative and inter-
polates derivative values.

To answer this question, in this section we analyze matrix-valued
RBFs for gradient interpolation. We conclude that this formulation
can be generalized and extended to the interpolation of arbitrary
higher-order derivatives. By leveraging these conclusions, we will
later show how to design a good parameterization for RBF energies.

3.1. Matrix-Valued RBFs for Gradient Interpolation

In our exposition of the fundamentals of high-order RBF inter-
polants, we denote the domain of RBF interpolation as x. With RBF
center xi, radial vector ∆xi = x− xi, and RBF radius ri = ∥∆xi∥,
we express the corresponding RBF as φi ≡ φ(ri). Appendix A lists
some derivatives of RBFs that we use throughout the paper.

Matrix-valued RBFs can be constructed from scalar-
valued RBFs φ through a double differentiation process,
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Figure 2: Our proposed first-order interpolant (7) and second-order interpolant (8) provide local control, respectively, of the gradient
(stress) and curvature (stiffness) of energy functions. The images show energies in the neighborhood of an RBF center, for representative
choices of the RBF coefficients. We used a multiquadric RBF, and blue denotes low energy while red denotes high energy. Notice how the
direction of the gradient is controlled on the top row, and this dictates the local stress. Notice also how the second-order interpolant allows
modeling isotropic stiffness (left), directional stiffness (right), or also saddle-point configurations (center).

(
α∇2 I +β∇∇T

)
φ, with α and β scalar coefficients. Vector-

valued RBF coefficients wi yield a vector field:

v(x) = ∑
i

(
α∇2 I +β∇∇T

)
φi wi. (1)

When interpolating vector values, matrix-valued RBFs yield
positive-definite systems [NW94].

Thanks to a Helmholtz-Hodge decomposition [BNPB13], the
matrix-valued RBF interpolation can be decomposed into curl-free
and divergence-free vector fields [Fus08]:

vcurl-free(x) = ∑
i
∇∇T

φi wi, (2)

vdiv-free(x) = ∑
i

(
∇2 I −∇∇T

)
φi wi. (3)

Moreover, it is easy to show that the curl-free vector field can be
derived from a potential function f (x), hence concluding that the
vector field is also conservative:

vcurl-free(x) =∇ f (x), with f (x) = ∑
i

wT
i ∇φi. (4)

In Appendix B, we demonstrate that RBF interpolants based on
RBF gradients can be recast based on RBFs directly. Then, the in-
terpolant wT

i ∇φi in f (x) in (4) can be recast as φi wT
i ∆xi, with some

other choice of RBF. As a result, the curl-free vector field in (4) can
be rewritten as:

vcurl-free(x) =∇ f (x), with f (x) = ∑
i

φi wT
i ∆xi. (5)

3.2. Generalization to High-Order Derivatives

In the previous section, we observe that the key property to inter-
polate gradients with conservative functions is that the RBF inter-

polants are expressed as inner product of the radial vector ∆xi and
a vector of RBF coefficients wi with the same dimensionality as
the target gradients. In fact, this observation can be generalized to
arbitrary high-order n-th derivatives. The sufficient and necessary
condition for interpolation of n-th derivatives with a conservative
function is that the RBF interpolants are expressed as the tensor
contraction of n tensor products of the radial vector ∆xi with an
n-th dimensional tensor of RBF coefficients nwi. Formally:

f (x) = ∑
i

φi nwi : (∆xi ⊗∆xi · · ·⊗∆xi)︸ ︷︷ ︸
n times

(6)

is a function whose n-th derivative can interpolate n-th dimensional
tensor data, i.e., the target n-th dimensional derivatives.

Conservative interpolation of gradients (first derivatives) and
Hessians (second derivatives), for example, reduce to defining in-
terpolants of the form:

Gradient: φi 1wi : ∆xi = φi 1wT
i ∆xi, (7)

Hessian: φi 2wi : (∆xi ⊗∆xi) = φi ∆xT
i 2wi ∆xi, (8)

with 1wi a vector of RBF coefficients and 2wi a matrix of RBF
coefficients, respectively.

