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Abstract
By starting with the assumption that motion is fundamentally a decision making problem, we use the world-line concept from
Special Relativity as the inspiration for a novel multi-agent path planning method. We have identified a particular set of problems
that have so far been overlooked by previous works. We present our solution for the global path planning problem for each agent
and ensure smooth local collision avoidance for each pair of agents in the scene. We accomplish this by modelling the collision-
free trajectories of the agents through 2D space and time as rods in 3D. We obtain smooth trajectories by solving a non-linear
optimization problem with a quasi-Newton interior point solver, initializing the solver with a non-intersecting configuration from
a modified Dijkstra’s algorithm. This space–time formulation allows us to simulate previously ignored phenomena such as highly
heterogeneous interactions in very constrained environments. It also provides a solution for scenes with unnaturally symmetric
agent alignments without the need for jittering agent positions or velocities.
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1. Introduction

On a hot dry day in Kruger National Park, an empty truck idles on
the side of a road. Sam, the driver of the truck, has wandered a hun-
dred metres off the road in an attempt to take a picture of a tree with
10 baboons. The baboons suddenly jump out of the tree and charge
towards Sam. Sam panics and starts running back to the truck; how-
ever, coincidentally an elephant wandering in the area is on a path
perpendicular to Sam’s, between her and the truck. How will Sam
get back to the truck safely while outrunning the baboons and avoid-
ing collision with the elephant? What are the paths of the 12 agents
in the scene: Sam, the elephant and the 10 baboons?

This problem illustrated in Figure 1 above poses many challenges
to a multi-agent path planning algorithm. First, Sam must antici-
pate collisions ahead of time, in order to move quickly and effi-
ciently to their truck. Second, the three groups of agents, Sam, the
baboons and the elephant, have dramatically different masses and
behaviours. For instance, while Sam seeks to avoid all animals, the
massive elephant is untroubled, and will stubbornly continue on
its path. Finally, geographic features such as additional trees and

ponds can lead to a highly constrained environment. Existing state-
of-the-art crowd simulation methods struggle to compute anticipa-
tory agent paths in constrained environments when heterogeneous
interactions are involved (Table 1) making them ill-suited for appli-
cation in planning problems such as the example given above.

We propose a new multi-agent path planning algorithm well-
suited for these problems. Our model directly optimizes the space–
time trajectories of all agents which allows for per-agent physical
and psychological characteristics and smooth anticipatory trajec-
tories. A novel, differentiable space–time repulsive energy ensures
collision-free trajectories. Using our approach, Sam arrives safely
at the truck before the baboons.

2. Related Work

Successful multi-agent path planning requires an algorithm to both
correctly model the behaviour of independent agents as well as their
interactions. A common approach is to apply a dynamics model
based on Newton’s second law of motion which is integrated over
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Table 1: Comparison of (1) ORCA [VDBGLM11], (2) Implicit Crowds [KSNG17], the brand new time-to-collision method (3) NH-TTC [DKG20], (4) Repulsive
Curves [YSC21], (5) Continuum Crowds [TCP06], (6) Space–Time Planning With Parameterized Locomotion Control [LLKP11] and (7) Modular Framework
for Adaptive Agent Base Steering ( [SKH*11]). Y—feature is available, N—feature is not possible, P—feature might be possible, but not demonstrated.

Features Ours (1) ORCA (2) IC (3) NH-TTC (4) RC (5) CC (6) STPL (7) AABS

Asymmetric interactions Y N P P N N N N
Extremely constrained environments Y N N P Y N P Y
Smooth local interactions Y N Y N Y N Y N
Intuitive control parameters Y Y N P N N N Y
Multiple agents Y Y Y Y Y Y N Y
Code available online Y Y Y Y Y N N N

Figure 1: Sam needs to escape, from the baboons while avoiding
the elephant, whereas the elephant is unconcerned with the other
agents in the scene and only avoids the pond.

time to produce plausible agent trajectories. Psychological and so-
cial characteristics of the group can be incorporated into the dynam-
ics equations as Social Forces (SF) [PGOSB05, HM98, WLJT17].
Inter-agent forces, such as those that handle collision avoidance are
added through a variety of means, and we can partition the space
of successful approaches based on locality of their models in both
space and time. Approaches such as Guy et al. [GKLM11] incorpo-
rate psychological factors into an underlying dynamics model, but
it is impossible to tell apart the psychological traits of the agents by
simply observing the simulation. Our method makes the impact of
agent characteristics on the trajectory very obvious, while providing
a standalone local and global dynamics model for the scene.

In local methods, agent decision making requires information
only local in space and in time. Local collision avoidance meth-
ods [VDBGLM11, GNCL14, WLP16] compute collision response
using local information in space and time (the planning horizon
can be as small as a single time step). These methods struggle
to generate smooth anticipatory collision responses. Optimization-
based methods such as Implicit Crowds [KSNG17] and Crowd
Patches [RLC*14, YMPT09] attempts to overcome this difficulty.
Implicit Crowds introduces a time-to-collision potential to the
crowd dynamics. This gives agents richer space–time information
on which to act; however, this energy is still effectively local in
time, computed from the current state of the system (position and
velocity). Crowd Patches optimizes for collision-free trajectories

in highly local, patches with fixed start and end positions in space
and time. NH-TTC [DKG20] improves upon prior work by utiliz-
ing longer planning horizon, geometrically represented by curves in
space. Intersection checks between these curves allow agents to re-
act to collisions likely to occur in the near future. Similarly, vision-
based methods, such as Refs. [OPOD10, DMCN*17] provide an
anticipatory collision avoidance model, but with limited path plan-
ning and anticipatory motions and potentially jagged, highly non-
smooth, bumpy agent motion. Data-driven approaches such as Char-
alambous and Chrysanthou [CC14] use an underlying state-action
graph created via external data to generate trajectories. However,
these trajectories are highly data-dependent, do not factor in envi-
ronmental constraints, only seem to operate in sparse crowds and
must be used in conjunction with some other higher level global
path planner.

