
Learning Physics with a Hierarchical Graph Network

Nuttapong Chentanez1,2 , Stefan Jeschke1 , Matthias Müller1 , Miles Macklin1

1NVIDIA
2Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University

Figure 1: Ground truth vs. Our method vs. GNS [SGGP∗20] vs. Our method (smaller version) for a test scene with obstacles. The scene is
not used for training. Our method yields less error, trains and inferences substantially faster than GNS and consumes less memory.

Abstract
We propose a hierarchical graph for learning physics and a novel way to handle obstacles. The finest level of the graph consist
of the particles itself. Coarser levels consist of the cells of sparse grids with successively doubling cell sizes covering the
volume occupied by the particles. The hierarchical structure allows for the information to propagate at great distance in a
single message passing iteration. The novel obstacle handling allows the simulation to be obstacle aware without the need
for ghost particles. We train the network to predict effective acceleration produced by multiple sub-steps of 3D multi-material
material point method (MPM) simulation consisting of water, sand and snow with complex obstacles. Our network produces
lower error, trains up to 7.0X faster and inferences up to 11.3X faster than [SGGP∗20]. It is also, on average, about 3.7X faster
compared to Taichi Elements simulation running on the same hardware in our tests.
(see https://www.acm.org/publications/class-2012)

CCS Concepts
• Computing methodologies → Neural networks; Physical simulation;

1. Introduction

Over the past few decades, there has been a large number of physics
simulation research in computer graphics. One promising simula-
tion method is the material point method (MPM), which has been
demonstrated to be able to simulate wide varieties of materials
such as water, sand, snow, goop, lava, elastic objects, cloth and
thin shells. A MPM solver can either be explicit, which does not
require a linear solver or implicit, which requires a linear solver.
Explicit MPM, while simpler to implement and cheaper per sub-
step, requires smaller sub-step size to keep the simulation stable.
Implicit MPM, on the other hand, is more complex to implement

and runs slower per sub-step. However, it can typically take larger
time steps.

Recently, there has been a number of works attempting to use
deep learning to learn to simulate physics such as [SGGP∗20, PF-
SGB20,TKC21]. Benefits of using deep learning include a potential
to simulate with larger time steps, differentiability and flexibility to
trade-off speed and quality, to name a few.

We propose a hierarchical graph network capable of predicting
the effective acceleration resulting from multiple sub time steps of
MPM simulation. To the best of our knowledge, this is the first
time that deep learning is demonstrated to be capable of learning
3D multi-materials MPM simulation with complex obstacles and

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2022
D. L. Michels and S. Pirk
(Guest Editors)

Volume 41 (2022), Number 8
DOI: 10.1111/cgf.14643

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4412-5326
https://orcid.org/0000-0003-4330-8884
https://orcid.org/0000-0003-2442-3801
https://orcid.org/0000-0003-3954-8009
https://doi.org/10.1111/cgf.14643

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

run faster than the simulator, on the same hardware. Our main con-
tributions include:

• Hierarchical graph network that allows information to propagate
to and be gathered from far away.

• Obstacle handling that does not require the use of ghost particles.
• Demonstration that the network can learn multi-material 3D

MPM with complex obstacles.
• Demonstration of its advantage over previous method: lower er-

ror, faster training, faster inferencing and lower memory foot-
print, as well as being faster than the MPM simulator, on the
same hardware.

• Demonstration of its ability to trade off speed and accuracy.

2. Related Works

MPM was first introduced in [SZS95]. It became popular in com-
puter graphics when it was used for simulating snow in [SSC∗13].
Affine particle-in-cell (APIC) method was introduced to improve
its accuracy in [JSS∗15]. To reduce computational cost, mov-
ing least square MPM (MLS-MPM) was proposed in [HFG∗18].
An excellent introduction to MPM for computer graphics can
be found in a course note [JST∗16]. More recent works include
multi-GPU MPM [WQS∗20], anisotropic damage [WCL∗20], ar-
bitrary updated Lagrangian MPM [SXHA21], second order accu-
rate in time MPM [SXH∗21], integration scheme to reduce dissipa-
tion [FGW∗21] and momentum conserving MPM [CKMR∗21] to
name a few.

MLS-MPM, in particular, has been popularized due to its speed
by an open source implementation Taichi Elements [tai]. It uses
a domain specific language Taichi [HLA∗19, HAL∗20, HLY∗21]
which is demonstrated to typically run faster than even a hand op-
timized implementation in most cases. We use it for generating our
training data.

Deep learning (DL) has been applied to learn physics in re-
cent years. A great introduction to the subject can be found in
[TBMK22]. A closely related field of using physics to guide DL
is surveyed in [WY21]. We focus on the related work that apply
DL to learn physics of particles based simulation, as they are most
relevant to our works.

Li et al. [LWT∗18] use an interaction graph to learn particle
based fluid-rigid body and rigid body-elastic object interactions.
Ummenhofer et al. [UPTK20] use continuous convolution to learn
liquid simulation with obstacles. Martinkus et al. [MLP20] learn
2D n-body problem with a graph build on a quadtree. Tumanov et
al. [TKC21] uses a sub-pixel convolution to learn particle based
fluid simulations with obstacles. Lino et al. [LCBF21] use a multi-
scale graph network to learn 2D fluid on an unstructured point set.
Park et al. [PLL21] use time-wise point net to learn physics of 2D
deformable objects. Chen et al. [CCGC21] uses neural network to
do model reduction for a single material deformable object simu-
lated with MPM without obstacle interaction. Xue et a. [XAM22]
use a graph network to learn physics of soft mechanical metama-
terial. Odot et al. [OHC22] use a fully connected network to learn
deformation of a hyper-elastic material simulated with FEM.

