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Abstract
Multi-person novel view synthesis aims to generate free-viewpoint videos for dynamic scenes of multiple persons. However,
current methods require numerous views to reconstruct a dynamic person and only achieve good performance when only a single
person is present in the video. This paper aims to reconstruct a multi-person scene with fewer views, especially addressing the
occlusion and interaction problems that appear in the multi-person scene. We propose MP-NeRF, a practical method for multi-
person novel view synthesis from sparse cameras without the pre-scanned template human models. We apply a multi-person
SMPL template as the identity and human motion prior. Then we build a global latent code to integrate the relative observations
among multiple people, so we could represent multiple dynamic people into multiple neural radiance representations from
sparse views. Experiments on multi-person dataset MVMP show that our method is superior to other state-of-the-art methods.

Keywords: dynamic human, multi-person, view synthesis, vol-
ume rendering, 3D deep learning

1. Introduction

In this paper, we propose MP-NeRF that aims to achieve free-
viewpoint rendering of multi-person video from sparse views,
which has promising potential applications in AR/VR, immersive
gaming, interactive telepresence, movie productions, and sports
broadcasting. Despite significant successes brought by traditional
computer graphics techniques showing impressive performance,
synthesizing photorealistic video content still requires expensive
capture equipment such as dense cameras, pre-scanned templates,
commercial RGBD sensors, and repetitive human labor for 3D con-
tent creation.

Among previous free-viewpoint video generation of human-
centric dynamic scenes, reconstruction solutions [MKGH16,
CCS∗15] model high-fidelity structure and render texture with
novel views by a multi-view dome-based setup. However, the syn-
thesis results depend on the reconstructed mesh resolution and fail
to capture large-scale captured scenes. On the other hand, image-
based rendering (IBR) techniques [GGSC96, CTMS03, ZKU∗04]
require densely captured viewpoints to interpolate textures in novel
views. The free-view results, however, are vulnerable to occlu-
sions and suffer from limited views that can be interpolated from
the densely captured views, leading to abnormal texture arti-
facts. Benefiting from the improvement of neural rendering tech-
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niques [TFT∗20], recent data-driven methods [MGK∗19a,TZT∗18,
WWHY20a, MST∗20, BMSR20] are able to generate photorealis-
tic free-viewpoint video for static scenes without reliance on 3D
template. Specifically, recent work [PSB∗20, TTG∗20, RJY∗20,
OMT∗20] also reconstruct the dynamic scene via neural radiance
field .

Despite the remarkable performance in the free-viewpoint syn-
thesis of the dynamic scenes, the above solutions still suffer from
several drawbacks when extending to human dynamic scenarios.
Recent work Peng et al. [PZX∗21] solve the above problems by in-
corporating smpl-guided latent codes over video frames to achieve
human synthesis and non-rigid manipulation from sparse views.
However, this method is limited to single-person synthesis. When
extended to multiple people, this method requires a cumbersome
process for each person to be handled separately, and at the same
time, it failed to handle the problem of occlusion between people.
Recent work ST-NeRF [ZLY∗21] synthesizes multiple entities in-
cluding human performers by neural layered representation. How-
ever, ST-NeRF still requires 16 cameras and is unable to manipulate
the reconstructed human to act in new poses.

Generating free views containing multiple people from sparse
views with occlusion handling is a challenging task. To tackle the
above problems, we propose MP-NeRF which is the first approach
to synthesize photorealistic free-viewpoint videos of multi-person
scenes from sparse views, utilizing only 4 cameras to cover a view
range up to 360 degrees. Compared with the extension of the tradi-
tional single-person method to multiple people, each person needs
to be processed individually and the interaction between people is
difficult to simulate naturally. The key idea of our work is to build
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a global latent code that illustrates the relative location and person
identification to control the spatial location of latent codes on dif-
ferent human SMPL surfaces [LMR∗15]. To this end, our method
firstly adopts a multi-way matching algorithm for multiple persons’
3D pose estimation stage, which intuitively reflects the spatial in-
formation from the coarse relative distance and SMPL parameter
among multiple people. At the same time, to use the corresponding
temporal information we also need to track the same person in long
videos containing multiple people. Instead of learning each per-
son separately, we build an identity-aware global latent code as the
multi-person implicit representations by anchoring a set of latent
codes to the vertices of multi-person SMPL templates, which are
utilized to express the multiple human body surfaces and relative
distances.