An alternative approach to more local methods is to extend the
collision response globally in space using a fluid like pressure
solve [Hug02, TCP06, NGCL09]. However, because these meth-
ods only consider the configuration of the system (position and
velocity of each agent) at a single time, their ability to produce
smooth anticipatory collision responses, especially in a sparser set-
ting, is reduced. Continuum Crowds [TCP06] stands out as one of
the only methods that incorporates both a global planner through
Djikstra’s search and local collision avoidance through a fluid-
like pressure solve. Another option is to handle local collision
avoidance using Optimal Reciprocal Collision Avoidance (ORCA)
or SF, as done by the data-driven method [TYK*09], as well as
the video-based method [Sta14] (uses the RVO2 library’s imple-
mentation of ORCA) and the Integer-Linear-Programming-based
method [KGvdS13] (uses SF). One might use [HKHL13], another
data-driven method which uses a purely stochastic collision avoid-
ance method. Another video-based crowd synthesizer, [FR13], de-
velops the idea of using crowd-tubes (a set of video-generated
space–time trajectories) which are used to synthesize novel scenes
from video-clip data. However, this limits scene creation to loop-
ing repeatedly tiled clips of existing video data in wide-open en-
vironments. Importantly, none of the aforementioned approaches
solve the problems of handling tight environmental constraints or
heterogeneous agent interactions for many reasons such as a lack
of global planning in some methods, an inability to anticipate mo-
tion in others and homogeneous agent interactions in most. In
fact, an adjacent field of research that involves measuring the ‘cor-
rectness’ of various crowd models [GVDBL*12, WJGO*14] also
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Figure 2: The repulsive curves energy forces agents to be maxi-
mally far away from one another which is not an intuitive behaviour.

fails to test for heterogeneous agents and behaviour in complex
environments.

Finally, while not strictly designed for multi-agent path planning,
Repulsive Curves [YSC21] can potentially be used for agent plan-
ning. While it yields impressive results in 3D curve untangling,
when applied to multi-agent path planning, it has several draw-
backs. First, in unconstrained environments, Repulsive Curves will
maximally repel agents away as shown in Figure 2. Second, like
other previous methods, there is no straightforward way to model
asymmetric agents. Last, Repulsive Curves use random ‘jitter’ to
ensure that no trajectories initially overlap. From our own experi-
ments, we have observed that this is not sufficient to guarantee non-
overlapping initial trajectories. Meanwhile, our space–time Djik-
stra’s approach is guaranteed to create initially non-intersecting tra-
jectories, but is not sufficient for overcoming the other limitations
of Repulsive Curves.

An attempt to create a cohesive short and long-term path plan-
ning algorithm, van Toll and Pettré [vTP19] introduce the concept
of ‘Navigation Strategies’. The short-term collision avoidance can
be replaced by any existing algorithm (ORCA, SF, etc.), same as
the long-term path planner (Djikstra, A*, etc.). The strategic layer
exchanges information from both, re-running the path planner when
it is apparent that the collision avoider has encountered an obstacle.
This approach creates an interface to balance the short- and long-
term incentives of an agent; however, agents are not guaranteed to
reach the goal, and the approach is likely to fail in very tight scenes.
Furthermore, it does not actually resolve the underlying issues of the
short-term collision avoidance methods, but attempts to use long-
term planning to avoid those issues.

In this paper, we present an alternative long- and short-term multi-
agent path planner that computes its response globally in space and
time. Previously, space–time trajectory optimization [WK88] was
initially applied to keyframe interpolation, with subsequent meth-
ods such as [PSE*00] allowing manual editing of object trajecto-
ries and [SKF08] allowing interactive motion correction and syn-
thesis using graph search methods. The concept of using space–
time graph search methods for collision avoidance is furthered in
Ref. [LLKP11] for a single agent and in Ref. [SKH*11] for small
groups. For large scale situations, standard space–time approaches
would be computationally prohibitive, but [KGvdS13] introduce the
idea of using network flow optimization over space–time for perfor-
mance. Path planning in the robotics world explores many different

topics from time-optimal end-effector manipulation [RGHD13] to
gait trajectory optimization [WBHB18] to graph-based multi-agent
path planning [YL16]. The graph-based path planner described in
Ref. [vdBO04] creates pre-planned roadmaps for agents to move
through space and time and [vdBO05] establish an order of prior-
ity within agents. The drawback of these path planners is that they
only work in constrained spaces, unlike our method which works
in both wide open spaces as well as tightly constrained spaces. Our
method builds on all these prior methods by expanding the look-
ahead globally and ensuring smooth paths by collision resolution on
the entire trajectories rather than using a limited space–time graph
search approach. As explained in the next section, our agents exhibit
an implicit prioritization as well, but its effects are mitigated by the
subsequent optimization step.

Our method treats each agent as an individual space–time curve
with only three requirements: a starting position, a starting time and
an ending position (an exact end time is not required). We use a
globally supported, differentiable LogSumExp smooth distance in
space–time to guarantee collision-free trajectories and solve the re-
sulting problem using an interior-point technique. While we do not
claim to perfectly account for human-like constraints, our agents do
exhibit anticipatory behaviours such as slowing and waiting to let
others pass. This method makes no assumptions about agents hav-
ing identical mass or other physical properties. This enables plan-
ning of intricate scenes with environmental constraints such as the
one described in the introduction.

For small-to-medium scale crowds, our method outperforms cur-
rent state-of-the-art methods in simple scenarios (Figures 3 and 4)
and more complicated, constrained environments. ORCA, NH-TTC
and Implicit Crowds were chosen as three well-known contempo-
rary methods with author-provided open source implementations.
Additionally, we use the SteerSuite [SKFR09] implementations
for Plan–Predict–React (PPR) and SF for our comparisons. For
all methods in the comparisons, we keep timestep at 0.1 s, the
agent placement is standardized and additional parameters for each
method can be found in Refs. [NX15a, NX15c, NX15b, Unk15,
Dav20]. The other methods fail in Figure 4 due to being unable to
handle the symmetric nature of the problem (agents push against
each other with equal forces and get stuck), or they produce an un-
naturally choreographed trajectory in Figure 3. Our method, on the
other hand, does not have a timestep, does not suffer from the failure
under perfect symmetry, and produces results most comparable to
the real-life human trajectories shown in the figures.

