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Figure 1: We introduce a new hand model, aMANO, by augmenting MANO’s shape space with a local scale adaptation which enables
calibrating to users with substantially different hand sizes than those covered by MANO. We also present a framework to calibrate and track
aMANO by registering it to a sequence of depth frames. Here we see that aMANO registers more accurately than MANO for a child’s hand
sequence. We show the calibrated mesh in the rest pose for MANO and aMANO in the rightmost column.

Abstract
The accuracy of hand tracking algorithms depends on how closely the geometry of the mesh model resembles the user’s hand
shape. Most existing methods rely on a learned shape space model; however, this fails to generalize to unseen hand shapes
with significant deviations from the training set. We introduce local scale adaptation to augment this data-driven shape model
and thus enable modeling hands of substantially different sizes. We also present a framework to calibrate our proposed hand
shape model by registering it to depth data and achieve accurate and robust tracking. We demonstrate the capability of our
proposed adaptive shape model over the most widely used existing hand model by registering it to subjects from different
demographics. We also validate the accuracy and robustness of our tracking framework on challenging public hand datasets
where we improve over state-of-the-art methods. Our adaptive hand shape model and tracking framework offer a significant
boost towards generalizing the accuracy of hand tracking.

CCS Concepts
• Computing methodologies → Mesh models; Parametric curve and surface models; Motion capture;

1. Introduction

Hand tracking plays a vital role in interacting with augmented and
virtual reality systems. However, one of the significant challenges
in the widespread adoption of these systems is their generalizability

across various demographics. We present a solution to this problem
by presenting a hand shape model that can adapt to a wider variety
of hand sizes than the most widely used hand shape model present
in literature.
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The importance of a user-specific (or calibrated) hand model
for accurate tracking is well-established in the literature [TSR∗14,
TCT∗16]. Most state-of-the-art hand tracking systems use a pre-
calibrated user-specific hand model to track the pose from an
input stream of images [TSR∗14, TCT∗16]. Recently, Tkach et
al. [TTR∗17] proposed an online calibration of a sphere-mesh
model [TPT16] that is capable of handling a variety of hand shapes.
However, it requires a large number of correlated parameters to
model the shape, which is not readily amenable to optimization
during registration [RTTP17].

Inspired by the recent literature in human body [LMR∗15,
OBB20, XBZ∗20], face [EST∗20] and hand [RTB17], our un-
derlying hand model is a mesh-based model. Specifically, we
use MANO [RTB17] which is the most widely used hand
model [MDB∗19, HVT∗19, BBT19, ZHX∗20, HTB∗20, CPB∗20,
WMB∗20, CPA∗20]. However, this data-driven hand model can-
not adapt to unseen hand shapes with significant deviations from
the training set and thus adversely affects tracking.

We tackle this problem by introducing a new shape model adap-
tive MANO (aMANO) that augments MANO’s shape space with
local scale adaptation ( see Sec. 3). This local scale adaptation en-
ables calibrating the shape model to users with substantially dif-
ferent hand sizes than those covered by the original MANO shape
space, as shown in Fig. 1. Specifically, we use a set of local scale
parameters that scale each of the bones in the hand model and a
modified skinning function to handle this local scale adaptation.
aMANO gracefully adapts MANO to unseen hand sizes and thus
aids for accurate tracking. We demonstrate the calibration ability
of aMANO over MANO in Sec. 5.1.

Further, we present a framework to calibrate and track aMANO
by registering it to a sequence of depth data in Sec. 4. Our registra-
tion method embeds a blend-shape model with the modified skin-
ning function into an energy minimization formulation. We also
reparameterize the pose, at each joint, in aMANO to achieve ro-
bust tracking; Sec. 5.3 highlights its effect. These ideas allow us to
achieve competitive tracking accuracy compared to state-of-the-art
methods, as reported in Sec. 5.2.

We highlight the primary contributions of this work below.

• We introduce a hand shape model, aMANO, that augments
MANO’s shape space with local scale adaptation and demon-
strates its calibration ability over MANO on a captured dataset,
including children’s hands.
• We present a framework to calibrate and track aMANO by regis-

tering it to a sequence of depth data and achieve state-of-the-art
tracking accuracy on many challenging datasets available in the
literature.