To address the occlusion among multiple persons from sparse
views, a novel occlusion-aware neural radiance field is proposed.
We construct multiple volumes with an affine transformation to rep-
resent multiple people in a scene. Specifically, given point X and
viewing direction D, we design a combination of different volumes
by selecting the maximum value of color and density among all
volumes when occlusion appears. Representing the multi-person
scene as compositional neural radiance fields is conducive to ex-
tending our multi-person synthesis to various content creations by
editing each person.

To summarize, the main contributions of our work include:

• We are the first to build dynamic multi-person free-view syn-
thesis tasks from sparse views. This work can achieve photo-
realistic multi-person static scene synthesis and generalization
of new actions in dynamic scenes.

• We introduce a global implicit code with identity information
to encode the relative location for multiple people in a frame
and the identity for each person among frames. Thus, a series
of implicit codes are mapped to the implicit field of density and
color in different frames which naturally integrates multi-frame
and multi-person observation.

• We propose a novel occlusion-aware neural radiance field that
combines multiple people in a scene with an affine transforma-
tion. The density and color of each point obtained by the neural
network regression are then extended between multiple people.

2. Related Work

2.1. Image-based rendering.

Image-based rendering aims to synthesize free views without de-
tailed 3D geometry reconstruction. To obtain novel views from
densely sampled images, some methods [GGSC96,DLD12] utilize
light field interpolation. While the render results look impressive,
the range of views that could be rendered is limited. To tackle this
problem, [CDSHD13, PZ17] regard depth maps from input images
as proxy geometries. They adopt the depth maps to warp observed
images into the novel view and conduct image blending. However,
these approaches are sensitive to the accuracy of 3D proxy geome-
tries. Instead of hand-crafted parts of the image-based rendering
pipeline, [KWR16,HPP∗18,CGT∗19] adopt the learnable counter-
parts to improve the robustness.

2.2. Implicit neural representation

With the development of differentiable rendering, recent methods
apply the deep neural networks in scene representations learning
from 2D RGB images with differentiable renderers, such as voxels
[STH∗19,LSS∗19], textured meshes [TZN19,LXZ∗19,LSMG20],
point clouds [WWHY20b,ASK∗20], multi-plane images [ZTF∗18,
FBD∗19], and implicit functions [SZW19, LZP∗20, NMOG20,
MST∗20, LGZL∗20]. Specifically, SRN [SZW19] introduces an
implicit neural representation that maps 3D coordinates to feature
vectors. In a further step, a differentiable ray marching algorithm is
adopted to render 2D feature maps, which are then interpreted into
images with a pixel generator. Moreover, NeRF [MST∗20] repre-
sents the whole scenes with implicit fields of color and density,
which achieves photorealistic view synthesis results from dense
views. Instead of utilizing dense view camera settings and repre-
senting the whole scene with a single implicit function, our ap-
proach introduces global latent codes for multiple people, which
are used with a network to record the multi-person identification
and multi-person geometry and appearance. Moreover, our method
adopts multi-person neural radiance fields and compositions to rep-
resent each person more flexibly and handle the problem of multi-
person occlusion.