3. Method

At a high level, we are influenced by the notion of correlated equi-
librium described in Ref. [Aum87]. In a correlated equilibrium so-
lution to a non-cooperative game, an ‘oracle’ chooses a strategy for
each player, and no player has any reason to deviate from the cho-
sen strategy assuming others do not deviate either. The result is an
equilibrium solution which maximizes collective utility.

Our method acts as the oracle of the scene and plans agent trajec-
tories in a way that collectively maximizes the utility of the entire
scene. Additionally, unlike previous approaches which ‘pre-set’ tra-
jectories for agents (can be done artistically as in Ref. [CvTZ*22],
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Figure 3: We show comparisons with several other methods for
a scene with eight agents crossing the diameter of a circle. Our
method performs most similar to the real motion-captured trajec-
tories without any of the strange or unnaturally choreographed be-
haviour of other methods. The red circles highlight overly chore-
ographed, overly symmetric and unnatural motion in prior methods.

or with navigation meshes as in [vTTK*16]), we allow our agents to
find their own utility-maximizing trajectories. Last, real-life agents
have different sizes, masses and personalities, which affect the
agents’ utilities, and therefore, their paths as well. Our local–global
path planning approach allows for these nuances.

3.1. Paths map to costs

As shown in Figure 5, for an agent, each path from the start location
to the end location through space maps to some scalar cost value. For
example, if the agent’s cost function minimizes distance travelled, a
straight line from start to end would prove to be the optimal path. In
Figure 5, the 2D x–y plane describes the domain of spatial motion
for agent paths. Agents do not simply move through space, but also
move through time which is denoted by the vertical z-axis. So, in 3D
space–time, the agent’s motion through space (x, y) and time (t) is
described by a 3D curve which corresponds to a cost. For any given
moment in time, the projection of the curve onto the x–y plane gives
us the agent’s location.

Let us consider a simple case where there are no other agents in
the scene and the terrain is flat and free of obstacles. The agent,
indexed henceforth by subscript a, wishes to minimize its cost,�̃;
the tilde symbol indicates the variable or function is continuous,
not discrete. Lower case variables indicate a single agent. Upper

Figure 4: We show comparisons for a simple scene with three
agents. Only our method lets agents reach actual their desired ends
(denoted by stars) smoothly. The red circles highlight the unintuitive
effects of several prior method.

Figure 5: Top: A path through space can be represented as a curve
embedded in R2. Every path has a scalar cost (utility) value. For a
cost function that minimizes distance travelled, f1 and f2 are sub-
optimal paths from the start to the goal (red X), but f3 is optimal.
Bottom: A path through space and time can be represented as a
curve in R3. A space–time rod (as shown here) is simply a 3D curve
with a collision radius.
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Figure 6: This space–time rod describes a discrete space–time tra-
jectory curve made up of many nodes. Our agent moves along the
projection of the rod from its start to end, taking into account the
boundary constraints of the problem.

case indicates that the variable aggregates all agents. The motion of
the agent through space and time denoted by the agent’s 3D space–
time curve s̃a embedded in Rx,y,t requires constraints. We linearize
all our constraints and lump them together into B̃. Put together, the
full optimization for a single agent a is

f ∗a = min
∫
s̃a

ψ̃ (s̃a)ds̃a (1a)

s.t.B̃s̃a ≤ 0. (1b)

The cost, Equation (1a), for agent a is integrated over the trajectory
of the agent (s̃a). The specific nature of the cost function determines
the agent’s behaviour based on its characteristics. An agent might
have a preferred walking speed, or a stubbornness factor, or a radius
of comfort, all of which (and more) can be encoded into components
of ψ̃ . In order to solve this optimization, we must first discretize
the agent’s trajectory into the discrete curve sa shown in Figure 6.
We also discretize the cost ψ̃ into separate intra-agent costs, which
solely affect the path of one individual, and interaction costs, which
can affect multiple agents.

3.2. Discretizing

Our agent’s cost function takes in the agent’s discrete 3D
space–time curve sa as input and outputs a scalar cost
for that path, fa. We descretize the agent’s continuous s̃
into a piecewise linear curve described by n+ 1 nodes
sa = [(x0

a, y
0
a, t

0
a ), . . . , (xia, y

i
a, t

i
a), . . . ., (xna, y

n
a, t

n
a )] for nodes

i = 0..n connected sequentially by edges. We must also discretize
our constraints. First, even though time is a variable in our formula-
tion, Equation (2b) ensures that the agent cannot move backwards
in time. Second, the agent has a start location (x0

a, y
0
a) and start time

t0a denoted in Equation (2c). Third, Equation (2d) sets a goal or an
end location (xna, y

n
a). Last, the agent cannot take an infinite amount

of time, so Equation (2e) bounds the agent by a max time Tmax
a .

Putting all of this together, we can re-write the optimization for
agent a with the discrete generalized cost function ψ as

f ∗a = min
n∑
i=0

ψ (sa) (2a)

s.t.tia ≤ ti+1
a (2b)

(x0
a, y

0
a, t

0
a ) = (xa, ya, ta)start (2c)

(xna, y
n
a) = (xa, ya)end (2d)

tna ≤ Tmax
a . (2e)

Now with a template for our optimization problem, we can re-
place the generalized cost function with specific discrete costs. Our
specific cost functions are derived from observation of real be-
haviour. These behavioural observations are divided into two cat-
egories, intra-agent costs and interactions costs. Intra-agent cost
functions only look at one agent’s path at a time. Interaction cost
functions include avoiding collisions with other agents, collisions
with static obstacles such as walls or furniture, gathering behaviour
within friends, heterogeneous behaviour based on the mass, size of
the agents or other characteristics.