Sanchez-Gonzalez et al. [SGGP∗20] train graph based mes-
sage passing networks to learn 2D multi-material MPM, 2D MPM

with obstacles and 3D MPM without obstacles. They named their
method graph network simulation (GNS). It is since adopted in
many works. Mayr et al. [MLM∗21] insert virtual boundary nodes
and features in GNS to learn granular flow in triangle mesh do-
mains. Pfaff et al. [PFSGB20] extends GNS to include material
space connection allowing for learning mesh based elastic bodies.
Li et al. [LF22] use GNSs to separately learn advection, collision
and pressure projection steps for particle based fluid simulation.
Klimesch et al. [KHT22] investigate the use of multi-step loss to
improve generalizability of GNS for learning particle based fluid
simulation. Li et al. [LMYBF22] use GNS to learn dynamics of
Lennard-Jones systems and water particle systems. Tuomainen et
al. [TBMK22] use GNS to learn granular flow and then train a con-
troller to pour sand from a cup that matches real world behavior.
The main drawback of GNS is that it only propagate information
via particles immediate neighbors. This allows for information to
propagate only up to the neighbor’s radius in a one iteration. More-
over, the number of neighbors can be large, around a hundred in
3D, which leads to large memory usage and computation time. Our
method utilizes a hierarchy of grids to allow information to propa-
gate further distance in one iteration, while also having fewer con-
nections. GNS handles obstacles using extra boundary particles,
while our method uses additional features but no extra particles.
This also leads to smaller network size, as the extra particles are
not needed. As GNS is the only method that we are aware of that
was demonstrated to be able to learn multi-material MPM, we com-
pare our work with it.

3. Method

We let ∆t be the time step and let xn
i , vn

i and an
i denote the posi-

tion, velocity and acceleration of particle i at time step n respec-
tively. ti denotes the type of particle i. fi denotes the feature vec-
tor of particle i. m is the number of time steps our network takes
into account in predicting the acceleration. Our main simulation
loop is summarized in Algorithm 1. The compute_features and

Algorithm 1: The main loop for our DL based simulation,
where the acceleration is predicted by a neural network.

n = 0
while simulating do

for each particle i do
fi = compute_features(xn

i ,x
n−1
i , ..,xn−m

i , ti)
end
ãn = predict_acceleration(f)
for each particle i do

vn+1
i = vn

i +∆tãn

xn+1
i = xn

i +∆tvn+1
i

end
n = n+1

end

predict_acceleration steps are explained in Sections 3.1 and 3.2 re-
spectively. Without loss of generality, we use ∆t = 1 in training and
inferencing for simplicity. We represent the obstacle as a sparse grid
with grid spacing ∆x where each cell stores the average normal of
the obstacle within the cell or zero if there’s no such obstacle. The

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

284

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

average estimated by sampling the obstacle surface uniformly with
points so that no two points are closer than ∆x

4 . For each point, its
normal is taken from the surface. The normal is negated if the dot
product of the normal and the vector from the point to the center
of the enclosing cell is negative. The normals of all the points in a
given cell are added and normalized to obtain the cell normal. We
let no

i denote the normal of the cell containing xn
i . ∆x is chosen to

be the same as the grid spacing used for MPM simulation.

3.1. Feature Computation

The features fi is in the form (vn
i ,v

n−1
i , ...,vn−m+1

i ,no
i ,di,ei) where

di is a 6D vector representing the signed distance of particle i to the
6 planes of the axis aligned bounding box (AABB) of the domain
clamped to a value dmax, vn− j

i = xn− j
i − xn− j−1

i . ei is an E di-
mension embedding of particle type, ti. The embedding maps each
particle type to a RE vector, whose value is learned during training,
similar to [SGGP∗20].

We perform normalization of the input before feeding to the net-
work as followes: vn− j

i are normalized with the mean and standard
deviation computed from the training data. no

i is already normalized
and di is divided by dmax. ei are learnable parameters so they are
not normalized. The network output is normalized with the mean
and standard deviation of vn+1

i −vn
i computed from the whole train-

ing data.

We note that [SGGP∗20] treats obstacles by approximating them
with particles and include them as a type of particle. We instead
handle obstacles by having no

i and do not have any obstacle parti-
cle. Because there can be a large number of obstacle particles in a
complex 3D scene, our method uses far fewer number of particles
in such scene. This will be discussed in more detail in the result
section.

3.2. Acceleration Prediction

We predict the acceleration using a hierarchical graph, which al-
lows information to propagate over large distance quickly. The
main architecture is shown in Figure 2. We first build a sparse grid,
whose grid spacing is R. The sparse grid cells are those whose cell
centers have non-zero tri-linear interpolation weights for some par-
ticles, as illustrated in Figure 3. Particle information will be trans-
ferred to these 8 nearby cell centers as will be explained shortly.
The next coarser level is constructed by merging 2x2x2 cells into
bigger cells. We construct L levels of grid. For the sake of clarity
in explaining our method, Figure 2 demonstrates for L = 3 and the
computation steps are numbered. Note that in the actual implemen-
tation, we use L = 4 in all examples.

