
Pacific Graphics 2023
R. Chaine, Z. Deng, and M. H. Kim
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 7

H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

H. Lee1 and J.-H. Nah†
1

1Sangmyung University, South Korea

Betsy
(Q=2)

Etc2Comp
(Best)

ETCPACK
(Slow)

Ours
(Best)

Input

etcpak

ETCPACK
Etc2Comp

Ours

Betsy

179.1 3146 91958 8.58Time (ms) :

Figure 1: Our H-ETC2 encoder is one to four orders of magnitude faster than previous high-quality ETC2 encoders, such as ETCPACK
[Eri18], Etc2Comp [GB17], and Betsy [Gol22], while delivering a level of quality comparable to that of ETCPACK’s slow mode. The right
image is taken from kodim23, which is part of the Kodak Lossless True Color Image Suite. Please zoom in the image to distinguish the
difference in quality.

Abstract
This paper proposes a novel CPU-GPU hybrid encoding method based on the ETC2 format, commonly used on mobile plat-
forms. Traditional texture compression techniques often face a trade-off between encoding speed and quality. For a better
trade-off, our approach utilizes both the CPU and GPU. In a pipeline we designed, the CPU encoder identifies problematic
pixel blocks during the encoding process, and the GPU encoder re-encodes them. Additionally, we carefully improve the base
CPU and GPU encoders regarding encoding speed and quality. As a result, our encoder minimizes compression artifacts,
increases encoding speed, or achieves both of these goals compared to previous high-quality offline ETC2 encoders.

CCS Concepts
• Computing methodologies → Image compression;

1. Introduction

High-quality computer graphics are increasingly important in var-
ious fields, such as games, movies, and virtual/augmented real-
ity. Texture mapping plays a crucial role in achieving this quality.

† Corresponding author

Advancements in hardware and algorithms have made it possible
to employ complex rendering algorithms with high-resolution tex-
tures in real-time applications. However, the utilization of multiple
high-resolution textures necessitates greater memory capacity and
bandwidth, which can result in decreased performance or increased
power consumption. As a solution of the problems, textures are typ-
ically stored in memory as a compressed format [PP14].

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14969

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0001-7938-8612
https://orcid.org/0000-0001-7805-5333
https://doi.org/10.1111/cgf.14969

2 of 11 H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

BC [Mic18], ETC1/2 [SAM05, SP07], and ASTC [NLP∗12] are
standard texture compression formats, all of which employ block
compression schemes. The BC series is commonly used on desk-
top platforms that rely on DirectX and OpenGL, while ETC1/2 and
ASTC are preferred for mobile platforms based on OpenGL ES and
Vulkan. GPUs typically include several decoders for these formats,
enabling real-time texture decoding. Conversely, texture encoding
is primarily performed offline, and compressed textures included in
an application are uploaded to a GPU when the application is run-
ning. In the case of recent AAA games where the total texture sizes
can range from tens to hundreds of gigabytes, insufficient encoding
speed can become a bottleneck during software development. Fur-
thermore, if a texture compression format is used for low-latency
video coding, the encoding process must be completed in real-time
as indicated by Žádník, et al. [vMVJ22].

There exists a trade-off between encoding speed and quality in
texture encoding. Achieving the closest color approximation to the
original color within a compression format is an optimization prob-
lem. Widening the search range to minimize error values inherently
results in increased encoding time. Conversely, prematurely termi-
nating the encoding process for improved encoding speed can result
in noticeable artifacts after compression.

In order to enhance encoding speed without compromising com-
pression quality,we propose a CPU-GPU Hybrid ETC2 (H-ETC2)
encoding method in this paper. Our objective is to partition the
workload in texture encoding tasks between CPUs and GPUs,
maximizing encoding speed on the hybrid encoder. This can be
achieved by leveraging the distinct parallelism capabilities of mod-
ern CPU and GPU architectures. Modern CPUs can efficiently han-
dle specific operations with fine-grained data-dependent branching
in parallel by utilizing single-instruction multiple-data (SIMD) in-
trinsics [WWB∗14]. On the other hand, high-performance GPUs
generally offer superior computing power compared to CPUs, but
they can experience performance degradation in scenarios involv-
ing high single-instruction multiple-threads (SIMT) execution di-
vergence [PBD∗10].