Fig. 2 shows examples of first-order and second-order inter-
polants for some representative choices of the RBF coefficients 1wi
and 2wi. We can see that the first-order interpolants provide local
control of the gradient (both value and direction) of the energy, and
the second-order interpolants provide local control of the curvature
of the energy. In the next section, we leverage these interpolants in
the definition of RBF elastic energy functions.
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4. RBF Elastic Energy

We want to define nonlinear and anisotropic elastic materials that
are parameterized by the current deformation, and we do this fol-
lowing a scattered data interpolation strategy using RBFs. We start
the section with some definitions and a discussion of desired prop-
erties. Then, we introduce our energy parameterization, leveraging
the high-order RBF interpolants derived in Section 3.

4.1. Definitions and Desiderata

When designing elastic materials, we want to preserve the stress-
strain response. This includes both the stress value at a certain
strain, and its derivative or tangent stiffness.

We choose Green strain ε = 1
2

(
FT F − I

)
as representation of

strain or deformation, with F the deformation gradient. For conve-
nience, we write the strain in Voigt notation E, which becomes the
interpolation domain E = x for our RBF interpolation method. In
our 2D examples, we have E = (εxx,εyy,2εxy).

Following the Voigt notation of Green strain E, and with elastic
energy density Ψ, we define stress as the energy gradient wrt strain,

s =∇Ψ = ∂Ψ

∂E
T

, which is a vector form of the 2nd Piola-Kirchhoff
stress. We also define the tangent stiffness as the Hessian of the
energy wrt strain, K =∇∇T

Ψ = ∂
2
Ψ

∂E2 .

We seek a material model Ψ = f (E,{wi}) that relates strain to
energy according to some material parameters {wi}. In designing a
good parameterization for elasticity models, we pay attention to
the properties of the magnitudes we wish to match, namely the
stress and the tangent stiffness. A naïve solution for the design of a
stress(strain) function would be to formulate scalar basis functions
in the strain domain (e.g., RBFs), together with vector-type basis
coefficients. Unfortunately, the resulting function is not guaranteed
to produce a conservative field. Most importantly, conservativeness
cannot be enforced through an appropriate choice of basis coeffi-
cients; the lack of conservativeness is an inherent limitation of the
formulation.

The key to enforce conservativeness of the stress field is to regard
stress as the gradient of an energy field. Then, fitting a stress field
can be posed as a gradient interpolation problem, with the stress
the gradient of the underlying energy field. Similarly, fitting a stiff-
ness field can be posed as a Hessian interpolation problem, with the
stiffness the Hessian of the underlying energy field. To this end, we
look at the high-order RBF interpolants of Section 3.

4.2. Energy and its Derivatives

We design an RBF energy formulation that is equipped with conser-
vative gradient interpolants (7), to fit a target stress field, and with
conservative Hessian interpolants (8), to fit a target tangent stiff-
ness field. We denote each gradient interpolant as ΨGI,i, with RBF
center Ei and vector RBF coefficients wi (the 1wi in (7)). Similarly,
we denote each Hessian interpolant as ΨHI,i, with RBF center Ei
and matrix RBF coefficients Wi (the 2wi in (8)). We also add to the
energy formulation two offset terms ΨGO and ΨHO that produce,
respectively, a stress offset sO and a stiffness offset KO. We add the

stress offset to easily enforce zero stress at zero strain, and the stiff-
ness offset to easily fit the average stiffness. In this way, the RBF
interpolants act as corrections with respect to offset terms.

The full energy formulation is summarized as:

Ψ = ΨGO +ΨHO +∑
i

ΨGI,i +∑
i

ΨHI,i, (9)

ΨGO = sT
O E,

ΨHO =
1
2

ET KO E,

ΨGI,i = φi wT
i ∆Ei,

ΨHI,i = φi ∆ET
i Wi ∆Ei.

Note that the formulation above (and also our implementation) uses
the same RBF function φ and RBF centers {Ei} for gradient and
Hessian interpolants, but these could be different in practice.

From the energy definition (9), we obtain the stress and the tan-
gent stiffness.

s =∇ΨGO +∇ΨHO +∑
i
∇ΨGI,i +∑

i
∇ΨHI,i, (10)

∇ΨGO = sO,

∇ΨHO = KO E,

∇ΨGI,i = φi wi +wT
i ∆Ei

∂φi

∂E

T
,

∇ΨHI,i = 2φi Wi ∆Ei +∆ET
i Wi ∆Ei

∂ψi

∂E

T
.