We make use of a building block of a fully connected network
(FCN) with a single hidden layer using LeakyReLU activation, op-
tionally followed by a layer normalization, as shown in Figure 4.
We will refer to this building block as FCN in the rest of the pa-
per. Unless explicitly stated, layer normalization is always used. To
avoid confusion, FCNs that appear in different places in our archi-
tecture do not share any weights.

In step 0, Particle Features -> Latent Space Encoding, we use

FCN on f of each particle to compute a latent space encoding, f p

which will be used as the input to step 1.

In step 1, Particle -> Grid, we create (particle i, cell j) pairs for
each particle to the nearby 8 cells centers with non-zero tri-linear
interpolation weights. We then use FCN with input [f p

i from step
0, offset vector from the particle i to cell center j] and accumulate
the output to each cell, weighted by the interpolation weight. The
accumulated value at each cell is referred to as f c

In step 2, Cell -> Cell message passing (similar to steps 4,6,8,10),
we perform passes of graph message passing [BHB∗18] in this
step. Specifically, the graph nodes are the active cells. The graph di-
rected edges link adjacent active cells, ie. each active cell is linked
to upto 6 active cells. Let f e denote the features at the directed
edges, which we initialize to the difference of the positions of the
two end points of the edges divided by the grid spacing. M message
passing steps are then performed with residual connections to up-
date the values of f c and replace/update f le. The first iteration of
the message passing replaces the value of f e while the remaining
iterations update it with residual connection. The process is illus-
trated in Figure 5, where each FCNe operates on each directed edge
(i, j) between the cell i to j and takes in the input as [f c

i , f c
j , f e

i, j].
Its output is then used to replace/update f e

i, j and scatter to node j
and passed through FCNc to compute an update to f c

j .

In step 3, Fine Grid -> Coarse Grid (same as 5), we create (fine
cell ifine, coarse cell jcoarse) pairs from adjacent 2x2x2 fine cells
merging into a coarse cell. We then, for each pair, use an FCN with
input [f c

ifine
, offset vector from the fine cell center ifine to coarse

cell center jcoarse] and accumulate the output to the coarse cell
jcoarse to obtain f c

jcoarse .

In step 7, Coarse Grid -> Fine Grid (same as 9), we create (coarse
cell icoarse, fine cell jfine) pairs from coarse cell splitting into
2x2x2 fine cells. We then, for each pair, use an FCN with input
[f c

icoarse , f c
jfine

, offset vector from the coarse cell center icoarse
to fine cell center jfine] and add the output to f c

jfine
to refine its

value.

In step 11, Grid -> Particles, we create (cell i, particle j) pairs for
each particle to the nearby 8 cell centers with non-zero tri-linear in-
terpolation weights. We then, for each pair, use an FCN with input
[f c

i , f p
j , offset vector from the cell center i to particle j] and accu-

mulate the output, weighted by the interpolation weight, to ∆ f p
j .

In step 12, Particle Latent Space Encoding -> Acceleration, for
each particle i, we use an FCN with input f p

i +∆ f p
i to predict the

acceleration of the particle.

3.3. Training

Our training data consists of 800 randomly generated scenes of
1x1x1 unit size. Each scene has 5 randomly chosen obstacles from
half box, square, half sphere, cone, pyramid with randomized size
between 0.1 to 0.5 units placed randomly with random orientation,
such that they are not overlapping. Each scene consists of 4 groups
of particles either a sphere or a cube shape with side/diameter of
0.08 units randomly placed so that they do not overlap with ob-
stacles. Each group is randomly chosen to be water, sand or snow.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

285

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

Figure 2: Illustration of the main idea of our method. First, latent space encoding is computed from the features at each particle (0).
Information is then transferred to the cell centers of the sparse grid enclosing the particles (1). The information then flows to progressively
coarser grids (3,5), with message passing to propagate information at each level (2,4,6). It then flows back to finer grids (7,9), again with
message passing at each level (8,10), and flows back to particles (11). Finally, the acceleration is computed from the updated latent space
encoding (12).

Figure 3: Illustration of the tri-linear interpolation weights and
active cells calculation. Cell centers are shown as squares. A par-
ticle has non zero tri-linear interpolation with the nearby cells,
shown as red dotted lines for one particle. In this particular case,
all cells except the two bottom right cells are active.

Figure 4: Fully Connected Network (FCN) with 1 hidden layer
using LeakyLeRU activation, optionally with layer normalization
layer.

The total number of particles ranges from 2-5k particles in each
scene, with the average of 3610 particles. The scene is then sim-
ulated with Taichi Elements [tai] using a frame time step of 1

60 s,
which Taichi Elements will use multiple sub steps of MPM simula-
tion to simulate each frame. We run each simulation for 5 seconds,
which consists of 300 frames. We additionally generate 5 random
scenes for validation and a number of test scenes for generating the
accompany videos. We also generate another dataset without ob-
stacles for comparing our method with GNS. It is done in a similar
manner to the above, except that obstacles are excluded.

We use a mini batch consisting of all particles of a randomly
sampled time step of a randomly chosen scene for training. Using
mini batch of 2 or more scenes typically cause GNS [SGGP∗20] to
run out of memory during training in our 32GB GPUs, therefore,
we stick with 1 scene per mini-batch for the purpose of comparison.