To leverage the strengths of both CPUs and GPUs, we have
developed an encoding pipeline that combines two ETC2 en-
coders—one CPU-based and one GPU-based. In the initial stage on
the CPU side, we utilize the etcpak encoder [Tau22] to swiftly com-
press a texture. While this encoder now supports all ETC2 modes
through the integration of QuickETC2 [Nah20a], its heuristic mode
selection and limited search ranges can occasionally introduce ar-
tifacts that are not present in other high-quality encoders. To mit-
igate this issue, we identify a set of problematic blocks with error
values exceeding a threshold and transfer them to the GPU for fur-
ther processing. On the GPU side, we employ the OpenGL-based
Betsy encoder [Gol22] to recompress these blocks. The Betsy en-
coder utilizes parallel processing by creating multiple threads of
potential encoding combinations and concurrently processing them
on the GPU at high speed. This makes it suitable for enhancing the
compression quality and resolving the artifacts introduced by the
CPU-based encoder.

To validate the effectiveness of our hybrid method, we con-
ducted experiments on the test set used in QuickETC2 [Nah20a]
and compared ours to other high-quality encoders such as ETC-

PACK [Eri18], Etc2Comp [GB17], and Betsy [Gol22]. According
to the results (shown in Figure 1), our encoder outperforms them
in terms of speed by several orders of magnitude while achieving
similar or better quality. Although our encoder is slower than the
currently fastest encoder, etcpak [Tau22], it effectively mitigates
many artifacts that appear in etcpak.

2. Related Work

2.1. ETC Format and Encoders

Ericsson Texture Compression (ETC) is a mobile-standard format
that originated from PACKMAN [SAM04]. PACKMAN is a lossy
texture compression technique designed for mobile platforms. It
effectively compresses 2×4 pixel blocks into 32 bits to cater to
mobile platforms with limited memory bandwidth. iPACKMAN
[SAM05], also known as ETC1, introduces a more complex bit
arrangement compared to PACKMAN. It compresses two 8-pixel
subblocks together in 64 bits, and each subblock can be config-
ured as 2×4 or 4×2 by using the flip bit. The base colors of the
subblocks can be stored individually in RGB444 or differentially
(RGB555 and dRdGdB333) by utilizing the diff bit. While main-
taining the same compression ratio as PACKMAN, iPACKMAN
enhances the quality of compressed textures.

ETC2 [SP07] introduces three additional modes that utilize in-
valid bit sequences to address problematic blocks caused by the
horizontal/vertical subblock pattern in ETC1. The T- and H-modes
[PS05] employ pixel clustering to derive two base colors and cal-
culates the distance vector based on the small look-up table, re-
sulting in a total of four palette colors. Although there are fewer
palette colors per block compared to ETC1, these modes effec-
tively reduce block artifacts caused by subblock patterns. On the
other hand, the Planar mode utilizes interpolation to find smoothly
varying chrominances and quantizes them in RGB676, thereby mit-
igating the banding artifacts present in ETC1. To compress the al-
pha channel in an RGBA texture, the EAC [SA13] codec is used
with the ETC2 RGB codec. Operating independently from ETC1/2,
the EAC codec employs table-based alpha compression. EAC com-
pression can also be applied for compressing textures with one- or
two-channels.

Ericsson has released a reference encoder called ETCPACK
[Eri18] for compressing ETC1/2 textures. This encoder performs
compression on a block-by-block basis for each ETC mode and se-
lects the mode with the smallest error value to encode the block.
When calculating the error value, the encoder offers an option
to apply the same weight to RGB channels or to use perceptual
weights based on luma (linear luminance) calculation. The latter
option may result in a decrease in PSNR values using the same
RGB weights, but it can enhance the clarity of edges in differ-
ent color areas. Furthermore, the ETCPACK encoder provides a
speed option that allows users to choose between fast and slow
modes. Opting for the slow option yields higher quality results with
a broader range of search settings, although it comes at the expense
of significantly increased encoding time.