2. Related Work

Over the past decade, especially due to the advent of deep learning,
there has been a spur in hand-tracking research across academia
and industry. The tracking methods either use a depth image or an
RGB image as input. In this section, we focus on depth-based meth-
ods and refer the reader to Baek et al. [BKK19] for an overview of
RGB-based hand tracking.

2.1. Hand tracking

One of the seminal works on depth-based hand tracking, proposed
by Oikonomidis et al. [OKA11], used a primitive-based geometri-
cal model for optimizing the pose using particle swarm optimiza-
tion (PSO). Makris and Argyros [MA15] further extended it by in-
corporating an online shape adaptation of the hand model. How-
ever, it still uses a primitive model that lacks expressivity compared
to our mesh-based model.

Taylor et al. [TSR∗14] introduced user-specific hand modeling,
and Sharp et al. [SKR∗15] used it in their robust hand tracker.
Khamis et al. [KTS∗15] learned a shape space of hand from depth
images of multiple users, which enabled Tan et al. [TCT∗16] to ex-
tend their golden-energy tracking method to various users. Unfor-
tunately, unlike ours, these implementations are not publicly avail-
able, restricting their usage for scientific research.

Tagliasacchi et al. [TST∗15] revived the idea of using ICP-
like algorithms for hand tracking by fitting a cylinder-based hand
model using Levenberg-Marquardt (LM) non-linear least-squares
optimization. We adapt the energy terms used in their method and
use them in our tracking framework. The notable work of Taylor
et al. [TBC∗16] used a subdivided hand mesh to track using the
LM algorithm. We borrow their idea for efficiently computing cor-
respondences on a mesh. Further, Shen et al. [SCY∗20] demon-
strated that one could get away without subdividing the mesh using
ideas from Phong shading. Our barycentric sampling of the mesh
follows this approach and helps further increase the efficiency of
our tracking framework.

Most tracking algorithms rely on a robust per-frame discrim-
inative technique to avoid drifting. The early work by Qian et
al. [QSW∗14] introduced the idea of robust fingertip detection
that exploits finger geometry. With the availability of large scale
hand pose datasets(e.g. NYU [TSLP14], MSRA [SWL∗15], Big-
hand2.2M [YYS∗17]) with 21 annotated keypoints (16 joints
and 5 fingertips), state-of-the-art hand pose estimation net-
works [HRW∗20, ZXCZ20, XZX∗19, WPGY18] regress the 3D
keypoints directly from depth. We use these per-frame keypoints
(whenever available) to recover from tracking failure through the
fingertip re-initializer energy term.

2.2. Shape modeling

Until recently, most methods used a fixed hand template model.
Tkach et al. [TPT16] introduced the idea of sphere-meshes for gen-
erative hand modeling. Remelli et al. [RTTP17] further parame-
terized it for model personalization through local scaling. Tkach
et al. [TTR∗17] devised a method to optimize these parameters to
personalize the hand model during online hand tracking. In con-
trast to these methods requiring a sphere-mesh hand model to work,
our novel local scale adaptation can handle arbitrary skeleton-based
meshes.

The recent advances in human body shape models (e.g.
SMPL [LMR∗15], STAR [OBB20], GHUM [XBZ∗20]) have con-
siderably pushed the boundaries in state-of-the-art human pose and
shape tracking. Following this direction, we use the widely adopted
MANO [RTB17] as our underlying hand model. However, it can-
not adapt to unseen hand shapes with substantially large deviations
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Figure 2: Our local scale parameters in aMANO compliment the
shape space of MANO. Here we vary β and φ around the mean
shape.

from the training set. Boukhayma et al. [BBT19] use a single global
scale to handle the coarse size variation. Instead, we introduce lo-
cal scale parameters for fine-grained control, which dramatically
increases the span of our shape space.

3. Hand Model: aMANO

This section describes our proposed hand model, adaptive MANO
(aMANO), that augments MANO’s shape space with local scale
adaptation.