3.3. Intra-agent costs

Since these costs apply to a single agent, we calculate intra-agent
costs for arbitrary agent a and later we show how to sum the costs
over the entire scene. The path of our agent, sa, is comprised of
n+ 1 nodes indexed by i = 1..n. Each node (xi(sa), yi(sa), ti(sa)) is
comprised of the agent’s spatial (x, y) coordinates and time (t ) coor-
dinates. For all cost functions, agent a also has constant weighting
terms, Ka, as well as constant characteristics such as mass, ma, and
preferred end time, T p

a .

3.3.1. Intra-agent kinetic cost

Our agent a will try to minimize energy expenditure by minimizing
the action over time. This model is similar to the Principle of Least
Effort proposed in Ref. [GCC*10], except rather than minimizing it
in a local-greedy fashion, we minimize effort over the entire trajec-
tory. In our kinetic cost model, the rest-state expenditure is assumed
to be negligible (agents are snacking, grazing or powered off), and
only the kinetic expenditure is considered. Given an agent’s space–
time curve sa, kinetic cost of the agent over the curve can be written
as

CK
a (sa,KK

a ) = KK
a

n∑
i=0

1

2
ma

(�xia)
T (�xia)

(�tia)
2

(�tia) (3)

= KK
a

n∑
i=0

1

2
ma

(xi+1(sa) − xi(sa))2 + (yi+1(sa) − yi(sa))2

ti+1(sa) − ti(sa)
(4)
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where Equation (3) is the kinetic energy 1
2mv2 for curve segment

eia = [xia, y
i
a, t

i
a, x

i+1
a , yi+1

a , ti+1
a ] integrated over total time travelled

�tia = ti+1
a − ti. This simplifies into Equation (4) where KK

a is the
agent-wise weighting coefficient, ma is the mass of the agent and
sa is the discretized path curve (our input variable) made up of
n+ 1 nodes.

3.3.2. Intra-agent acceleration cost

In order to penalize acceleration in agent a’s trajectory, the acceler-
ation cost

CA
a (sa,KA

a ) = KA
a

n−1∑
i=1

1

2
(θ ia)

2 (5)

measures the curvature of sa through the discretized acceleration
cost where angle θ is the angle between two piece-wise linear
segments of the curve computed using the stable arctan function

arctan2. The angle is θ ia = arctan2( ‖(si+1
a −sia )×(sia−si−1

a )‖
(si+1
a −sia )T (sia−si−1

a )
) where sia =

[xi, yi, ti] for each node in the curve.

3.3.3. Intra-agent preferred end time cost

Any agent a has a preferred end time, T p
a at which they expect to

reach the end position. Sometimes, this is the same as the max end
time Tmax

a by when the agent is required to be at the end positions,
but sometimes the preferred end time T p

a can be sooner. Deviation
from the preferred end time is modelled as a quadratic cost

CT
a (sa, T p

a ,KT
a ) = KT

a

1

2
(tna − T p

a )2 (6)

incentivizing the agents to arrive at their preferred end time T p
a by

keeping the actual end time for each agent, tna , close to T p
a .

3.3.4. Regularizing cost

We find that adding a regularizing term to penalize extremely short
time segments improves the overall quality of the paths by reduc-
ing near instantaneous motions in time. To penalize very fast agent
motion, we use the regularizing term

CR
a (sa,KR

a ) = KR
a

n∑
i=0

(
tna
n

ti+1
a − tia

)
. (7)

This is important because it allows us to feed the solver an initial
space–time curve such as the ones in Figure 11 with many near in-
stantaneous agent motions, and the solver is able to optimize the
final space–time curve to a much more reasonable trajectory.

3.4. Interaction cost

3.4.1. Collision interaction cost

Interactions include agent–environment interactions and agent–
agent interactions for which we must introduce a new arbitrary agent
indexed by b where a �= b. All our interactions depend on each

radius of collision

tunneling

Figure 7: Tunnelling artefact.

Figure 8: Resolving intersections between agents space–time rods
resolves collisions in the scene since no agent shares the same x, y, t
location at any point in the scene.

agent’s ‘radius of comfort’ (or collision radius), denoted by ra, rb
for agents a and b. The collision radius might be based on size, or a
combination of size and personality: for example, people stay away
from angry people. We encode these agent characteristics into our
cost functions by extruding circle with radius ra along the agent’s
path sa thus forming a rod. In a scene with multiple agents, as long
as no two rods are intersecting, the scene is collision-free as shown
in Figure 8. The collision radius ensures that no two agents are in
the same place at the same time. So even though the forces between
the two space–time rods might be symmetric, the agents’ response
to these forces (change in path) leads to heterogeneous interactions.
For static object interactions, the environment boundary is encoded
into boundary vertices bv and boundary elements be. Let us examine
how we detect which rods are intersecting and how we deal with our
three interaction types: agent–agent collisions, agent–agent gather-
ings (friendships) and agent–environment collisions.

Given a pair of agents a, b with 3D space–time curves sa, sb
and collision radii ra, rb, we densely sample (upsample) each
space–time curve uniformly. Next, we calculate the minimum
smooth distances between the upsampled centerlines using the
method described in Section 3.5 Equation (11). As long as the
smooth minimum distance dist between the upsampled rods ua =
upsample(sa), ub = upsample(sb) is further apart than ra + rb, col-
lisions will not occur. We implement this non-linear constraint on

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



V. Modi et al. / Multi-Agent Path Planning with Heterogenous Interactions in Tight Spaces 7 of 14

smooth distance

ag
en

t i
nt

er
ac

tio
n 

co
st
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not colliding yet
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Figure 9: The log barrier energy quickly tends towards infinity as
the minimum distance approaches the collision radius.

the agent paths as a log barrier energy:

CCa,b(α, sa, sb, ra, rb,KC
a,b)

= −KC
a,b log(−(ra + rb) + dist(α, upsample(sa), upsample(sb)))).

(8)

where KC
a,b is the pair-wise weighting coefficient on the energy. The

intuition behind a log barrier energy is explained in Figure 9.