Google’s Etc2Comp [GB17] encoder offers users an effort pa-
rameter that enables precise control over the trade-off between en-
coding speed and quality. Image blocks are scored and sorted based

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder 3 of 11

on their mean squared error (MSE) values, after which block re-
finement takes place using the percentage specified by the effort
parameter. Notably, Etc2Comp also supports the utilization of mul-
tiple CPU threads during compression, distinguishing it from ETC-
PACK in terms of parallel processing capabilities.

In contrast to the previous encoders, etcpak [Tau22] was devel-
oped with a primary focus on encoding speed. It minimizes the
search scope for palette colors, extensively optimizes the code us-
ing SIMD intrinsics, and provides a scalable multi-threaded imple-
mentation. By doing so, etcpak achieves several orders of magni-
tude faster encoding speed than ETCPACK and Etc2Comp.

QuickETC2 [Nah20b, Nah20a] enhances the compression qual-
ity by introducing T-/H-mode compression logic, which was not
present in etcpak 0.7. It also improves compression speed by em-
ploying a heuristic that selects one or two modes in advance based
on the block’s luma difference, rather than performing compression
for all ETC1/2 modes. This approach leverages the suitability of the
Planar mode for blocks with low contrast and the T- or H-mode for
blocks with high contrast. The QuickETC2 patch was integrated
into etcpak 1.0, which is the foundation of the CPU component in
our hybrid system.

In contrast to the CPU encoders mentioned earlier, the Betsy
GPU compressor [Gol22] takes advantage of the compute shader
in OpenGL for encoding. This encoder aims to deliver high-quality
compression for BC and ETC series at fast speeds by leveraging the
computational power of GPUs. The ETC1 mode code in Betsy is
based on rg_etc1 by Rich Geldreich [Ric12], and it assigns all po-
tential subblock candidates to individual GPU threads to perform
refinement operations in parallel. For the ETC2 compressor, Betsy
utilizes an open-source implementation by Jean-Philippe ANDRE
[AND14]. In the T-/H-mode, Betsy performs k-means clustering
on 16 pixels, considering 120 possible combinations. It then con-
ducts compression in the T-mode with and without swapping, as
well as the H-mode, to find the results with the lowest errors. In
the Planar mode, the internal pixel operations are parallelized, and
an optimized gradient is obtained through single linear regression.
Similar to ETCPACK and Etc2Comp, Betsy selects the block with
the smallest error from each mode for the final compression. When
developing the GPU encoder for our hybrid system, we referenced
the Betsy GPU compressor due to its relatively fast compression
speed compared to other high-quality CPU encoders, while still de-
livering acceptable compression quality.

2.2. CPU-GPU Hybrid Techniques

The use of both CPUs and GPUs together for computation has been
extensively researched in the field of high-performance comput-
ing [MV15]. However, effectively harnessing the potential of het-
erogeneous architectures to improve the performance of a specific
task is not straightforward. It requires implementing algorithms
that take into account the unique characteristics of each process-
ing unit (PU), appropriately distributing the workload across the
PUs, and carefully designing interfaces between the units. Aim-
ing to simplify the development process for heterogeneous com-
puting architectures, Intel has developed the OneAPI programming
model [Int22].

Our focus will be on graphics-related approaches that utilize
both CPUs and GPUs, rather than high-performance computing.
This focus allows us to gain valuable insights into optimizing per-
formance in graphics-intensive applications.

Real-time ray tracing, historically constrained by intensive com-
putational requirements, is a prominent research domain. Nah et
al. [NKL∗10] introduced an interactive mobile ray tracer using
OpenGL ES. The CPU manages tasks like kd-tree construction and
ray generation, while the GPU takes on ray traversal and shading.
In contrast, the HART architecture [NKP∗15] employs a hardware-
accelerated strategy. The CPU handles BVH rebuilding, whereas
BVH refitting and ray traversal occur asynchronously through the
GPU’s dedicated fixed-function hardware logic. Additionally, Bar-
ringer et al. [BAAM17] presented a ray accelerator that efficiently
leverages combined CPU and integrated GPU processing capabili-
ties via shared memory utilization.