K =∇∇T
ΨHO +∑

i
∇∇T

ΨGI,i +∑
i
∇∇T

ΨHI,i, (11)

∇∇T
ΨHO = KO,

∇∇T
ΨGI,i = wi

∂φi

∂E
+

∂φi

∂E

T
wT

i +wT
i ∆Ei

∂
2
φi

∂E2 ,

∇∇T
ΨHI,i = 2Wi ∆Ei

∂φi

∂E
+2

∂φi

∂E

T
∆ET

i Wi

+2φi Wi +∆ET
i Wi ∆Ei

∂
2
φi

∂E2 .

The first and second partial derivatives of the RBFs are listed in
Appendix A.

Our energy model (9) is parameterized by the stress and stiffness
offsets sO,KO, and the gradient and Hessian interpolant centers and
coefficients {Ei,wi,Wi}. Note that, thanks to our conservative RBF
interpolants, both the stress (10) and the tangent stiffness (11) are
expressed as the sum of weighted basis functions (i.e., they are lin-
ear with respect to the basis coefficients), each RBF introduces de-
grees of freedom with the same dimensionality as the stress and/or
the stiffness, and the formulation remains conservative by construc-
tion.

5. Material Fitting Algorithm

Once we have defined our RBF energy model in the previous sec-
tion, we describe how we estimate the parameters of this model.
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Our algorithm includes two aspects: one is the optimization of en-
ergy coefficients, the other one is the optimization of metaparame-
ters (i.e., RBF centers and radius/smoothness parameters).

5.1. Optimization of RBF Coefficients

We assume we have target stress and stiffness data {s j,K j} avail-
able for a set of known strains {E j}. In Section 6, we describe how
we obtain representative target data for 2D microstructures. And
at this point we also assume that the energy RBF centers {Ei} are
given. In the next subsection, we discuss how these centers are op-
timized.

The energy function includes the following parameters to be op-
timized (see Section 4.2): stress and stiffness offsets sO,KO, and co-
efficients of stress and stiffness interpolants {wi},{Wi}. The stress
offset is implicitly defined by constraining the stress to be zero at
zero strain. From (10), we get:

s(0) = sO +∑
i
∇ΨGI,i(0)+∑

i
∇ΨHI,i(0) = 0 ⇒

sO =−∑
i
∇ΨGI,i(0)−∑

i
∇ΨHI,i(0). (12)

We denote the remaining parameter set as p = (KO,{wi},{Wi}).
We compute these parameters by minimizing the difference be-
tween target and estimated stress and stiffness values. This is ex-
pressed formally as:

p = argmin
p ∑

j

1
s2

RMS
∥s(E j, p)− s j∥2 +

1
K2

RMS
∥K(E j, p)−K j∥2.

(13)
Note that we normalize the stress and stiffness errors by the root-
mean square of target stress and target stiffness values, respectively.

This optimization is a simple linear least squares problem, which
yields a positive definite linear system for the solution of the param-
eters p.

5.2. RBF Metaparameters

In addition to RBF coefficients, the elastic energy function is also
parameterized by the number of RBFs, their centers, and other
RBF-specific smoothness or support parameters (e.g., the variance
of Gaussian RBFs). We have followed a greedy algorithm to opti-
mize these metaparameters.

We start with no RBFs, and we progressively add RBFs until the
energy fitting error as defined in (13) is smaller than a target thresh-
old. Given k RBFs, we first optimize the locations of the RBF cen-
ters {Ei,1 ≤ i ≤ k}. We do this by clustering the target strain val-
ues {E j} into k clusters using k-means clustering. Then we solve
the optimization (13) while sweeping smoothness or support pa-
rameters, and we choose the optimal result. Fig. 3 shows example
results of k-means clustering for two different microstructures. In
some cases (e.g., top of Fig. 3), the target strains {E j} are evenly
distributed and a small number of RBFs may cover well the do-
main. In other cases (e.g., bottom of Fig. 3), the target strains show
discontinuties, e.g., due to buckling of the microstructures, and a
larger number of RBFs may be necessary.