MANO (hand Model with Articulated and Non-rigid defOrma-
tions), introduced by Romero et al. [RTB17], is a hand model
learned from 2018 scans of 31 subjects. It captures the user-specific
vertex offsets via a shape blend-shape function and pose-specific
vertex offsets to correct artifacts in skinning via a pose blend-shape
function. A template vertex v̄i is offset as

vi = v̄i +Siβ+Pi
(
r(θ)− r(θ̄)

)
(1)

where Si ∈ R3×10 and Pi ∈ R3×135 are the shape and pose blend
shapes corresponding to the vertex vi, β ∈ R10 is the shape pa-
rameter, θ ∈ R15×3 is the pose parameter capturing the axis angle
rotation at each of the 15 joints, and r(θ) ∈ R135 is the vectorized
version of the stacked rotation matrices at each joint with pose θ; θ̄

is the rest pose.

However, these PCA shape blend-shapes cannot capture hand
shapes with significant deviations from training data. We augment
the shape space of MANO by introducing local scale parameters φ

that compliment the original shape parameters β and thus, increase
the span of the shape space as shown in Fig. 2.

We now describe the local scale parameters in aMANO. Inspired
by Jacobson and Sorkine [JS11], we assume a set of local scale
parameters φ ∈Rnb for each of the nb bones in the hand (nb is 20 in
our hand model). We calculate the scale factor for each bone φ j as

φ j =
l(data)

j

l(template)
j

(2)

Figure 3: Left: We define 2 degrees of freedom at the MCP
(metacarpophalangeal) joint, and 1 degree of freedom at each PIP
(proximal interphalangeal) and DIP (distal interphalangeal) joints
of a finger. The axis of rotation for each degree of freedom is plot-
ted. Right: We select a ring of vertices (blue) around a keypoint
(brown) to define K, which is then used to calculate the position of
keypoints from a posed mesh.

where l(data)
j ∈ R is the length of the jth bone in the observed data,

obtained from keypoints (each bone connects two keypoints), and
l(template)

j ∈ R is the length of the jth bone in the template mesh
model. The observed data keypoints are either available from the
hand pose estimation network or marked manually on the depth
image in the rest pose. We calculate the model keypoints k ∈R21×3

from the mesh vertices v∈R778×3 using a sparse regression matrix
K ∈ R21×778 as

k = Kv (3)

For each keypoint i, we select a ring of four vertices surrounding
it and only fill the four corresponding columns in the ith row of K.
The vertices are selected such that the resulting keypoints lie at the
anatomical joints and fingertips of the hand (see Fig. 3).

Existing methods use the standard linear blend skinning (LBS)
to pose the mesh by applying a weighted combination of transfor-
mations for each bone. Let a j ∈ R3 and b j ∈ R3 be the start and
end positions of jth bone in rest pose mesh (after applying MANO
shape-blends) respectively, and R j ∈ R3×3 be the rotation matrix
that takes bone j’s rest vector (b j−a j) to its pose vector (b′j−a′j).
Using LBS, the deformed vertex v′i is given by

v′i =
nb

∑
j=1

Wbi j

{
a′j +R j

(
−a j + vi

)}
(4)

where Wb ∈ Rnv×nb is the bone weight matrix.

To incorporate our local scale parameters into the standard LBS,
we can anisotropically scale the bone in the reference frame using
the local scale parameter, φ j as

v′i =
nb

∑
j=1

Wbi j

{
a′j +R j

(
φ j(−a j + vi)

)}
(5)

However, since φ j is constant over the mesh, all points on each
bone will stretch uniformly. Thus, if vi lies beyond an endpoint of a
bone, it will get overly stretched, as shown in Fig. 4. We can avoid
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Figure 4: Consider we want to increase the scale of the bone
(marked in blue) connecting the PIP joint and the DIP joint in the
template mesh (left). Using the standard LBS (middle), we notice
unwanted scaling of the bone (marked in red in middle image) con-
necting the DIP joint to the TIP (fingertip). However, the modified
LBS [JS11] (right) handles this by limiting the influence of each
bone using endpoint weights.

Figure 5: Endpoint weights We for the bones in index finger.

this problem if we know the position of vi relative to bone j’s end-
points. We can then restrict the effect of scaling to part of the mesh
associated with the scaled bone using an additional set of endpoint
weights We ∈ Rnv×nb for each bone. We compute We by minimiz-
ing the shape-aware smoothness functional (Laplacian energy) us-
ing the following constraints for the jth bone weight Wei j , for all
vertices i, with start position a j and end position b j, as follows:

• the weight is one at a j and along all other bones connected to a j,
• the weight is zero at b j and along all bones connected to b j and,
• the weight varies linearly along a j to b j.