The simultaneous utilization of CPUs and GPUs for generating
high-quality ray-traced images has been a subject of study. Pa-
jot et al. [PBPP11] proposed an algorithm that facilitates cooper-
ative bidirectional path tracing between the CPU and GPU. Ad-
ditionally, researchers have explored techniques to accelerate colli-
sion detection using heterogeneous resources. The HPCCD method
[KHH∗09] achieves real-time frame rates by utilizing the CPU for
BVH updates and culling, while offloading elementary tests to the
GPU.

3. System Overview

GPU
Encoder

Input

High
Error

Low Error

CPU
Encoder

Preparing
Data

Output

Figure 2: A flow chart of our encoding pipeline. The green blocks
and the black arrows represent the steps being performed and the
data movement, respectively.

In this section, we will discuss the design of our texture encoding
pipeline. Our pipeline aims to preserve as much visual detail from
the input image as possible while ensuring a fast encoding process.
To achieve this, we focused on developing a hybrid pipeline that
utilizes the strengths of both CPUs and GPUs. Figure 2 illustrates
the flow chart of our encoding pipeline. When an input image is
received for compression, it undergoes a series of stages.

In the first step, the CPU encoder utilizes luma (linear lumi-
nance) values to perform the initial encoding operation. While this
luma-based approximation enables fast encoding, it can result in
high errors in certain pixel blocks, leading to various compression
artifacts. To address this drawback, pixel blocks with high errors
are stored in the thread-local buffers to be used as input for the
GPU encoder. Conversely, pixel blocks with low errors are stored

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 11 H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

in the CPU memory and contribute to the final encoding results
(Section 3.1).

In the second step, we repurpose pixel blocks with high errors
that have accumulated in the thread-local buffers. Firstly, these
blocks are consolidated into a single array. Then, sorting and cut-
ting operations are performed, considering the selected quality
mode. Finally, the resulting data, in the form of an image format, is
prepared as input for the GPU encoder (Section 3.2).

The final step entails re-encoding the pixel blocks generated in
the previous step. The GPU encoder, implemented using the com-
pute shader of the OpenGL API, enhances the quality of the pixel
blocks by leveraging the parallel capabilities of the GPU for ex-
tensive RGB space searching and iterations (Section 3.3). Once the
GPU encoding process is finished, we can obtain the final encoding
results by merging the results from the CPU and the GPU. Each of
these steps will be further elaborated in the subsequent subsections.

3.1. Design of the CPU Encoder

We implemented our CPU encoder based on etcpak 1.0 [Tau22]
with QuickETC2 [Nah20a], as mentioned in Section 2. It is im-
portant to note that the flow chart depicted in Figure 3 is executed
independently on each CPU thread. The main difference between
QuickETC2 and ours is the final block re-calculation stage and an
additional buffer for further GPU encoding.

The original QuickETC2 method utilizes luma values to achieve
fast encoding speed. Its early compression-mode decision scheme
selects the appropriate compression mode in advance based on the
luma difference for each block. Additionally, it performs clustering
based on per-pixel luma values within each block for T-/H-mode
compression. However, since this approach involves dimension re-
duction from the 3D RGB space into the 1D luma space, it can lead
to inappropriate encoding results, resulting in a loss of quality.

Let’s consider the two points D1(255,0,0) and D2(0,128,9) in
the RGB space, as depicted in Figure 4. We can utilize Equation 1
to convert the 3D RGB-space data as 1D luma-space data.

luma = 0.3×R+0.59×G+0.11×B (1)

The equation employed to reduce the dimension from RGB space
to luma space remains the same as the one used in QuickETC2.
While the two points in the RGB space exhibit significant differ-
ences, they become quite similar in the luma space. However, due
to the QuickETC2 method perceiving the difference between the
two points as similar, this discrepancy can result in incorrect mode
or cluster selection. As a consequence, artifacts may manifest in
the encoding results. To identify these problematic pixel blocks,
we recalculate the error between the original pixel block and the
compressed pixel block using Equation 2.