We also randomly add noise to perturb input in the same manner
as [SGGP∗20].

We also randomly jitter the origin of the sparse grid with a ran-
dom offset chosen within [0,−R]x[−R,0]x[−R,0]. This allows the
networks to see more variations in particle position relative to grid
centers and be invariant to the absolute position of particles.

We use the one step Mean Square Error (MSE) of accelera-

tion computed as ∑i ||ãn
i −(vn+1

i −vn
i)||

2

number of particles , as the loss function simi-

lar to [SGGP∗20]. We however do not need to mask out kinematic
particles, as all particles are part of the simulation. Adam optimizer
with learning rate decay from 10−4 to 10−6 over 20M updates is
used for training as in [SGGP∗20].

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

286

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

Figure 5: Message passing steps. M iterations of message passing are done on features on cell center, f c, and features on edges, f e. The
first step replaces the value of f e, while other steps update it.

3.4. Inference

We save the network weights and structure out to binary files and
write a CUDA program to evaluate the forward pass. We also eval-
uate particle features and construct the hierarchy of sparse grid in
C++ and CUDA, so that Algorithm 1 runs entirely on the GPU.

4. Results

We use ∆x = 1/64 = 0.015625, the same as the grid spacing for
MPM and R = 0.035, E = 16, m = 5 which was used in GNS
[SGGP∗20]. We use dmax = 8R, M = 4, δvnoise = 0.000848528.
We use NVIDIA DGX1 machine with 8 V100 GPUs for training in
Pytorch and use NVIDIA RTX3090 for inferencing with C++ and
CUDA.

We compare our method with GNS for both the training and in-
ference phases. As with our method, we use Pytorch for training
and output the network weights to binary files and write a C++ and
CUDA program for inferencing. We also use an optimized GPU
spatial hash grid [THM∗03] to locate particle neighbors and con-
struct the graph. The entire simulation using GNS runs on a GPU
with CUDA, so the comparison with our proposed method is fair.

For GNS, we use the connectivity radius of R = 0.035, the same
as what they use in their paper [SGGP∗20] and the same as what we
use for the finest sparse grid cell size. We set the distance for nor-
malizing and clamping the distance to wall to dmax = 8R because
we first experiment with GNS and tune dmax so that their method
produce the smallest error and we did not tune them further when
experimenting with our method. dmax needs to be set substantially
higher than used in their paper, which used R, because the time
step we use for generating MPM data is much larger than theirs,
namely 1/60 = 0.01666s vs 0.005 (for water) or 0.0025 (for goop
and sand). The number of message passing steps is 10, the same
as what they use in their paper. We use a single hidden layer for
all fully connected networks appeared in GNS, similar to our FCN.
This is because 1 hidden layer yields similar error to 2 hidden lay-
ers and runs substantially faster, as also reported in [SGGP∗20].

We monitor our network and GNS training by computing the one
step MSE of acceleration, measured by taking the average across all
frames of the 5 fixed scenes from the training set every 100k itera-
tions. We also compute the error using 5 scenes from the validation
set. They are referred to as one-step training and validation errors
respectively. We stop training after the validation error plateaus out.
This happens before 12M iterations in all experiments. For each
experiment, we keep the network that yields the smallest validation
error and use them for measuring inference time and for produc-
ing the accompanying videos. We also compute the rollout MSEs

of the training and validation set, which is the MSE of the particle
position across 300 frames of a full roll out of either our method or
GNS, every 100k iterations. Throughout this section, training time
refers to the average time it takes for each iteration of training mea-
sured by running the training on all frames from the 5 fixed training
scenes used for measuring the training error. Inferencing time refers
to the average time per frame for executing Algorithm 1, including
the time for building the graphs or sparse grid, evaluating the net-
work and updating velocity and position, measured over the 5 fixed
validation scenes for computing the validation error.

We first compare our method with GNS for the case without
obstacles. The dataset in this case is generated without obstacles
and the input features of obstacle normals are removed. Figure 6
shows the training error and the validation one-step error. Our net-
work yields lower errors in both cases. Our method also generally
yields lower rollout MSE, as shown in Figure 7. On average, the
training time and inferencing time per step for our method are
157.84ms and 12.28ms respectively. GNS training and inferenc-
ing time are 448.38ms and 52.98ms respectively. Therefore, our
method is 2.84 and 4.31 times faster for training and inferencing
respectively. Hence, our network is both several times faster and
produces lower error. A screenshot of the ground truth, our method
and GNS of a frame from a test scene with obstacles is shown in
Figure 8 and the accompanying video. One can notice in the accom-
panying video that the snow deform erroneously for GNS, while
our method better preserves the shape like in the ground truth sim-
ulation.. The scene is from a test set, not used during training nor
validation.

For scenes with obstacles, our method has even a greater advan-
tage compared to GNS as presented in [SGGP∗20], as they need
to include static particles in their system. As they use 10 message
passing steps, one would need to include static particles that are
within 10R from simulation particles. In our training dataset with
an average of 3610 simulation particles, across all scenes and all
frames, the average number of static particles needed to be included
is 6160, if we were to sample the surface of the obstacle uniformly
with particles so that no two particles are closer than ∆x

4 . The size of
the GNS network was sometimes even too large to fit within 32GB
memory. Therefore, we can’t directly train their network on our
dataset with obstacles. However, we can estimate its running time,
as the running time grows approximately linearly with the num-
ber of particles. Our method, for the scenes with obstacles, takes
139.22ms for training and 11.01ms testing, as will be discussed
in more details in the next paragraph. The 5 fixed training scenes
with obstacles have on average 3683 particles and would have 5714
static particles within 10R of simulation particles averaged across

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

287

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

Figure 6: One step MSE of the acceleration predicted by GNS and our method without obstacle of the training and validation set, averaged
over 5 fixed scenes, measured every 100k iterations. Our method yields lower error, as well as being several times faster.