We optimize the discretized version of the functional, following Ja-
cobson et al. [JBPS11]. We plot the endpoint weights for the bones
along the index finger in Fig. 5.

We insert the local scale parameters and the endpoint weights in
the standard LBS resulting in the modified LBS given by

v′i =
nb

∑
j=1

Wbi j

{
a′j +R j

(
Wei j s j +(−a j + vi)

)}
(6)

where s j = (φ j−1)(b j−a j).

4. Hand Tracking

We now present our framework to calibrate and track aMANO by
registering it to a sequence of depth frames {D( f )}n f

f=1 ⊂ RH×W

acquired from a sensor.

Our framework consists of two stages: calibration, in which we
estimate {β( f ),θ( f )} for each frame, and tracking, in which we only
estimate θ f for each frame. We perform the calibration stage for
the initial few frames of the sequence. Once the shape parameter

converges to β̂, we transition to the tracking stage using the fixed
shape parameter β̂ for the subsequent frames. Before beginning the
calibration stage, we calculate φ using the observed data keypoints
and use it for all the frames. We follow this process for each new
user.

The calibration and tracking stages minimize a registration en-
ergy to estimate the model parameters {β( f ),θ( f )} for each frame
f . In the subsequent discussion, we drop the superscript f denoting
the frame index for brevity. The registration energy is written as a
weighted sum of several terms

E(θ) = ∑
τ∈T

ωτEτ(θ) (7)

where ωτ ∈ R are the weights associated with each term. We use
the same terms in both stages except the shape prior term, which is
only used during the calibration stage. We now explain each energy
term in T .

4.1. 3D data term

The 3D data term ensures that the model explains the observed
point cloud x ∈ Rn3D×3. We obtain the point cloud from the depth
image and apply furthest point downsampling [QSMG17] for ef-
ficient downstream processing. Additionally, we also calculate the
normal x⊥i ∈ R3 to the ith point by locally fitting a plane [Rus09].
We use the point-to-plane ICP [CM91] to define the 3D data term

Edata3D(θ) =
n3D

∑
i=1

(xi− yi(θ))
ᵀ y⊥i (8)

where yi ∈ R3 is the closest point on the mesh corresponding to xi,
and y⊥i is the normal at yi. Computing the closest point on the mesh
for every data point is expensive since we have to project each point
on every face and find the closest point on that triangle. To compute
yi efficiently on a mesh, we evaluate a random subset of predefined
ns barycenters on the mesh and associate the one that minimizes
the distance to the observed point xi (see Figure 6). We obtain the
closest point on the mesh, yi as

yi(θ) = argmin
b j

(
‖xi−b j(θ)‖2 +ω

⊥‖x⊥i −b⊥j (θ)‖2
)

(9)

where b j ∈ R3 and b⊥j ∈ R3 are the position and normal of the
jth evaluated barycenter respectively, where j ∈ {1,2, . . . ,ns}. The
normal term prohibits selecting points that might be closer but face
away from the camera, as shown by Taylor et al. [TBC∗16].

4.2. 2D data term

We utilize additional information from the background region of
the depth image, which suggests that the model should not project
on it. We capture this information via the model’s distance to data
in the 2D image space. For efficiency, we evaluate another set of
predefined barycenters to obtain the 2D image space positions p ∈
Rn2D×3 that are used to compute the 2D alignment energy as

Edata2D(θ) =
n2D

∑
i=1
‖qi− pi(θ)‖2 (10)
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Figure 6: The two rows show two different hand pose fits to down-
sampled, observed 3D point cloud (orange). We plot the closest
point correspondences in 3D with short red lines that indicate the
distance to the corresponding point (blue) on the mesh. As the iter-
ations progress, the fit and the correspondences improve.

Figure 7: Each row shows a different example of updating cor-
respondences in 2D. The leftmost image in each row is the input
depth image. The hand in the top row is further away from the cam-
era than the one in the bottom row, thus the difference in colors:
orange and dark red. The correspondences between image space
positions (in blue) and the closest points on the silhouette (in or-
ange) improve from their initial estimate (middle image in each
row) as the iterations progress and the fit converges (rightmost im-
age in each row)

where qi ∈ R2 is the 2D image space position of the closest point
on the silhouette, computed using the distance transform [MQR03]
of the cropped depth image; we only consider points that lie outside
the silhouette (see Fig. 7).