Upsampling the trajectories prevents tunnelling artefacts (Fig-
ure 7) between edges during collision detection. The collision cost
increases exponentially as the minimum distance between the two
agent rods approaches the sum of the collision radii, so collisions are
exponentially penalized. By summing this cost with the kinetic en-
ergy term, which incentivizes agents to move at a constant velocity,
we get smooth local collision resolution as shown in Figure 8.

We employ two methods for sparsifying interactions. First, we
use a 3D tree structure to store agent trajectory nodes (analogous
to a Bounded Volume Hierarchy [BVH]) for broad-phase collision
detection between trajectories. The tree-based broad phase reduces
collision detection costs from O(n2) to O(n log(n)). Second, if two
agents are known to be far apart, we entirely avoid the collision de-
tection step between those two agents thus reducing costs to O(n)
in the best case. Using a combination of tree-based broad phase
along with manual denotation of interacting agents, we find that
our method scales nearly as O(n) as the number of agents in the
scene increases.

3.4.2. Gathering interaction cost

While the collision resolution term pushes agent paths apart, we in-
troduce a gathering term which pulls paths together

CG
a,b(α, sa, sb, ra, rb,KG

a,b)

= KG
a,b(dist(α, upsample(sa), upsample(sb)) − (ra + rb))

2. (9)

This quadratic gathering term allows us to model scenarios in which
friends going in the same direction tend to stick together as shown in
Figure 18, or scenarios in which an agent needs to deliver a message

to another agent who is out of the way from his final destination
such as Figure 20. The weighting term KG

a,b controls the desire of
the agents a, b to group together.

3.4.3. Agent–environment interaction

We surpass previous methods in three ways in terms of agent–
environment interactions. First, our method works on agents travers-
ing highly constrained environments such as Figure 15a, 15b,
or 19a. Second, our method allows agents to explore routes when
multiple paths are available and choose the most optimal path using
a novel modification to Djikstra’s algorithm. Third, our path plan-
ning step is topology aware, so this method will work on more fas-
cinating terrain.

Environment maps are stored as 2D mesh files with vertices and
faces. We pre-compute the vertices and edges around the boundaries
of the map and any static obstacles into bv and be as a one-time
preprocessing step. Next, we compute the minimum smooth dis-
tance between the map boundary edges and the agent rod. Luckily
since static obstacles are fixed in space for all time, we can ignore
the third dimension and only compute the 2D minimum distance,
d(α, sa, bv ) from the rod’s projection onto the map and the map’s
boundary edges. Next we pass the smooth distance d into the log
barrier function

CM
a (α, sa, bv, ra) = −KM

a log(−ra + dist(α, upsample(sa), bv ))
(10)

where KM
a is the energy coefficient. Like in the agent–agent colli-

sion function (Equation 8), we can use the collision radius ra for
each agent since the initial agent paths are sufficiently far enough
away from static obstacles such that d > ra. The coarseness of the
map mesh does not impact the smoothness of agent path; however,
Djikstra’s algorithm finds the shortest distance between two vertices
on the map which correspond to the agent’s start and end positions to
generate the initial path. Therefore, we set the nearest vertices to the
given start and end points as the boundary conditions for the solve.

3.5. Smooth min distance implementation

The absolute minimum distance between agent paths is not a differ-
entiable function. Therefore, we use a differentiable LogSumExp
smooth minimum distance function to smoothly approximate the
distance between two upsampled space–time curve vertices ua and
ub. See the supplementary material for derivatives of the function.
The smooth minimum distance function is

dist(α, ua, ub) = −1

α
log

⎛
⎝ n∑

i=0

n∑
j=0

e−α‖sia−s jb‖

⎞
⎠ (11)

where the α term controls the numerical sensitivity of the distance
which changes depending on the size of the environment mesh and
the distances between the agents’ path curves. A higher α leads to
a more accurate minimum distance, but reduces numerical stability.
Since this smooth minimum distance function is an underestimation
of the true minimum distance, it is possible to get negative distances
for very close objects.
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Algorithm 1. A heuristic to find a usable α to be used within the agent-
collision and map interaction cost, gradient and hessian functions.

function ALPHAHEURISTICα0, sa, sb
α ← α0

D ← dist(α, sa, sb)
while D ≤ 0 do

α ← α + 0.1 ∗ α0

D ← dist(α, sa, sb)
end while
returnα

end Function

We use Algorithm 1 to update α during the solve to guarantee a
usable (real, non-negative) smooth minimum distance. Our initial
α0 for the scene is as low as possible, but large enough to guarantee
that both our log barrier interaction costs are real and defined. If the
initial α0 is too small, the distance underestimation is too great, and
the log barrier costs are either complex or undefined, then the inte-
rior point solver will throw an error. We must choose a large enough
α0 that the heuristic will provide an α that guarantees a real smooth
distance values where D > ra + rb to ensure real log barrier costs.
For subsequent iterations, any real, non-negative smooth minimum
distance is fine.

3.6. Initial paths

With our interior point solver, we require feasible initial trajectories
in which the agents do not collide with other agents or any obstacles.
The supplementary material shows our failed experiments in gen-
erating initial paths based on shortest distances. Some global path
planner is necessary to generate feasible initial paths. Initially inter-
secting space–time rods causes NaNs in the log barrier interaction
costs which makes the interior point method intractable. In order to
generate initial plausible paths to feed into the optimization, we se-
quentially run a modified Djikstra’s algorithm for all agents travers-
ing the environment mesh inspired by Treuille et al. [TCP06]. One
might choose an A* heuristic to set initial paths, but we find that
the cost of using an exact algorithm, like Djikstras, produces better
results without the need to justify any heuristic. Djikstra’s is more
costly than an inexact metric, but cost of finding initial paths is a
very small part of the overall optimization.

Djikstra finds the weighted least costly path along the edges of
the map mesh from the start location to the end location for a given
agent. The edge weights are set based on spatial distance and time
away from Tmax to incentivize that agents reach the final spatial lo-
cation in as little time as possible in order to avoid blocking the
paths of other agents. We avoid obstacles (environment boundary)
by giving these edges, be, a prohibitively high traversal cost. We only
consider map edges that have a distance from the map boundary at
least greater than the agent’s collision radius.