Figure 3: Several results of k-means clustering for the computation
of RBF centers. The plots show the distribution of training strains
for two different microstructures, and RBF centers with 5 vs. 10
clusters. Microstructure 9 exhibits buckling effects that make the
training data discontinuous, and it requires more RBFs to cover
well the domain.

Our approach for selecting the RBF centers is not optimal, as
the clustering algorithm does not account for local error. There are
other possible approaches for optimizing the metaparameters of the
RBFs, such as recursive orthogonal least squares [GY00, CCG91],
but we leave this to future work. In Section 7 we discuss how the
fitting error is affected by the choice of metaparameters and RBF
functions.

6. Homogenization of 2D Microstructures

We apply our parametric energy model (Section 4) and estimation
algorithm (Section 5) to design homogeneous mesoscale elasticity
models for 2D microstructures. In doing so, we pay special atten-
tion to the generation of representative strain, stress and stiffness
data for the estimation algorithm.

To generate training data, we simulate 2D microstructures un-
der planar deformations with periodic boundary conditions (PBCs),
similar to the work of Schumacher et al. [SMGT18]. Specifically, to
simulate the high-resolution microstructures with PBCs, we follow
the method by Sperl et al. [SNW20].

We model a repeatable tile of microstructure at high resolution,
using a finite-element mesh. The positions of the mesh nodes are
grouped as x, and they are governed by the combination of a coarse
homogeneous deformation E and local mesh displacements u. Fol-
lowing Sperl et al., we apply a known coarse deformation E, and
we solve for mesh displacements that minimize the tile’s elastic
energy density Ψ under PBCs. Formally, this is expressed as:

u = argminΨ(x(E,u)), s.t. c(u) = 0, (14)

where c(u) includes PBCs as well as constraints to avoid net rigid
motion of the tile.

We produce training data in a controlled way, generating mi-
crostructure deformations that span planar uniaxial stretch defor-
mations in all directions. These cover situations where there is a
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Figure 4: The plots compare the training data (colored according to the norm of stress) in strain domain, for two different microstructures.
We also highlight a directional stretch from rest (blue) to a deformed configuration (red). Projecting the data to 2D we can clearly see the
extremely different behavior of these two microstructures; the one on the right shows negative Poisson’s ratio for this stretch, and the training
data populates a different region of the strain domain.

dominant direction of deformation, and were also the main focus of
attention of several previous works [WOR11,SMGT18,SSBL∗22].
The rotation-invariant part of the deformation gradient can be de-
fined as F =Rot(θ)diag(λ1,λ2)Rot(θ)T , where λ1 and λ2 are prin-
cipal stretches, and θ is the direction of stretch. We regularly sam-
ple the first principal stretch λ1 in the range 0.9 —2.0, and the
stretch direction θ in the range 0 —π. For each combination (λ1,θ),
we simulate the microstructure and we search for the orthogonal
stretch λ2 that produces zero orthogonal stress, i.e., ∂Ψ

∂λ2
= 0. Then,

we add two more deformations by changing the orthogonal stretch
by ±0.05.

We collect the full set of deformations and compile the
coarse strain, stress, and tangent stiffness for each deformation,
{E j,s j,K j}. The training data is roughly centered around uniax-
ial stretches in all directions. Fig. 4 shows training data for two
microstructures with very different behavior; the one on the left
shows negative Poisson’s ratio, and hence the training data popu-
lates a very different region in the strain domain. Please watch the
accompanying video for animations of the training data generation
and 3D visualizations of the data in strain domain.

7. Experiments and Discussion

We have tested our high-order elasticity interpolation methodology
on the homogenization of 11 different periodic microstructures. All

RBF Stress and stiffness error (%)
Multiquadric 6.53

Gaussian 6.89
Inverse quadratic 6.66

Inverse multiquadric 6.62

Table 1: We fit all microstructures using four different RBFs with
the same number of RBF centers (10), and the error differences are
minimal.

microstructures are shown in Fig. 6. They exhibit diverse nonlinear-
ities and anisotropic behavior, including auxetic response.

We start the section discussing choice and estimation of metapa-
rameters. Then we analyze the fitting error across all microstruc-
tures, and we discuss the result of validation tests. We conclude
with a discussion of comparisons to other methods.