4.3. Pose prior terms

Minimizing only the data terms leads to unrealistic poses due to
noisy and partial data from the monocular depth sensor. To avoid
overfitting to this insufficient data, we introduce two prior terms on
the pose.

To naturally restrict physically implausible rotations, we explic-
itly re-parameterize the over-parameterized MANO pose parame-
ters (3-DoF axis angles for each joint) by defining an axis of ro-
tation for each degree of freedom (DoF) in the rest pose as shown
in Fig. 3. This intuitive pose representation allows us to impose
bounds

[
θi,θi

]
on each articulation angle using an angle bound en-

ergy term

Ebound(θ) = ∑
i

max(0,θi−θi)
2 +max(0,θi−θi)

2 (11)

We also model the correlation among the articulation angles
using a data-driven prior. Specifically, we construct a PCA pose
space from the recorded hand poses from Kinect v1 by Schröder
et al. [SMRB14] and enforce the articulation angles to lie close
to this low-dimensional linear subspace. Instead of introducing the
PCA coefficients in the optimization, we use the projective PCA
from Tagliasacchi et al. [TST∗15] which allows rewriting the en-
ergy only in terms of the original pose parameters as

Epca(θ) = ‖(θ−µ)−ΠΣ
2
Π
ᵀ(θ−µ)‖2 (12)

where Π ∈ R|θ|×|θ| is the PCA basis matrix, µ ∈ R|θ| is the mean
pose, and Σ ∈ R|θ|×|θ| is the diagonal matrix containing the stan-
dard deviation of the data along the PCA basis. This term increases
the robustness of our method against occlusion.

4.4. Intersection term

We add an intersection term to penalize inter-penetration among
fingers. (The intersection between fingers and palm is handled by
the angle bound term.). We define a set of proxy spheres [TBC∗16]
to approximate the fingers in the hand mesh as shown in Fig. 8.
Each sphere has a heuristically defined constant radius r ∈ R and
a center c ∈ R3 defined by a convex combination of the neighbor-
ing vertices. We adapt the cylinder-based intersection term from
Tagliasacchi et al. [TST∗15] to our sphere-based intersection en-
ergy. Specifically, the intersection energy minimizes the distance
between the deepest penetration points xi ∈ R3 and x j ∈ R3 be-
tween two intersecting spheres i and j

Eint(θ) = ∑
(i, j)∈S

(
xi(θ)− x j(θ)

)ᵀ x⊥i (θ) (13)

where S is the set of sphere pairs excluding those belonging to the
same finger and x⊥i (θ) =

c j(θ)−ci(θ)
‖c j(θ)−ci(θ)‖ and xi(θ) = ci(θ)+rix⊥i (θ).

4.5. Temporal smoothness

So far, all the terms depend only on a single frame, which leads
to jittery tracking. Therefore, we enforce a velocity constraint on
the model keypoints. We do not enforce this constraint directly on
the pose angles because a small perturbation on angles closer to the
root of the kinematic chain has a larger effect than those that are
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Figure 8: Intersection between proxy spheres helps detect finger
intersection and is used to compute the intersection term. As the
iterations converge, the intersecting fingers are pushed apart.

Figure 9: We plot the Y coordinate of the tip of the pinky finger for
150 frames of the BigHand dataset for user 1. When the temporal
smoothness term is present (green), the plot follows the smooth tra-
jectory of the ground-truth (blue) more accurately than when it is
absent (red).

further away [TST∗15]. Our temporal smoothness term for frame
f is given by

Etemp(θ) =
nk

∑
i=1
‖k( f )

i (θ)− k( f−1)
i ‖2 (14)

We show the effect of the temporal smoothing term in Fig. 9
where we plot the Y coordinate of the tip of the pinky finger for
150 frames of the BigHand dataset for user 1. The plot is noticeably
smoother with the temporal smoothness term present.