2.3. Human performance capture

Existed approaches [NFS15, CCS∗15, DKD∗16, GLD∗19] adopt
the traditional pipeline to synthesize novel views of humans. The
limitation is that previous methods depend on either RGBD sen-
sors [CCS∗15, DKD∗16, SXZ∗20] or a dense view camera set-
ting [DHT∗00, GLD∗19] to obtain the high quality reconstruc-
tion. [MBPY∗18, MGK∗19b, WWHY20b] replace the traditional
rendering methods with neural networks to deal with the geomet-
ric artifacts. To obtain human models in sparse multi-view cam-
eras, template-based methods [CTMS03, DAST∗08, GSDA∗09,
SGDA∗10] utilize the pre-scanned human models as the guidance.
Given the deformed template shapes, these methods could recon-
struct dynamic humans. However, the deformed geometries tend
to be distorted, and pre-scanned human shapes are uneasy to ob-
tain. Furthermore some monocular methods [NSH∗19, SHN∗19,
ZYW∗19, SSSJ20] utilize the data-driven network to obtain the
human prior, which makes it possible for them to reconstruct 3D
human geometry and appearance from only a single image. Unfor-
tunately, these methods fail to achieve photorealistic view synthesis
and multi-person capture from sparse views.

3. Multi-person Neural Radiance Field

3.1. Overview

Our task aims to generate a free-viewpoint video of multiple per-
formers by utilizing sparse multi-view pre-calibrated RGB cam-
eras. The multi-view video is denoted as {I i

t |i = 1, ...,Ni, t =
1, ...,Nt}, where i is the camera index, Ni is the number of cameras,
t is the frame index, and Nt is the number of frames. For each view,
we utilize [GLL∗18] to obtain the foreground multi-person mask
and set the values of the background image pixels as zero similar to
[PZX∗21]. Figure 1 illustrates the pipeline of our method. Firstly,
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Figure 1: Pipeline of our MP-NeRF approach.

an off-the-shelf 3D multi-person pose estimation is adopted to pre-
dict the 3D keypoints of each person from the multi-view video.
To obtain the identification of each person among the video frame,
we track the different persons and interpolate missing frames. As a
result, we could fit the SMPL model on the tracked 3D keypoints to
the identity-aware multi-person SMPL template. Given the multi-
person SMPL template, we build the global latent variable model.
The obtained SMPL template with identity information needs to
go through the code diffusion process to obtain the global posi-
tion latent codes near the surface (Section3.2). Then we extend the
density and color of each point in the 3D space by neural network
regression among multiple people (Section 3.3). Finally, the image
of any view can be obtained by volume rendering (Section 3.4).
The whole network is obtained by minimizing the rendered image
and input images for training. (Section 3.5)

3.2. Identity-aware structured latent codes

To control the spatial location of latent codes on different hu-
man body surfaces, we need to obtain human body templates
(SMPL) with identity information in multi-person scenarios. Dif-
ferent from the previous multi-person performance capture meth-
ods which independently predict each person’s SMPL and then
combine them via post-processing, we apply a multi-way matching
algorithm [DJH∗19] to estimate the multi-person 3D keypoints to-
gether. This method could better reflect the relative positions and
actions of multiple people. At the same time, compared with the
previous method which requires multiple inferences correspond-
ing to multiple people [ZSZ∗21], our method only needs to infer
once. This is especially advantageous when the number of peo-
ple increases. To obtain the multi-person 3D pose estimation, we
firstly utilize the Cascaded Pyramid Network [CWP∗18] to get
the 2D keypoints location of each people. Then we match the de-
tected 2D poses in different views by clustering the 2D bounding
boxes which belong to the same person. Moreover, multi-person
3D keypoints position could be effectively inferred by the result-
ing cluster which encodes the consistent correspondence across 2D