Figure 7: MSE of the position across 300 time steps over a full rollout of GNS and our method without obstacle of the training and validation
set, averaged over 5 fixed scenes, measured every 100k iterations. Our method yields lower error, as well as being several times faster.

Figure 8: Ground truth vs. Our method vs. GNS for test scene without obstacle. The scene is not used for training. On average, our method
yields less error, train and inference substantially faster than GNS and consume much less memory.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

288

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

all frames. The numbers for the 5 validing scenes with obstacles are
3887 and 6174 respectively. The 5 fixed training scenes without ob-
stacles have on average 4296 particles and the 5 validating scenes
without any obstacle also have on average 4296 particles. There-
fore, the estimated training time for GNS of [SGGP∗20] would be
448.38× 3683+5714

4296 = 980.78ms and the estimated inferencing time
would be 52.98× 3887+6174

4298 = 124.02ms. Therefore, our training is
expected to be 7.04 times faster and inferencing would be 11.26
times faster compared to [SGGP∗20], if the required memory was
available.

Now, we focus on analyzing the speedup gain due to the use of
a hierarchical network alone. We train GNS using our input rep-
resentations, which has per particle features for obstacles, but do
not require including the obstacle particles in the system. Figure 9
shows the training and validation one step MSE, where our method
produces smaller error. Our method, however, yields similar roll-
out MSE to GNS, as shown in Figure 10. We argue though that
the rollout MSE is more noisy and is affected a lot by a hit or
miss collision with obstacles, which can change the trajectory of
particles significantly. Therefore, we think one-step MSE is more
reliable in this case. The training time and inferencing time per it-
eration for our method is 139.22ms and 11.01ms, while for GNS,
they are 412.26ms and 48.56ms. Therefore, our method is 2.96 and
4.41 times faster in training and inferencing respectively. The max-
imum memory usage for our method during training and inference
are 0.93GB and 0.21GB respectively, while GNS use 14.04GB and
1.89GB. Our network is several times faster, produces lower one
step MSE and consume much less memory. This demonstrates that
our hierarchical graph provides a significant advantage over GNS.
A screenshot of ground truth, our method and GNS of a frame from
a test scene with obstacles is shown in Figure 1. The scene is from
a test set, not used during training nor validation.

The main reasons our method is significantly faster is because of
its hierarchical nature and the fewer connections. For our dataset,
the average number of particles is 3610, while there are only 1554
finest sparse grid cells. Steps 1 and 11, in Figure 2, are the most
expensive steps, but they only involve the data of size 8 times the
number of particles (as each particle connects to 8 cells). Step 0 and
12 run independently per particle. The rest of the layers involve
the hierarchy grids, with 8 connections to the adjacent level and
6 connections to neighboring cells. For GNS, the data is typically
around 103 times the number of particles, as there are around 103
neighbors per particles on average and most computations operate
on the connection between neighboring particles.

Taichi Elements has substantial launch overhead regardless of
the number of particles. Therefore, to be more fair to them, we com-
pare our inference time to Taichi Elements simulation time by using
10x more particles , which makes the launch overhead smaller rel-
ative to the total running time. This is done by placing ten times
more initial spheres/cubes on the 5 validing scenes, so the average
number of particles per scene is now 39752 particles. On average,
our method takes 121.01ms per step for inferencing, while Taichi
Elements uses 449.83ms per step, so in this case, our method is
3.72 times faster than Taichi Elements.

We also experiment with using a smaller network which uses
M = 2 denoted as Ours (small) in Figure 1,9,10 and the accom-

panying videos. It produces similar, or only slightly worse, one
step MSE and rollout MSE to GNS. The training time per itera-
tion is 98.72ms and the inference time is 8.11ms per frame, which
makes the small network about 1.41 and 1.35 times faster than
our default network for training and inferencing respectively. This
demonstrates the possibility of having the ability to trade-off accu-
racy with speed of DL.

We also run our network on scenes with more particles than used
during training as shown in Figure 11 and also on much larger
scenes in Figure 12 and the accompanying video. Non-zero obsta-
cle normal of cells are stored in a spatial hash table [THM∗03],
indexed by the integer coordinate of the cell, so we never need a
dense grid. Our method is able to produce plausible results in these
challenging cases, even though they are quite different from the
training set.