4.6. Fingertip re-initializer

To further improve the robustness of our tracker, we incorporate
a fingertip energy term, similar to Taylor et al. [TBC∗16]. This
term enforces the model’s fingertips t ∈ R5×3 to be close to the
detected fingertips t̂ obtained from a discriminative hand pose es-

timation network [HRW∗20, WPGY18] trained on annotated pairs
of cropped depth image of a hand and corresponding keypoints.

Einit(θ) =
5

∑
i=1
‖ti(θ)− t̂i‖2 (15)

This term allows us to recover from tracking failure caused due
to fast motion or tracking error accumulated over multiple frames,
which can lead to incorrect initialization for the optimization pro-
cedure if we only depend on the pose optimized in the previous
frame.

4.7. Shape prior

To avoid drifting away from a human hand shape, we regularize
the shape parameter β by enforcing it to lie close to the mean of the
PCA shape space in MANO.

Eshape(β) = ‖β‖2 (16)

4.8. Optimization

All the energy terms are written as a sum of squared residuals,
which leads to a nonlinear least-squares optimization problem. We
linearize each term and solve using the Levenberg-Marquardt algo-
rithm [Lev44, Mar63]. Further, we use a discrete optimization over
the 3D correspondences at each iteration: we sample a new set of
barycenters and update the correspondences if any of the new cor-
respondences are closer than the previous ones. This aids in faster
convergence and allows a surprisingly small number of barycenters
(ns) to be used at each iteration for Equation 9.

We observe that naively sampling random barycenters on the
hand mesh leads to more points on the palm region and fewer on the
fingers. Since fingers play a crucial role in estimating the pose, we
partition the mesh into parts and use a part-based sampling strat-
egy that ensures samples are selected from each part, as shown in
Fig. 10.

To initialize the pose for the current frame, we use the previous
frame’s optimized pose; for the first frame, we register the model to
the keypoints obtained either from the dataset or marked manually.

5. Evaluation

Datasets In this section, we evaluate our proposed hand model,
aMANO, and tracking framework on a variety of publicly avail-
able hand pose datasets viz., BigHand [YYS∗17] (10 users, each
with 6 viewpoints; total of around 2 million frames; Intel RealSense
SR300), HANDS2019 [AGHB∗20] (around 175000 frames; In-
tel RealSense SR300), GuessWho [TTR∗17] (12 users; total of
around 80000 frames; Intel RealSense SR300), NYU [TSLP14]
(2 users; total of around 8000 frames; PrimeSense Depth Cam-
era) and MSRA [SWL∗15] (9 users, each with 17 gestures; total of
around 75000 frames; Intel’s Creative Interactive Gesture Camera).
Further, we use a Kinect v2 sensor to capture multiple depth se-
quences of users from different demographics (4 children between
the age of 7-9 years, 4 adult females, 2 adult males) performing six
gestures (flexion/extension, adduction/abduction, open/close fist,
global transforms, American sign language, random) with a total
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Figure 10: Right: Naively sampling random barycenters on the
hand mesh leads to more points on the palm (large area, more
faces) region and fewer on the fingers (small area, fewer faces).
Left: We statically divide the hand mesh into parts. Middle: Our
part-based sampling strategy ensures samples are selected from
each part, resulting in more samples on the fingers which are im-
portant for pose registration.

of around 20000 frames. We show samples from our dataset along
with the tracking result in Fig. 11.

Metrics We quantitatively evaluate the registration or fitting accu-
racy using two dense metrics: data-to-model error E3D and model-
to-data error E2D, and a sparse metric: keypoint error Ek. Given an
observed depth image D(data), a rendered depth image of the model
D(model), E3D is defined as

E3D =
1

|D(data)| ∑
p∈D(data)

‖p−ΠD(model)(p)‖ (17)

where ΠD(model) denotes the closest point correspondence of the ob-
served data point p to the rendered model point cloud, and E2D is
defined as

E2D =
1

|D(model) \∂D(data)| ∑
x∈D(model)\∂D(data)

‖x−Π
∂D(data)(x)‖

(18)
where ∂D(data) is the hand region’s image space silhouette, and
D(model) \ ∂D(data) denotes the set of rendered model points that
lie outside the observed data silhouette. More information about
the metrics can be found in Tkach et al. [TPT16]. Given a set of
observed keypoints k(data) and k(model), the keypoint error is given
by

Ek =
1
|k| ∑

i∈{1...|k|}
‖k(data)

i − k(model)
i ‖ (19)

where ki ∈R3 is the ith keypoint. We report keypoint error wherever
k(data) is available in the annotated dataset.