7.1. Metaparameters

Our first test evaluates what type of RBF provides highest accu-
racy under the same number of parameters. We have tested four
RBFs that are smooth, to ensure Hessians are well defined: mul-
tiquadric, Gaussian, inverse quadratic, and inverse multiquadric.

Figure 5: This figure shows the fitting error for microstructure 1 as
we sweep the smoothness radius of a multiquadric RBF. Note that
the optimal radius gets smaller as we grow the number of RBFs.
The plots are interrupted when the estimation problem becomes ill-
conditioned.
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1 2 3 4 5 6

7 8 9 10 11

Figure 6: All 11 periodic microstructures tested in our experiments. They exhibit diverse nonlinearities and anisotropy.

We have estimated all 11 microstructures following the method de-
scribed in Section 5, with 10 RBF centers. As shown in Table 1,
the differences across RBF types are minimal. This result concurs
with previous experiments [CB92]. Based on minimal advantage,

we choose the multiquadric RBF φ(r) =
√

r2 + r2
0 .

As discussed in Section 5.2, as part of our estimation algorithm,
we sweep radius/smoothness parameters of the RBF. With the mul-
tiquadric RBF, this is the radius r0. Fig. 5 shows the total error for
microstructure 1 as a function of r0, for different numbers of RBF
centers. The error is not shown after a certain radius r0, because the
fitting problem becomes ill-conditioned. Note that ill-conditioning
occurs at smaller r0 as we add more RBFs and they get closer. For
this reason, it is not possible to choose a single optimal value of r0
for all numbers of RBFs.

7.2. Fitting Error and Validation

We have fitted the training stress and stiffness of all test microstruc-
tures. We increase the number of RBFs until we reach an average
error of 5% between stress and stiffness, but we stop the process if
we reach 19 RBFs. See (13) for the error definition and normaliza-
tion based on RMS values. Table 2 summarizes the fitting quality
across all materials. The stress error is below or just above 5% for
all materials, and the stiffness error is below 10% for all materials
except two (which suffer error above 20%). For some materials,
adding more RBFs produced only a marginal gain. Those cases
probably require higher local control, with non-uniform selection
of RBF centers and smoothness radius.

Detailed fitting results for all materials are shown in Table 5 and
Table 6. These tables show the norm of all values of stress and stiff-
ness in the training data, the fitted values, and the error percentage
(normalized with respect to RMS values). Interestingly, the error in
stress remains low and is spread across the domain for many ma-
terials, although it shows high local values for some materials. On
the other hand, the error in stiffness shows some high spikes for

most of the materials. This again suggests that higher local control
is needed for higher accuracy.

We have also validated the homogenized elasticity model on test
simulations. We stretch the homogenized material based on the val-
ues of principal stretch λ1 and stretch direction θ in the training
data, but we optimize for the orthogonal stretch λ2 that minimizes
energy. This is the same procedure we apply to the microstructures
to generate the training data, as described in Section 6, but we do
it this time on the homogenized material. We evaluate the error in
orthogonal stretch λ2 as validation. The results for all 11 materials
are listed in Table 2. Note that the error remained under 10% in all
materials except for one. Furthermore, all simulations were robust.
By accurately fitting both the stress and the stiffness, we achieve in
practice material models that are stable.

Material #RBFs
Stress Stiffness Orthogonal

error (%) error (%) error (%)
1 7 2.23 7.71 6.39
2 4 2.34 6.28 8.59
3 5 1.87 5.27 6.08
4 19 3.99 6.70 4.30
5 11 2.21 7.15 5.49
6 9 2.35 7.15 6.59
7 4 2.04 7.24 12.02
8 19 6.02 21.3 6.96
9 17 2.59 7.33 3.01
10 19 5.14 5.86 4.52
11 19 5.23 30.8 6.60

Table 2: Fitting error (stress and stiffness) for all 11 microstructure
materials. The last column reports validation error in orthogonal
stretch under directional stretch experiments, comparing the results
with microstructures and our fitted homogenized elasticity models.
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Figure 7: Here, we evaluate our model on non-uniform strain deformations. We compare the simulation of high-resolution FEM microstruc-
ture models with coarse FEM models using our fitted energies. The images show two of the microstructures in the data set, under Dirichlet
conditions on part of the boundary, and zero-traction Neumann conditions on the rest. The tested microstructure patches consist of 63 and
48 tiles, and were simulated using FEM models with 4252 and 5786 elements, respectively. The coarse models use 36 and 48 quad meshes.
As shown in the overlays, the match between our fitted model and the full microstructure simulations is practically perfect.