Furthermore, we ensure that every agent has a collision-free ini-
tial path by making it impossible for an agent’s initial path to pass
too close to the initial path of another agent. For each agent, upon
finding an initial path, we wipe out all edges connected to the
path within the agent’s collision radius. The process of sequen-

Figure 10: Running Djikstra’s algorithm to set initial agent paths
on the map. Red map edges indicate a higher traversal cost. Since
we want to set a feasible initial path for each agent, we keep them
away from the map edges as well as away from other agent’s initial
paths.

tially generating initial paths for each agent impacts the final results;
therefore, agent order cannot be entirely ignored. Changing the or-
der could change the optimization as well. For very constrained
scenes, it becomes impossible to ensure collision-free initial trajec-
tories since agents often run out of traversible edges from [x0, y0] to
[xn, yn]. Since agents move through both space and time, we extrude
our environment map into the t dimension and create a pre-set num-
ber of layers from t0 to Tmax as shown in Figure 10. Solving this 3D
space-time Djikstra’s algorithm makes it a lot more feasible to find
collision-free initial paths for all agents. Sometimes, the coarseness
of the environment mesh, or the low number of layers in the 3D
space-time map makes it impossible for Djikstra’s algorithm to find
a feasible initial path. In this case, either the environment map would
need to be sub-divided, more layers would need to be added, or the
scene itself might be infeasible given the Tmax time constraints and
the number and size of agents involved. Additionally, although the
space–time Djikstra’s algorithm will provide feasible initial paths,
they will have many kinks and sharp turns (Figure 11) indicating
unnatural motion and thus cannot be used in the simulation directly.
These get smoothed out during the optimization process resulting in
much more realistic motion. It is possible that this proposed method
to generate initial paths will affect the state of the final trajectories.
For example, if an initial path passes through the left of an obstacle,
it might be stuck in a local minimum even though an optimal tra-
jectory might be through the right side. This drawback is somewhat
mitigated by using Djikstra’s search to pre-compute the least costly
paths. Either way, whether or not the solver produces a globally min-
imum outcome, the trajectories are guaranteed to be smooth, viable
and collision free.

3.7. Optimization

Now aggregating over all the agents in the scene, ‖A‖, we put intra-
agent cost functions equations (4)– (7) together with interaction
costs equations (8)– (10) and construct an optimization problem for
our scene. We aggregate boundary conditions for each agent and
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Figure 11: Top is the initial space–time curve output from Djik-
stra’s path finding algorithm. Bottom is the final result of the solver
with optimal paths. Agents are allowed to find their own optimal
end-times while avoiding collisions in tightly constrained bottle-
necks such as this.

denote them with capital letters to show that they apply to the entire
scene. The optimization problem

f ∗ = min
‖A‖∑
a=1

CK
a +CA

a +CT
a +CR

a +CM
a + (12a)

∑
a,bε

{1..‖A‖}
|a�=b

CG
a,b +CCa,b (12b)

s.t.T i ≤ T i+1 (12c)

(X0,Y 0, T 0) = (X,Y, T )start (12d)

(Xn,Yn) = (X,Y )end (12e)

Tn ≤ Tmax (12f)

is solved using a quasi-Newton interior point method. An outer
loop over this optimization is required for a proper log-barrier
method [NW06]. The full pseudocode overview of our method’s
outer loop, 2, illustrates this. The supplementary material for our
method include the sub-routines, the calculations for the gradients
and Hessian approximations of our costs, intuition for controlling
agent behaviour through function weights.

3.8. Controlling agent behaviour

Controlling agent behaviour is very intuitive in our method. There
are several points of control in our simulation. First, each agent
has its own pre-determined characteristics profile. This includes
things such as size, mass (doubles as stubbornness), collision radius,
grouping preferences, preferred arrival time. Each of these parame-
ters can be intuitively adjusted for any agent to get the desired be-

Algorithm 2. A full pseudocode overview of our method with sub-routines
provided in the supplementary material.

global input variables
OuterIts ≥ 1, outer loop iterations
μ, c = 0.75, log-barrier coeff and its decrement factor
α0, cutof f = 0.2, initial alpha, Hess sparsifying cutoff
Tmax, max time constraint for agents
be, bv , environment edges and vertices.
K, cost function weights for agents
R, collision radius for agents
T , preferred end times
M, agent masses

end global input variables
interior point solver parameters
MaxIts, max iterations
B, trajectory boundary conditions
Stop if StepSize > 10−2 (metres), norm of solver step
Stop if FirstOrderOpt > 10−2 (metres), first-order optimality criteria

end interior point solver parameters
Require: @COSTS, @GRADS, @HESS (supplementary material)

function FINDOPTIMALPATHS
[S,B] ← DJIKSTRASPREPROCESS(R,T, bv )
S ← increment t by ε to ensure ti+1 > ti
while OuterIts>0 do
S ← IPSOLVER(S,B, @COSTS, @GRADS, @HESS)
μ ← cμ
OuterIts ← OuterIts− 1

end while
returnS

end Function

haviour as shown in Figure 4. Another control point for this method
is adjusting the coefficients of the energies as shown in Figure 13. If
the scene happens to be on a large, unconstrained map, its advanta-
geous to turn KM = 0 off to prevent possible numerical issues from
the smooth distance function. Agents are allowed to collide if KC

is set to 0. The gathering cost can be modified through the group-
ing parameter for each agent pair KG. If agents need to reach their
goal by a specific end time, we useKT to control this behaviour. Ac-
celeration is controlled by the KA parameter. Regularizing the edge
lengths of each curve is important, as explained above, but modify-
ing KR can affect the likelihood of the solver getting stuck in local
minimums in highly constrained environments. Last, but not least,
KK weights the kinetic energy term and increasing it (or increasing
the mass term m) will incentivize the agent to follow a more direct
path to the end location.