Implementation We run all our experiments on a desktop machine
with an Intel i7-7700, 3.60GHz processor, and 32GB of RAM. Our
tracking framework runs entirely on the CPU and is implemented
purely in Python. Our calibration and tracking stages run consis-
tently at around 10 frames per second. We observe that 10 LM iter-
ations per frame are sufficient for convergence in most cases.

Optimization Hyperparameters The hyperparameters used in
the optimization play a significant role in the behaviour of the

Method E3D (in mm)
Remelli et al. [RTTP17] (offline) 2.5
Tkach et al. [TTR∗17] (offline) 2.3
Our framework with aMANO (online) 3.1

Table 1: Tracking accuracy on the GuessWho dataset.

method. The weights used for the energy terms are ω3d = 1,
ω2d = 0.01, ωbound = 100, ωpca = 0.1, ωint = 100, ωtemp = 0.1,
ωinit = 0.1. The number of points used in the 3D and 2D data terms
are n3D = 200 and n2D = 400 respectively. We list these parameters
here to aid reproducibility of our results.

5.1. Calibration: aMANO v/s MANO

We demonstrate the capability of our proposed hand model,
aMANO, over MANO by calibrating both models to our cap-
tured dataset. For both MANO and aMANO, we use our energy
optimization-based calibration method described earlier. The re-
sults are shown in Fig. 12. We can see that aMANO successfully
adapts and fits adult and children’s hands, whereas MANO can-
not adapt to hand sizes that are significantly far from its training
data. For example, MANO cannot adapt to children’s hand sizes,
whereas aMANO gracefully adapts to unseen hand sizes.

5.2. Tracking accuracy

To validate the accuracy of our tracking framework, we register
aMANO on the GuessWho, NYU, and MSRA datasets. We provide
qualitative results on all these datasets in Fig. 13

In Table 1, we quantitatively compare our online calibration and
tracking method on the GuessWho dataset with two state-of-the-art
offline methods [RTTP17, TTR∗17] that use a sphere-mesh model
with a large number of shape parameters. These methods are offline
because they fit the mesh to the input depth by simultaneously op-
timizing over multiple frames. In contrast, we perform much faster
per frame online iterations. Our results are competitive with the of-
fline methods, with much less computational effort.

We report our tracking accuracy on the NYU and MSRA datasets
in Table 2 and Table 3 respectively. Here we compare our track-
ing method with state-of-the-art hand pose estimation methods for
each dataset. For a fair comparison with just our tracking frame-
work, first, we calibrate aMANO to each dataset. Then we register
this mesh only to the estimated keypoints from these methods and
measure the E3D and E2D metrics. For our framework, we register
the same mesh to the depth point cloud and the fingertips obtained
from these methods. Our tracking framework provides a more ac-
curate fit, and thus it can be used as a refinement module over hand
pose estimation methods.

We also compare the accuracy of tracking using our framework
with MANO and aMANO on different demographics from our cap-
tured dataset in Table 4. For both models, MANO and aMANO,
we use our shape calibration and tracking stages, to register the
mesh to every input depth frame. The results conclusively show
that aMANO captures hand shapes for all demographics better than
MANO.
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Figure 11: Samples from our captured dataset. The top row shows the captured input depth, the middle row shows the rendered depth of
registerd aMANO and, the bottom row shows the mesh model in grey, fit to the input point cloud in orange.

Figure 12: Comparison between MANO and aMANO by calibrating both models on our captured dataset with hands belonging to different
demographics. Each of the six columns represents a different user. The fitting error plots in the second and third rows for each example show
the quality of the fit. The regions where the two models nearly overlap in depth are colored white, the regions where the model is in front of
depth data are colored red, and where the model is behind the depth data are colored blue.
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Figure 13: Each row shows qualitative results for tracking performed using our method on various dataset. The top row shows results from
the GuessWho dataset. The 2nd and 3rd rows show results from the BigHand dataset (the 3rd row captures are from an ego view), 4th row is
from the NYU dataset, and the final row is from the MSRA dataset. The odd columns are the input depth images from the dataset, the even
columns are the corresponding mesh model fit to the point clouds (in orange) derived from the input depth images.