5. Discussion

While our method yields lower error, runs significantly faster and
consumes less memory compared to GNS, it still has some draw-
backs. First, our experiment currently consists of 3 materials, wa-
ter, sand and snow with fixed parameters. It will be interesting for
future work to experiment with varying material parameters for
each of these materials and include them in the input too. Sec-
ond our method, like GNS, when applied to learn physics of per-
fectly elastic material, the object will still lose its rest shape slowly
over time. This is because it does’t have material space informa-
tion. [PFSGB20] addressed this issue with material space connec-
tions. However, we focus on the multi-material case in this work
and the material space connection is almost meaningless for wa-
ter and sand. More work will be required to incorporate this into
the hierarchical graph and make it work well with elastic mate-
rials and other types of materials at the same time. Third, while
our network consumes less memory compared to GNS, it still re-
quires more memory than a well coded explicit MPM solver, due
to the large dimensionality of features. It may be interesting in a
future work to experiment with using lower precision floating point
representations and quantization to reduce this requirement. Forth,
there is currently no guarantees that the network will never produce
ghost acceleration. Ghost acceleration can be clearly observed dur-
ing early stage of training of large network and also for converged
smaller networks that have lower capacity. A novel loss function
that considers this may be required to completely eliminate this is-
sue, and is an interesting venue for future work.

In conclusion, we propose a new DL method for learning 3D
multi-material MPM with obstacles. This is achieved by handling
obstacles without ghost particles and a hierarchical graph. This re-
sults in lower error, faster training, faster inferencing and smaller
memory footprint compared to GNS [PFSGB20]. We also demon-
strate the ability to achieve a trade-off between speed and accuracy
with DL.

References
[BHB∗18] BATTAGLIA P. W., HAMRICK J. B., BAPST V., SANCHEZ-

GONZALEZ A., ZAMBALDI V. F., MALINOWSKI M., TACCHETTI A.,
RAPOSO D., SANTORO A., FAULKNER R., ÇAGLAR GÜLÇEHRE,
SONG H. F., BALLARD A. J., GILMER J., DAHL G. E., VASWANI A.,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

289

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

Figure 9: One step MSE of the acceleration predicted by GNS, our method and our method using smaller network with obstacles of the
training and validation set, averaged over 5 fixed scenes, measured every 100k iterations. Our method yields lower error, as well as being
several times faster than GNS. Our method using smaller network has similar error to GNS and run even faster.

Figure 10: MSE of the position across 300 time steps over a full rollout of GNS, our method and our method using smaller network with
obstacles of the training and validation set, averaged over 5 fixed scenes, measured every 100k iterations. The errors are somewhat similar.
We argue though that rollout MSE is quite noisy and is affected a lot by collision against obstacles, so it may not be as reliable as one-step
acceleration MSE in this case.

Figure 11: Our method is used for simulating various scenes with more particles than those used during training.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

290

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

Figure 12: Our method is used for simulating various scenes with more particles and 4x, 9x and 16x bigger domain size than those used
during training.

ALLEN K. R., NASH C., LANGSTON V., DYER C., HEESS N. M. O.,
WIERSTRA D., KOHLI P., BOTVINICK M. M., VINYALS O., LI Y.,
PASCANU R.: Relational inductive biases, deep learning, and graph net-
works. ArXiv abs/1806.01261 (2018). 3

[CCGC21] CHEN P. Y., CHIARAMONTE M., GRINSPUN E., CARL-
BERG K.: Model reduction for the material point method
via an implicit neural representation of the deformation map,
2021. URL: https://arxiv.org/abs/2109.12390, doi:10.
48550/ARXIV.2109.12390. 2

[CKMR∗21] CHEN J., KALA V., MARQUEZ-RAZON A., GUEIDON E.,
HYDE D. A. B., TERAN J.: A momentum-conserving implicit material
point method for surface tension with contact angles and spatial gradi-
ents. ACM Trans. Graph. 40, 4 (jul 2021). URL: https://doi.
org/10.1145/3450626.3459874, doi:10.1145/3450626.
3459874. 2

[FGW∗21] FEI Y. R., GUO Q., WU R., HUANG L., GAO M.: Re-
visiting integration in the material point method: A scheme for easier
separation and less dissipation. ACM Trans. Graph. 40, 4 (jul 2021).
URL: https://doi.org/10.1145/3450626.3459678, doi:
10.1145/3450626.3459678. 2

[HAL∗20] HU Y., ANDERSON L., LI T.-M., SUN Q., CARR N.,
RAGAN-KELLEY J., DURAND F.: Difftaichi: Differentiable program-
ming for physical simulation. ICLR (2020). 2

[HFG∗18] HU Y., FANG Y., GE Z., QU Z., ZHU Y., PRADHANA A.,
JIANG C.: A moving least squares material point method with dis-
placement discontinuity and two-way rigid body coupling. ACM Trans.
Graph. 37, 4 (jul 2018). URL: https://doi.org/10.1145/
3197517.3201293, doi:10.1145/3197517.3201293. 2

[HLA∗19] HU Y., LI T.-M., ANDERSON L., RAGAN-KELLEY J., DU-
RAND F.: Taichi: a language for high-performance computation on spa-
tially sparse data structures. ACM Transactions on Graphics (TOG) 38,
6 (2019), 201. 2

[HLY∗21] HU Y., LIU J., YANG X., XU M., KUANG Y., XU W., DAI
Q., FREEMAN W. T., DURAND F.: Quantaichi: A compiler for quan-
tized simulations. ACM Transactions on Graphics (TOG) 40, 4 (2021).
2

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOM-
AKHIN A.: The affine particle-in-cell method. ACM Trans. Graph.
34, 4 (jul 2015). URL: https://doi.org/10.1145/2766996,
doi:10.1145/2766996. 2

[JST∗16] JIANG C., SCHROEDER C., TERAN J., STOMAKHIN A.,
SELLE A.: The material point method for simulating continuum
materials. In ACM SIGGRAPH 2016 Courses (New York, NY,
USA, 2016), SIGGRAPH ’16, Association for Computing Machinery.
URL: https://doi.org/10.1145/2897826.2927348, doi:
10.1145/2897826.2927348. 2