7.3. Extrapolation

The training data for the model consists of uniform uniaxial
stretch data within a prescribed range. Therefore, we regard and
test extrapolation in multiple ways. One is to extrapolate the energy
behavior outside the range of strains in the training data. We have
no a priori expectation for the model to succeed in this though, as
the behavior of the microstructure materials may be unpredictable
outside the training range. The other one is to extrapolate to non-
uniform deformations. This, in contrast, is an expected and critical
behavior, as it makes the model practical for real applications.

To evaluate extrapolation outside the range of strains, we have
performed two tests. First, we trained using data from the lower
half of the stretch range, and tested extrapolation to the upper half.
The error on the training data was 5.27% ± 3.48% across all 11
materials, and on the test data it was 114.44% ± 60.70%. Second,
we trained using data from half of the stretch directions, and tested
extrapolation to the other half. The error on the training data was
12.39% ± 9.10% across all 11 materials, and on the test data it was
147.08% ± 131.45%. As expected, the models fail to extrapolate.
But this is not a limitation of the methodology; it is an inherent
challenge of the problem, because the behavior outside the training
range may be highly nonlinear and unpredictable. For this reason,
we exhaustively sample the expected deformation range as part of
training.

To evaluate extrapolation to non-uniform strains, we have simu-
lated large patches of microstructures, both with high-resolution
FEM simulations, and with coarse simulations using our fitted
energy models. Fig. 7 shows two comparisons, for two different
microstructures. We demonstrate that, thanks to the fitted energy

Stress error (%) Stiffness error (%)
Stress fit 7.67 30.23

Stiffness fit 19.72 18.98
Stress + stiffness fit 12.28 19.40

Table 3: Under the same number of parameters, we have evaluated
the accuracy of fitting stress data only, stiffness data only, or our
combined stress and stiffness fitting. Our approach keeps the best
balance in stress and stiffness error.

models, we can replicate the behavior of complex microstructure
patches (4252 and 5786 finite elements each) with coarse simula-
tion meshes (36 and 48 elements each).

7.4. Comparisons

Our first comparison analyzes if some terms of our elasticity model
are more relevant. To this end, we compared (a) fitting stress data
only using stress interpolants only, (b) fitting stiffness data only us-
ing stiffness interpolants only, and (c) our full method fitting both
stress and stiffness data using both stress and stiffness interpolants,
on microstructure 1. For a fair comparison, we used the same num-
ber of parameters (36) in all cases: (a) 11 RBFs plus stress offset,
(b) 5 RBFs plus stiffness offset, and (c) 3 RBFs and both stress
and stiffness offsets. As shown in Table 3, our method achieves the
best balance in fitting both stress and stiffness. Fitting stiffness only
leads to higher stress error. Fitting stress only produces high stiff-
ness error, but most importantly there is no control over the quality
of the stiffness, which can lead to unstable material models.

We have also compared our method to models that interpolate
the elastic energy directly, hence they do not provide direct control
for stress and stiffness as in our method. We designed an interpo-
lated energy model of the form Ψ = ∑i φi wi, with scalar RBF co-
efficients wi [MMO16]. We compared (a) fitting energy data with
energy interpolation, (b) fitting our stress and stiffness metric with
energy interpolation, and (c) our method. For a fair comparison, we
used the same number of parameters (54) in all cases: (a) and (b)
54 RBFs, and (c) 5 RBFs and both stress and stiffness offsets. As
shown in Table 4, our approach achieves the highest accuracy in all
cases.