observations among multiple views. On the other hand, we also
need to track the same person among multiple people in differ-
ent video frames. Thus we not only obtain the coarse position and
shape of the multiple people in each frame, but we also obtain the
corresponding identities of each person between frames. Then, we
could build the identity-aware structured latent codes. Structure la-
tent codes for a single person are similar to the local implicit repre-
sentations [JSM∗20,CLI∗20,GCS∗20] which are used to constrain
the codes to express the dynamic human body. For multi-person
scenarios, we build a global latent codes Z = {Z1,Z2, ...,Zi} on
vertices of the multi-person SMPL model, where i represents the
number of person and Zi = {z1,z2, ...,z6890}. However, the struc-
tured latent codes are only applied on the vertices of the SMPL
model, which are too sparse that most 3D points are zero vec-
tors after interpolating for continuous 3D locations. We apply the
SparseConvNet [GEVDM18] to diffuse the sparse structure latent
codes define on the SMPL vertices to nearby 3D space for better
trilinear interpolation. Different from single structure latent code
for single person [PZX∗21], our global latent code integrates the
relative location of multi-person in a frame and the identity of each
person among frames. Thus, a series of implicit codes are mapped
to the implicit field of density and color in different frames which
naturally integrates multi-frame and multi-person observation.

3.3. Multi-person neural radiance fields and compositions

The core of our method is a novel multiple neural volume represen-
tation for multi-person photo-realistic novel view synthesis. Neural
Radiance Fields (NeRFs) [MST∗20] parameterize the continuous
function f with a multi-layer perceptron(MLP) which maps the 3D
point x ∈ R3 and a viewing directon d ∈ S2 to an RGB color value
c ∈ R3 and a volume density σ ∈ R+:

fθ : RLx ×RLd → R+×R3 (1)

(γ(x),γ(d)) 7→ (σ,c) (2)
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Figure 2: Multi-person SMPL reconstruction.

where θ illustrates the network parameters, γd and γx are posi-
tional encoding functions for viewing direction and spatial location.
Lx,Ld are the output dimensionalities of the positional encodings
applied element-wise to each component of x and d:

γ(t,L) = (sin(20tπ),cos(20tπ), . . . ,sin(2Ltπ),cos(2Ltπ)) (3)

where t represents a scalar input, a component of x or d, and
L the number of frequency octaves. However, the pure NeRFs
[MST∗20,PZX∗21] require dense views to synthesize the free-view
scene and fail to generalize to the dynamic scenes such as new
poses for the person. To tackle this problem, we apply the identity-
aware structure latent code vector as the input of MLP networks to
predict the color and density of points in 3D space.

For the frame t, the volume density at point x is predicted as a
function of only the latent code ψ(x,Z,St), which is defined as:

σt(x) = Mσ(ψ(x,Z,St)), (4)

where Mσ represents an MLP network with four layers.

Similar to [LSS∗19, MST∗20], we take both the latent code
ψ(x,Z,St) and the viewing direction d as input for the color
regression. To model the location-dependent incident light, the
color model also takes the spatial location x as input. We observe
that temporal variation factors affect the human appearance, such
as secondary lighting and self-shadowing. Inspired by the auto-
decoder [PFS∗19], we assign a latent embedding ℓt for each video
frame t to encode these temporal variation factors.

Specifically, for the frame t, the color at x is predicted as a
function of the latent code ψ(x,Z,St), the viewing direction d,
the spatial location x, and the latent embedding ℓt . Following
[RBA∗19, MST∗20], we apply the positional encoding to both the
viewing direction d and the spatial location x, which enables better
learning of high frequency functions. The color model at frame t is
defined as:

ct(x) = Mc(ψ(x,Z,St),γd(d),γx(x), ℓt), (5)

where Mc represents an MLP network with two layers, and γd and
γx are positional encoding functions for viewing direction and spa-
tial location, respectively. We set the dimension of ℓt to 128 in ex-
periments.