4. Results

The performance of our method relies on (1) the number of agents
in the scenes and (2) the complexity of the agent’s paths through
space and time. We push along each of these axes separately in this
section. We show extremely complex maze-like environments with
bottlenecks, as well as large scenes with tens (to hundreds) of agents.
In addition to the comparisons shown in the related works, we in-
clude the obligatory circles of agents in Figure 14. Notice that our
agents take smooth, natural trajectories rather than the strange spin-
ning motions demonstrated by other methods. Next, in Figure 18, we
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Figure 12: (Left) Varying number of DOFs per agent from 90 to 540 on a fixed scene with eight agents in a circle (like Figure 14). Every
agent interacts with every other agent in the scene. (Middle) Varying number of agents with 300 DOFs per agent in a circle (like Figure 14).
Every agent interacts with every other agent in the scene. (Right) Varying DOFs in the environment boundary from 2520 to 20,160 on the corn
maze mesh with three agents of 600 DOFs each in the scene. Scaling tests show nearly linear performance in the worst-case shown in these
plots and linear performance in the best case.

Figure 13: Updating the energy coefficients to reach a desirable
scene is a simple and intuitive process in our method. This fig-
ure shows the simplicity of the process, and illustrates that a de-
sirable scene can be reached via many different parameter config-
urations. In the top row, increasing collision costs reduces the like-
lihood of collision between agents. In the middle row, increasing
kinetic costs incentivizes more direct paths. In the bottom row, in-
creasing acceleration costs locally decreases lateral motion.

highlight the several different types of heterogeneous interactions
supported by our method. We show the naive case where agents
collide. We show standard symmetric collision between agents. We
show a stubborn snake which forces the scared humans to move out
of its path. We show a large elk who is still scared of the humans
so it changes its trajectory just as the human agents change theirs.
We show a large and stubborn elephant that goes straight to its des-
tination while the humans have to significantly alter trajectories to
avoid it. Finally, we show a scenario where two friends stick closer
to each other on their way to their final destination.

4.1. Tight spaces

In Figures 15 and 16, we show our method works in extremely tight
environments. ORCA and Implicit Crowds show that they can navi-

gate environmental constraints with manual pre-processing to define
trajectories around obstacles so agents do not bump into them, but
nowhere near as tight as our examples. Meanwhile, NHTTC does
not implement environmental constraints altogether. We show that
our method works in extremely constrained scenarios such as a sub-
way tunnel or a tight warehouse of robots where each lane is big
enough to accommodate only a single agent and agents have to take
turns to pass through to avoid locking.

4.2. Flexible arrivals

Although our method is built to handle heterogeneous interactions
and agents in highly constrained spaces, we also show several other
features of our method. First, our agents have flexible arrival times.
In Figure 11, we show a bottleneck where all the agents simply can-
not arrive at their destinations by their preferred end times. This
feature serves as a counterpoint to the idea of using fixed start and
end boundary conditions to model trajectory curves. In Figure 16,
we show a highly constrained bottleneck of agents trying to get to
their seats on an airplane.

4.3. Complex environments

Additionally, we show the navigability of agents in larger con-
strained environments in Figures 19a and 19b. Agents are able to
navigate the mazes while avoiding collisions with each other at
the bottlenecks.

4.4. Controllability

In Figure 20, we show the flexibility and controllability of our
method. We create a scenario where one agent must meet up with
another agent to deliver a message and then arrive at his end goal
faster than the other agents. In another scenario, we direct the agent
to meet up with the second agent, yet arrive at his end goal at the
same time as the other agents. Last, we also provide the simple scene
where agents are ignorant of each other. The flash mob example in
Figure 21 shows how our method can be used to position agents in-
tricately. The corresponding submission video shows how we are
able to control the order of the placement of the agents in the flash
mob as well through the preferred end time parameter. Our method
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Figure 14: Circles of agents.

Figure 15: In both (a) and (b) only one agent can move through the
intersection at a time.

Figure 16: Chaos in first class. All the passengers are in incorrect
seats.

Figure 17: A large scene with 102 agents moving to opposite sides
of a meadow while a couple of deer avoid them.

allows careful control with no manual effort on the part of the user,
thus making it useful for games or other industrial applications.

4.5. Larger scenes

And finally, for the sake of completeness, we show Figure 17, a
large scene with 104 agents. We include this example to demonstrate
that even though our method is designed for small-to-medium-sized
scenes, it can work on simple scenes with larger numbers of agents
with heterogeneous interactions and still scales linearly in time.

4.6. Timings

Figure 12 provides three plots, each with different scaling informa-
tion for different usage scenarios. The first plot measure the aver-
age time per solver function iteration for an increasing number of
agents. Each agent trajectory has 100 nodes (300 DOFs) and the
performance is near linear with broad-phase collision detection en-
abled. Our second plot measure the average time per iteration for an
increasing number of DOFS for an eight-agent circle. The number
of nodes starts off at 30 and goes all the way to 180 nodes per agent.
Performance is again nearly linear with broad phase collision de-
tection enabled. Without a broad phase, performance is quadratic.
Something to note is that increasing the number of DOFs per agent
provides no additional benefit to the quality of the simulation since
the actual physics of the space–time rods are not the end result of
our method. As long as agents trajectory curves have enough DOFs
to traverse the environment smoothly, the end results will be good.
Our third plot measures the time per iteration for an increasing com-
plexity in the environment mesh on the corn maze (Figure 19a) ex-
ample with three agents and 200 trajectory nodes per agent. Again,
performances are nearly linear.

As mentioned before, there is no gold-standard crowd simu-
lation algorithm since each scenario is so unique and intricate.
Rather than focus on timing performance for large crowds, our
method focuses on solving previously overlooked path planning
scenarios with heterogeneous interactions for small-to-medium-
sized groups in highly constrained environments. Our asymptotics
show linear to near-linear performance, but there is plenty of room
for improvement in wall-clock-times through optimization and
parallelization.

5. Conclusion and Future Work

In this paper, we show that modelling the motion of agents through
space and time using a 3D curve resolves a number of difficulties
with multi-agent path planning. Assigning physical characteristics
such as a radius and mass to the agent’s trajectory curve lets us in-
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Figure 18: (0) No interactions. (1) Mass (analogous to stubbornness) weighted heterogeneous interactions. (2) Size and mass-weighted
interactions. (3) Symmetric interactions.(4) Friends rendezvous along the way. (5) Size-based interactions.