Finally, we also tried fitting the stress of microstructure 1 using a

Stress error (%) Stiff. error (%)
Energy fit, energy interp. 17.54 65.67

Our fit, energy interp. 6.43 16.56
Our method 3.06 9.21

Table 4: Under the same number of parameters, we have evaluated
the accuracy of fitting energy data with energy interpolation, fitting
our stress and stiffness metric with energy interpolation, and our
method. Our approach achieves the highest accuracy.
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Stress error (%) Curl / RMS Stiffness (%)

Figure 8: We tried fitting the stress of microstructure 1 using stress
interpolation of the form s = ∑i φi wi [WDK∗20]. With 20 RBFs the
stress error is below 5% (left). However, the material model is far
from conservative. The curl of the stress (normalized by the RMS of
stiffness) is above 30% at times.

non-conservative stress interpolation method. In particular, we for-
mulated the stress s = ∑i φi wi, with vector RBF coefficients wi,
as done by Wang et al. [WDK∗20]. The optimization required 20
RBFs to reach a stress error below 5%. Fig. 8-left shows the dis-
tribution of stress error. Most importantly, we quantified the curl of
stress, ∇× s, and we normalized it by the RMS of stiffness. Note
that the curl measures the non-symmetry of the Hessian. As shown
in Fig. 8-right, the curl of stress reached over 30% of the RMS of
stiffness at times.

8. Conclusions and Future Work

In this paper, we have presented a novel formulation of elastic en-
ergy models based on high-order interpolants. The interpolants ex-
tend scalar RBFs to provide local control over derivatives of the
energy function, namely stress and stiffness. We have shown that,
when applied to the homogenization of 2D microstructures, our for-
mulation provides higher accuracy than previous approaches. The
design of optimal high-order RBF interpolants is still an active
research topic in numerical analysis [DFW21], and our method-
ology could see applicability in general high-order interpolation
problems, beyond elastic simulation. To help with reproducibil-
ity, a sample implementation is available in the project webpage
http://mslab.es/projects/HiOInterp.

We have also identified limitations that could motivate future
work. In particular, our current estimation methods appear limited
when the stress or stiffness have strong local discontinuities. This
could be addressed by distributing RBF centers with non-uniform
density and non-uniform radius. Similarly, it would be beneficial to
sample the deformation range in an adaptive manner, adding train-
ing samples where nonlinearity appears higher. In general, it would
be advantageous to find ways to make the parameterization of the
resulting energy more compact.

We have applied our formulation and methodology only to in-
plane deformation of 2D microstructures. The possible extensions
include: 3D microstructures, the bending response of thin shells
(necessary to apply the method to 3D cloth simulation), plasticity,
and/or viscosity. Some of the extensions may be straightforward,

such as 3D microstructures or modeling viscosity by interpolating
dissipation potentials [SBO18]; others are unclear.

Finally, it would be interesting to use our methodology in the
context of other applications beyond example-based homogeniza-
tion. These could include estimating materials from other types of
data (e.g., force-deformation examples, or sparse observations of
space-time deformations), or using the model in the context of ma-
terial exploration. Obtaining homogenized strain from real-world
force-deformation examples is straightforward. Stress can be ob-
tained based on boundary forces [SMGT18]. Stiffness is not imme-
diate, but it could be obtained through finite-difference approxima-
tion using incremental deformations.
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Appendix A: RBF Derivatives

We denote the derivatives of an RBF φi wrt its radius ri as:

φ
′
i ≡

∂φi

∂ri
, φ

′′
i ≡ ∂

2
φi

∂ri2
. (15)

For additional derivatives, it is convenient to define a radial unit
vector ui =

1
ri

∆xi. Then, the derivatives of radius ri wrt the domain
x are:

∂ri

∂x
= uT

i ,
∂

2ri

∂x2 =
∂ui

∂x
=

1
ri

(
I −ui uT

i

)
. (16)

And following the chain rule, (15) and (16), the derivatives of an
RBF φi wrt the domain x are:

∂φi

∂x
= φ

′
i

∂ri

∂x
= φ

′
i uT

i . (17)
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. (18)
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Appendix B: Equivalence of RBF Gradient

Given an RBF φi defined by some choice of function φ and center
xi, there is some other RBF ψi, with choice of function ψ, such that:

∇φi = ψi ∆xi. (19)

As a corollary, any RBF interpolation based on RBF gradients can
also be expressed as an RBF interpolation based directly on RBFs
multiplied by radial vectors. This equivalent definition largely sim-
plifies the computation of RBF derivatives.

To prove the equivalence, based on (17) we have:

∇φi =
∂φi

∂x

T
= φ

′
i ui =

φ
′
i

ri
∆xi. (20)

And it follows that

ψi =
φ
′
i

ri
. (21)
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