At the same time, the pure NeRFs meet another limitation that

they could only represent the entire scene but not disentangle dif-
ferent entities in the scene [NG21]. Compared with the method of
reconstructing the whole scene by a single volume, our method is
able to disentangle each person by constructing multiple volumes
inspired by [NG21]. Then the synthesis of different actions of char-
acters can be realized, which can be further extended to the editing
of multiple people, thus providing a wider range of application sce-
narios for our method. Specifically, we represent each person using
a separate volume in combination with an affine transformation

T = {t,R} (6)

where t ∈ R3 represent translation parameters, and R ∈ SO(3) a ro-
tation matrix. Using this representation, we transform points from
object to scene space as follows: k(x) = R ·x+ t This allows us
to arrange multiple people in a scene. Since the multi-person scene
will encounter the problem of occlusion between people, if only
each person is reconstructed separately, it will not reflect the in-
fluence of other people on the person. To solve this problem, we
query the color and density of each point in each volume and then
we combine them to get the final color and density of the point.
Compared with a single-person method, our method not only con-
siders the color and density state of a single person in space but
also considers the influence of other people, so it can obtain better
free-view synthesis especially when there exit occlusion situation
among multiple people.

Figure 3: Occlusion-aware neural radiance field.

3.4. Multi-person Rendering

Through volume rendering technology, multi-person free-view 2D
images could be rendered with 2D supervision. Therefore, there is
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no need to use multi-person 3D scan data as supervision. The pixel
colors are calculated via the volume rendering integral equation
[KVH84] which accumulates volume colors and densities along
the corresponding camera ray. Specifically, the integral could be
approximated via numerical quadrature [Max95, MST∗20]. Given
a pixel, we first compute its camera ray r using the camera parame-
ters and sample Nk points {xk}Nk

k=1 along camera ray r between near
and far bounds. The scene bounds are calculated from the SMPL
model. Moreover, MP-NeRF predicts volume densities and colors
at these points. For the video frame t, the rendered color C̃t(r) of
the corresponding pixel is given by:

C̃t(r) =
Nk

∑
k=1

Tk(1− exp(−σt(xk)δk))ct(xk), (7)

where Tk = exp(−
k−1

∑
j=1

σt(x j)δ j), (8)

where δk = ||xk+1−xk||2 is the distance between adjacent sampled
points. We set Nk as 64 in all experiments. With volume rendering,
our model is optimized by comparing the rendered and observed
images.

3.5. Training

Through the volume rendering techniques, we optimize the MP-
NeRF to minimize the rendering error of observed images {Ic

t |c =
1, ...,Nc, t = 1, ...,Nt}:

{ℓt}Nt
t=1,Z,Θminimize

Nt

∑
t=1

Nc

∑
c=1

L(Ic
t ,P

c;ℓt ,Z,Θ), (9)

where Θ means the network parameters, Pc is the camera param-
eters, and L is the total squared error that measures the difference
between the rendered and observed images. The corresponding loss
function is defined as:

L = ∑
r∈R

C̃(r)−C(r), (10)

where R is the set of camera rays passing through image pixels, and
C(r) means the ground-truth pixel color. In contrast to frame-wise
reconstruction methods [SF16,MST∗20], our method optimizes the
model using all images in the video and has more information to
recover the 3D structures.

We adopt the Adam optimizer [KB14] for training the MP-NeRF.
The learning rate starts from 5e−4 and decays exponentially to
5e−5 along the optimization. The training on a four-view video
of 300 frames typically takes around 200k iterations to converge
(about 14 hours).

4. Experiments

4.1. Implementation detail

We evaluate our method on a multi-view dataset called
MVMP [DJH∗19]. This dataset captures 4 dynamic human indoor
videos via a multi-camera system which has only 8 synchronized
cameras arranged around the 4 people to cover the viewing range
up to 360 degrees. Each camera is calibrated and provides the

Table 1: Quantitative results on seen pose among 300 frames

training views testing views
model psnr mse ssim psnr mse ssim
NB 25.0683 0.0016 0.9045 14.6731 0.0610 0.5569
Ours 27.7243 0.0015 0.9598 19.5329 0.0114 0.8461

.

Table 2: Quantitative results on new pose among 300 frames

training views testing views
model psnr mse ssim psnr mse ssim
NB 23.6890 0.0015 0.9187 10.3782 0.091 0.5817
Ours 25.0206 0.0014 0.9350 19.2073 0.0127 0.8205

RGB video at 640 × 360 resolution and 25 frames-per-second. Our
multi-person model is implemented in PyTorch and trained on an
NVIDIA Tesla V100 GPU.