[KHT22] KLIMESCH J., HOLL P., THUEREY N.: Simulating liq-
uids with graph networks. CoRR abs/2203.07895 (2022). URL:
https://doi.org/10.48550/arXiv.2203.07895, arXiv:
2203.07895, doi:10.48550/arXiv.2203.07895. 2

[LCBF21] LINO M., CANTWELL C., BHARATH A. A., FOTIADIS S.:
Simulating continuum mechanics with multi-scale graph neural net-
works, 2021. URL: https://arxiv.org/abs/2106.04900,
doi:10.48550/ARXIV.2106.04900. 2

[LF22] LI Z., FARIMANI A. B.: Graph neural network-
accelerated lagrangian fluid simulation. Computers Graphics 103
(2022), 201–211. URL: https://www.sciencedirect.
com/science/article/pii/S0097849322000206,
doi:https://doi.org/10.1016/j.cag.2022.02.004.
2

[LMYBF22] LI Z., MEIDANI K., YADAV P., BARATI FARIMANI A.:
Graph neural networks accelerated molecular dynamics. The Jour-
nal of Chemical Physics 156, 14 (2022), 144103. URL: https://
doi.org/10.1063/5.0083060, arXiv:https://doi.org/
10.1063/5.0083060, doi:10.1063/5.0083060. 2

[LWT∗18] LI Y., WU J., TEDRAKE R., TENENBAUM J. B., TOR-
RALBA A.: Learning particle dynamics for manipulating rigid bodies,
deformable objects, and fluids, 2018. URL: https://arxiv.org/
abs/1810.01566, doi:10.48550/ARXIV.1810.01566. 2

[MLM∗21] MAYR A., LEHNER S., MAYRHOFER A., KLOSS C.,
HOCHREITER S., BRANDSTETTER J.: Boundary graph neural networks
for 3d simulations, 2021. URL: https://arxiv.org/abs/2106.
11299, doi:10.48550/ARXIV.2106.11299. 2

[MLP20] MARTINKUS K., LUCCHI A., PERRAUDIN N.: Scal-
able graph networks for particle simulations, 2020. URL:
https://arxiv.org/abs/2010.06948, doi:10.48550/
ARXIV.2010.06948. 2

[OHC22] ODOT A., HAFERSSAS R., COTIN S.: Deepphysics: A physics
aware deep learning framework for real-time simulation. International
Journal for Numerical Methods in Engineering 123 (2022), 2381 – 2398.
2

[PFSGB20] PFAFF T., FORTUNATO M., SANCHEZ-GONZALEZ A.,
BATTAGLIA P. W.: Learning mesh-based simulation with graph net-
works. URL: https://arxiv.org/abs/2010.03409, doi:
10.48550/ARXIV.2010.03409. 1, 2, 7

[PLL21] PARK J., LEE D., LEE I.-K.: Flexible networks
for learning physical dynamics of deformable objects, 2021.
URL: https://arxiv.org/abs/2112.03728, doi:
10.48550/ARXIV.2112.03728. 2

[SGGP∗20] SANCHEZ-GONZALEZ A., GODWIN J., PFAFF T., YING
R., LESKOVEC J., BATTAGLIA P.: Learning to simulate complex

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

291

https://arxiv.org/abs/2109.12390
https://doi.org/10.48550/ARXIV.2109.12390
https://doi.org/10.48550/ARXIV.2109.12390
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.1145/3450626.3459874
https://doi.org/10.1145/3450626.3459678
https://doi.org/10.1145/3450626.3459678
https://doi.org/10.1145/3450626.3459678
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1145/2766996
https://doi.org/10.1145/2766996
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.1145/2897826.2927348
https://doi.org/10.48550/arXiv.2203.07895
http://arxiv.org/abs/2203.07895
http://arxiv.org/abs/2203.07895
https://doi.org/10.48550/arXiv.2203.07895
https://arxiv.org/abs/2106.04900
https://doi.org/10.48550/ARXIV.2106.04900
https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://doi.org/https://doi.org/10.1016/j.cag.2022.02.004
https://doi.org/10.1063/5.0083060
https://doi.org/10.1063/5.0083060
http://arxiv.org/abs/https://doi.org/10.1063/5.0083060
http://arxiv.org/abs/https://doi.org/10.1063/5.0083060
https://doi.org/10.1063/5.0083060
https://arxiv.org/abs/1810.01566
https://arxiv.org/abs/1810.01566
https://doi.org/10.48550/ARXIV.1810.01566
https://arxiv.org/abs/2106.11299
https://arxiv.org/abs/2106.11299
https://doi.org/10.48550/ARXIV.2106.11299
https://arxiv.org/abs/2010.06948
https://doi.org/10.48550/ARXIV.2010.06948
https://doi.org/10.48550/ARXIV.2010.06948
https://arxiv.org/abs/2010.03409
https://doi.org/10.48550/ARXIV.2010.03409
https://doi.org/10.48550/ARXIV.2010.03409
https://arxiv.org/abs/2112.03728
https://doi.org/10.48550/ARXIV.2112.03728
https://doi.org/10.48550/ARXIV.2112.03728