Figure 19: (a) Large cornmaze with eight agents all trying to get
to different locations through the maze. (b) A circular-shaped maze
where agents need to navigate while avoiding collisions.

Figure 20: Left: An agent delivers a message to another agent and
rushes to his goal position. Middle: Two agents meet up briefly be-
fore walking to their separate destinations. Right: No contact be-
tween any agents.

tuitively simulate heterogeneous interactions between agents. Our
method outputs agent paths that are smooth, can navigate through
highly constrained environments and are parameterized by intu-
itive controls.

In the future, we hope to improve our agent model to include
limited environmental perception (rather than the omniscience our
agents enjoy currently) as well as additional dynamics. As men-

Figure 21: (a) Group of people in a flash mob instructed to form a
smily face. Agents follow unintuitive paths through space and time
to maintain the fluidity of their motion. (b) A smily face created by
controlling the motion of the mob.

tioned before, performance depends on two factors: number of
agents and their temporal support. A time resolution that is too
sparse will not allow Djikstra’s to produce feasible initial trajecto-
ries. Increasing the time resolution overcomes this limitation. While
we can currently push along these axes independently, a future work
is to be able to push along both axes together, i.e. handle complex
environments with large numbers of agents with more intricate and
more realistic motion. We also hope to extend the method in order to
handle scenes with conflicting and changing goals, e.g. a predator–
prey scenario.

We would also like to extend our space–time approach to fully 3D
environments which requires performing our optimization in four
dimensions. Finally, while our focus is on robustness in path plan-
ning, there is still further room for improvement in performance.
We are excited to explore fast space–time multi-agent path plan-
ning to scale our approach to the large dense crowds that continuum
approaches excel at, while maintaining our unique advantages.
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ACMTransactions onGraphics (TOG), 25, 3 (2006), 1160–1168.

[TYK*09] Takahashi S., Yoshida K., Kwon T., Lee K. H., Lee
J., Shin S. Y.: Spectral-based group formation control.Computer
Graphics Forum 28 (2009), 639–648.

[Unk15] Karamouzas I. Implicit. https://github.com/johnoriginal/
implicit-crowds/blob/master/data/implicit.ini (2015). Accessed
Jan 10, 2022.

[VDBGLM11] Van Den Berg J., Guy S. J., Lin M., Manocha D.:
(2011) Reciprocal n-body collision avoidance. In 2011 Robotics
Research. Springer Tracts in Advanced Robotics, Springer,
Berlin, Heidelberg, vol. 70, 31.

[vdBO04] van den Berg J., Overmars M.: Roadmap-based mo-
tion planning in dynamic environments. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566) (2004), vol. 2,
pp. 1598–1605. https://doi.org/10.1109/IROS.2004.1389624

[vdBO05] van den Berg J., Overmars M.: Prioritized mo-
tion planning for multiple robots. In Proceedings of the 2005

IEEE/RSJ International Conference on Intelligent Robots and
Systems (2005), pp. 430–435. https://doi.org/10.1109/IROS.
2005.1545306

[vTP19] van Toll W., Pettré J.: Connecting global and lo-
cal agent navigation via topology. In Proceedings of the 12th
ACM SIGGRAPHConference onMotion, Interaction and Games
(2019), pp. 33:1–33:10.

[vTTK*16] van Toll W., Triesscheijn R., Kallmann M., Oliva
R., Pelechano N., Pettré J., Geraerts R.: A comparative
study of navigation meshes. In Proceedings of the 9th Interna-
tional ACM SIGGRAPHConference onMotion in Games (2016),
pp. 91–100.

[WBHB18] Winkler A. W., Bellicoso D. C., Hutter M.,
Buchli J.: Gait and trajectory optimization for legged sys-
tems through phase-based end-effector parameterization. IEEE
Robotics and Automation Letters (RA-L) 3 (July 2018), 1560–
1567. https://doi.org/10.1109/LRA.2018.2798285

[WJGO*14] Wolinski D. J., Guy S., Olivier A.-H., Lin M.,
Manocha D., Pettré J.: Parameter estimation and comparative
evaluation of crowd simulations. Computer Graphics Forum 33,
(2014), pp. 303–312.

[WK88] Witkin A., Kass M.: Spacetime constraints. ACM SIG-
GRAPH Computer Graphics, 22, 4 (1988), 159–168.

[WLJT17] Weiss T., Litteneker A., Jiang C., Terzopoulos D.:
Position-based multi-agent dynamics for real-time crowd simula-
tion. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (2017), pp. 1–2.

[WLP16] Wolinski D., Lin M. C., Pettré J.: WarpDriver:
Context-aware probabilistic motion prediction for crowd simula-
tion. ACM Transactions on Graphics (TOG), 35, 6 (2016), 1–11.

[YL16] Yu J., LaValle S. M.: Optimal multirobot path planning
on graphs: Complete algorithms and effective heuristics. IEEE
Transactions on Robotics, 32, 5 (2016), 1163–1177.

[YMPT09] Yersin B., Maim J., Pettre J., Thalmann D.:
Crowd patches: Populating large-scale virtual environments
for real-time applications. In I3D’09: Proceedings of the
2009 Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2009), Association for Comput-
ing Machinery, pp. 207–214. https://doi.org/10.1145/1507149.
1507184

[YSC21] Yu C., Schumacher H., Crane K.: Repulsive curves.
ACM Transactions on Graphics 40, 2 (2021), 1–21.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supporting Information

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/2668064.2668094
https://github.com/johnoriginal/implicit-crowds/blob/master/data/implicit.ini
https://github.com/johnoriginal/implicit-crowds/blob/master/data/implicit.ini
https://doi.org/10.1109/IROS.2004.1389624
https://doi.org/10.1109/IROS.2005.1545306
https://doi.org/10.1109/IROS.2005.1545306
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1145/1507149.1507184
https://doi.org/10.1145/1507149.1507184