4.2. Metrics

Similar to other novel view synthesis work [ZLY∗21, MST∗20,
PZX∗21], we calculate the corresponding peak signal-to-noise ratio
(PSNR), mean-square error (MSE), and structural similarity index
(SSIM) as quantitative metrics. Moreover, we provide the visual-
izations as a qualitative comparison.

4.3. Comparsions

Since we are the first to do multi-person novel view synthesis under
sparse views, we compare our method with NeuralBody [PZX∗21]
which is a single-person novel view synthesis method. For Neural-
Body, multi-person reconstruction needs to segment each person to
obtain single-person SMPL and then decode the single-person local
latent code volume to color and density values. As shown in Table
1, we compare our method with NeuralBody(NB) of synthesizing
seen poses on training views and testing views. The results show
that our method has higher performance with all three metrics.
Moreover, we also compare the results of synthesizing new(unseen)
poses on both training views and testing views as illustrated in Ta-
ble 2. For all metrics, our method achieves better performance. The
reason is that the training process of each person for NeuralBody is
separate. In contrast, our method allows sharing parameters among
different people and training multiple people together to improve
the representation learning of the network. We also provide quali-
tative results of our method and NeuralBody(NB). As shown in Fig.
3, we compare the reconstruction results of NB and our method un-
der training viewpoints. In the part where multiple people interact
closely with each other, our method outperforms NB. At the same
time, as shown in Fig. 4, we compare the synthesis results of NB
and our method under the testing view. Our method also outper-
forms the single-person reconstruction method.

5. Ablation studies

We conduct ablation studies to explore the performances of our
methods in a different number of camera views. Moreover, we also
compare the effects of different video lengths for the multi-person
novel view synthesis.
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Figure 4: Comparisons on seen poses.

Figure 5: Comparisons on new poses.

5.1. Impact of the number of camera views.

As shown in Table 3, we respectively train our model on 2, 4, and
6 views. The results show that increasing the number of views im-
proves the multi-person synthesis in both training views and testing
views. Our method achieves multi-person novel view synthesis just
from sparse views’ images compared to previous methods which
required dense views [ZLY∗21] or scanning 3D human template
as supervision [ZSZ∗21].

5.2. Impact of the video length.

We train our models on different video lengths and choose 100,
300, and 500 frames respectively. The results in Table 4 show
that increasing the video frames improves the performance of our
method. However, the performance decreases when the frames are
too long. The reason is that it is difficult for our model to fit very
long videos which have also been reported in [PZX∗21].

Table 3: Ablation study on different camera views on seen pose

training views testing views
2 views 4 views 6 views 2 views 4 views 6 views

PSNR 18.4573 25.6401 27.7242 14.3911 19.1092 19.5328

Table 4: Ablation study on different number of frames

training views testing views
100 300 500 100 300 500

PSNR 11.2891 27.7242 24.3402 7.3480 19.5328 18.6229

6. Conclusions

We present MP-NeRF, a novel approach for dynamic multi-person
synthesis from sparse multi-view videos. The key idea of our work
is to propose an identity-aware global latent code, which is able
to incorporate the relative location and identification among mul-
tiple people. The global latent code is anchored on the vertices
of multi-person SMPL templates obtained by multi-way matching
and tracking algorithms among multi-person RGB videos. In a fur-
ther step, we construct occlusion-aware multiple volumes with an
affine transformation to represent multiple people in a scene and
obtain the color and density of points in the occlusion region by
a self-designed combination operator. The experimental results on
the multi-person dataset demonstrate the effectiveness of our ap-
proach in multi-person free-view synthesis from sparse multi-view
videos. We believe that our approach extends the presence of free-
viewpoint to more persons, with abundant potential application in
VR/AR, interactive telepresence, and immersive sports broadcast-
ing. In the future, we plan to improve our work to achieve editing
in the 3D content and increase clarity.
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