N. Chentanez, M. Macklin, M. Müller, S. Jeschke / Learning Physics with a Hierarchical Graph Network

physics with graph networks. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (13–18 Jul 2020), III H. D.,
Singh A., (Eds.), vol. 119 of Proceedings of Machine Learning Re-
search, PMLR, pp. 8459–8468. URL: https://proceedings.
mlr.press/v119/sanchez-gonzalez20a.html. 1, 2, 3, 4, 5,
7

[SSC∗13] STOMAKHIN A., SCHROEDER C., CHAI L., TERAN J.,
SELLE A.: A material point method for snow simulation. ACM Trans.
Graph. 32, 4 (jul 2013). URL: https://doi.org/10.1145/
2461912.2461948, doi:10.1145/2461912.2461948. 2

[SXH∗21] SU H., XUE T., HAN C., JIANG C., AANJANEYA M.: A
unified second-order accurate in time mpm formulation for simulating
viscoelastic liquids with phase change. ACM Trans. Graph. 40, 4 (Aug.
2021). 2

[SXHA21] SU H., XUE T., HAN C., AANJANEYA M.: A-ulmpm: An
arbitrary updated lagrangian material point method for efficient simula-
tion of solids and fluids, 2021. URL: https://arxiv.org/abs/
2108.00388, doi:10.48550/ARXIV.2108.00388. 2

[SZS95] SULSKY D., ZHOU S.-J., SCHREYER H. L.: Applica-
tion of a particle-in-cell method to solid mechanics. Computer
Physics Communications 87, 1 (1995), 236–252. Particle Simula-
tion Methods. URL: https://www.sciencedirect.com/
science/article/pii/0010465594001707, doi:https:
//doi.org/10.1016/0010-4655(94)00170-7. 2

[tai] Taichi elements. https://github.com/taichi-dev/
taichi_elements. 2, 4

[TBMK22] TUOMAINEN N., BLANCO-MULERO D., KYRKI V.: Ma-
nipulation of granular materials by learning particle interactions. IEEE
Robotics and Automation Letters 7, 2 (2022), 5663–5670. doi:10.
1109/LRA.2022.3158382. 2

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMER-
ANTES D., GROSS M. H.: Optimized spatial hashing for collision de-
tection of deformable objects. In VMV (2003). 5, 7

[TKC21] TUMANOV E., KOROBCHENKO D., CHENTANEZ N.: Data-
driven particle-based liquid simulation with deep learning utilizing sub-
pixel convolution. Proc. ACM Comput. Graph. Interact. Tech. 4, 1 (apr
2021). URL: https://doi.org/10.1145/3451261, doi:10.
1145/3451261. 1, 2

[UPTK20] UMMENHOFER B., PRANTL L., THUEREY N., KOLTUN V.:
Lagrangian fluid simulation with continuous convolutions. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020 (2020), OpenReview.net. URL:
https://openreview.net/forum?id=B1lDoJSYDH. 2

[WCL∗20] WOLPER J., CHEN Y., LI M., FANG Y., QU Z., LU J.,
CHENG M., JIANG C.: Anisompm: Animating anisotropic damage me-
chanics. ACM Trans. Graph. 39, 4 (jul 2020). URL: https://doi.
org/10.1145/3386569.3392428, doi:10.1145/3386569.
3392428. 2

[WQS∗20] WANG X., QIU Y., SLATTERY S. R., FANG Y., LI M., ZHU
S.-C., ZHU Y., TANG M., MANOCHA D., JIANG C.: A massively par-
allel and scalable multi-gpu material point method. ACM Trans. Graph.
39, 4 (jul 2020). URL: https://doi.org/10.1145/3386569.
3392442, doi:10.1145/3386569.3392442. 2

[WY21] WANG R., YU R.: Physics-guided deep learning for dynamical
systems: A survey, 2021. URL: https://arxiv.org/abs/2107.
01272, doi:10.48550/ARXIV.2107.01272. 2

[XAM22] XUE T., ADRIAENSSENS S., MAO S.: Learning the nonlinear
dynamics of soft mechanical metamaterials with graph networks. CoRR
abs/2202.13775 (2022). URL: https://arxiv.org/abs/2202.
13775, arXiv:2202.13775. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

292

https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/2461912.2461948
https://doi.org/10.1145/2461912.2461948
https://arxiv.org/abs/2108.00388
https://arxiv.org/abs/2108.00388
https://doi.org/10.48550/ARXIV.2108.00388
https://www.sciencedirect.com/science/article/pii/0010465594001707
https://www.sciencedirect.com/science/article/pii/0010465594001707
https://doi.org/https://doi.org/10.1016/0010-4655(94)00170-7
https://doi.org/https://doi.org/10.1016/0010-4655(94)00170-7
https://github.com/taichi-dev/taichi_elements
https://github.com/taichi-dev/taichi_elements
https://doi.org/10.1109/LRA.2022.3158382
https://doi.org/10.1109/LRA.2022.3158382
https://doi.org/10.1145/3451261
https://doi.org/10.1145/3451261
https://doi.org/10.1145/3451261
https://openreview.net/forum?id=B1lDoJSYDH
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392428
https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442
https://arxiv.org/abs/2107.01272
https://arxiv.org/abs/2107.01272
https://doi.org/10.48550/ARXIV.2107.01272
https://arxiv.org/abs/2202.13775
https://arxiv.org/abs/2202.13775
http://arxiv.org/abs/2202.13775