Method E3D (in mm) E2D (in pixels)
Huang et al. [HRW∗20] 10.1 0.242
Our tracking framework 6.7 0.227

Table 2: Tracking accuracy on the NYU dataset. Both methods
track using meshes calibrated with aMANO and our calibration
method.

Method E3D (in mm) E2D (in pixels)
Wan et al. [WPGY18] 6.8 0.819
Our tracking framework 5.2 0.475

Table 3: Tracking accuracy on the MSRA dataset. Both methods
track using meshes calibrated with aMANO and our calibration
method.

5.3. Effect of pose parameterization

We now show the advantage of using our pose parametrization and
constructed PCA pose prior instead of using MANO’s pose param-

Demographics
E3D (in mm) E2D (in pixels)

MANO aMANO MANO aMANO
Children 5.4 4.5 1.491 0.758
Adult (female) 5.8 5.5 0.765 0.523
Adult (male) 5.9 5.4 0.471 0.363

Table 4: Tracking accuracy with MANO and aMANO on our cap-
tured datasets that contains data across various demographics.

eterization by evaluating the keypoint error on the Hands2019 chal-
lenge dataset [AGHB∗20].

The dataset consists of MANO shape and pose parameters that
are estimated using a gradient-based optimization [BKK19]. Ta-
ble 5 shows the superior performance of our tracking framework
with significantly lower keypoint error than those provided by
the challenge organizers which uses a gradient-based optimiza-
tion [BKK19]. We also plot the fraction of frames within a thresh-
old for each of the metrics in Fig. 14.
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Figure 14: The fraction of frames within distance threshold is plotted against the maximum allowed distance for keypoint error (Ek), data-
to-model error (E3D) and model-to-data error (E2D) metrics for the Hands2019 challenge dataset. Our method (green curve, registered per
frame to both depth and keypoints) works better than the method used by the challenge organizers, Baek et al. [BKK19] (red curve). We
also register only to the keypoints (blue curve) and observe that our pose parameterization is significantly better than the PCA pose space of
MANO.

Method Ek (in mm)
Baek et al. [BKK19] 16.4
Our framework (with aMANO) 5.9

Table 5: Keypoint error (Ek) comparison on the Hands2019 chal-
lenge dataset between our framework and Baek et al. [BKK19].

Left out energy term E3D E2D Ek
(in mm) (in pixels) (in mm)

3D data term 22.4 0.787 12.8
2D data term 4.1 0.518 12.1
Pose prior 7.8 0.420 13.6
Intersection penalty 5.7 0.301 12.2
Temporal smoothness 4.5 0.298 12.0
Fingertip reinitializer 3.3 0.274 21.490
None 4.0 0.295 11.9

Table 6: Ablation study of energy terms present in the optimization
objective. This study was performed on 10000 frames of user 1 in
viewpoint "1 75" of the BigHand dataset.

5.4. Effect of energy terms

We show the importance of the terms in our energy function as
described in Section 4 by an ablation study on a sequence of the
BigHand dataset.

In Table 6 we observe that the surface fitting (E3D) and silhouette
fitting (E2D) metrics are minimum when all the energy terms are
included in the optimization. In each row of the table, we remove
one energy term from the optimization objective and report its error
on the various error metrics.

6. Conclusion

We present an intuitive and mathematically robust extension to ex-
isting hand shape models to accommodate users with different hand
sizes. We demonstrate that our hand model is capable of represent-
ing hand sizes of very different demographics, including that of

children, which was not possible until now. We also present a state-
of-the-art framework that can register our model to depth data with
competitive tracking accuracy. We plan to release our code and thus
making it the only publicly available model-fitting hand tracking
solution that uses triangle meshes that can be easily integrated with
existing pipelines.

Our current local scale parameters can only adapt along the di-
rection of bones; however, we can further increase the shape space
by introducing the ability to vary the thickness of fingers and the
palm. In this paper, we work only with depth data. However, the
aMANO model and our tracking framework should be able to gen-
eralize to RGB data as well with appropriately designed energy
terms.
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