error =
N−1

∑
i=0

max
(∣∣x̄i,r − xi,r

∣∣ , ∣∣x̄i,g − xi,g
∣∣ , ∣∣x̄i,b − xi,b

∣∣)2 (2)

In the equation, N represents the number of pixels in the pixel
block, x denotes the pixel in the original block, and x̄ represents the
pixel in the compressed block. We determine the pixel block error
by selecting and accumulating the largest difference value for each
channel in the RGB space. This approach is especially effective in

detecting errors in the red or blue channel since the green channel
in Equation 1 carries the highest weight for the luma conversion.

Uncompressed
block

Planar-Mode
Compression

(w/o Error
Calculation)

Compressed
block

Block Error Re-Calculation Push in
the Buffer

Buffer
.
.
.

High
ErrorLow Error

Early Compression-Mode Decision

ETC1-Mode
Compression

T-/H-Mode
Compression

Encoder Selector

Figure 3: A flow chart of our CPU encoder, which includes an
additional error re-calculation process integrated into the Quick-
ETC2 implementation. This process determines whether to retain
the encoding result based on the calculated block error during the
encoding process (indicated by the green dot box). We have also
incorporated a local buffer for each thread to accumulate problem-
atic pixel blocks.

R

G

!!

!"

Luma
!!

!"

Luma SpaceRGB Space

Figure 4: An example of incorrect encoding results after dimension
reduction. The left side of the figure displays the data represented
along the R and G axes in the RGB space, and the data points
appear widely scattered from each other in this space. However,
when the same data is represented in the luma space, shown on the
right side, the data points appear much closer to each other. This
indicates that the luma space representation can fail to capture the
significant differences present in the original RGB space.

To determine the problematic pixel blocks based on the recalcu-
lated error values, we employ the following strategy. Initially, we
establish a threshold value denoted as T , which assists in deciding
whether a pixel block should be utilized as a GPU input. If the error
of the specific block exceeds T , it is accumulated in the local buffer
designated for each thread. Conversely, if the error is below T , the
encoding result is stored in the CPU memory. We set the threshold

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder 5 of 11

value T corresponding to the dblimit value for the medium preset
(PSNR 35.68 dB) in the reference ASTC encoder [Smi18].

We also note that we have disabled the solid-color check func-
tion in etcpak 1.0 (CheckSolid_AVX2()). The role of this func-
tion is to quickly compress a block with a single solid color using
the ETC1 logic before the early compression-mode decision stage.
This is effective in reducing encoding time for backgrounds, but it
can cause banding artifacts due to RGB555 quantization. To mini-
mize the number of problematic blocks transferred to the GPU, we
have decided to disable this function during ETC2 compression, as
implemented in etcpak 0.7.

3.2. Preparing Data for the GPU Encoder

As mentioned earlier, we need to process problematic pixel blocks
on the CPU encoder so that the GPU encoder can re-encode them.
There are several factors to consider in this process. First, the
amount of work processed on the GPU should be properly de-
termined to strike a balance between encoding quality and per-
formance. We also need to determine how to design the interface
between the CPU and GPU to minimize communication overhead
between them. Additionally, since the number of problematic pixel
blocks varies for each image to be compressed, dynamic memory
allocation is required.

GPU Encoder

Best
Mode

Normal
Mode

Fast
Mode

Sorting &
Cutting 40%

Sorting &
Cutting 10%

Create
Input
Data

Merge
Buffers

CPU Encoder

Figure 5: A flow chart of the process of preparing input data for
the GPU encoder with problematic pixel blocks determined by the
threshold T . The three quality modes determine how many pixel
blocks will be fed to the GPU for re-encoding them.

Taking into consideration the factors described above, we have
developed a process between the CPU and GPU that operates
differently in three modes (Figure 5), drawing inspiration from
Etc2Comp [GB17]. In Etc2Comp, a perceptual score is calculated
based on the mean square error (MSE) for each block at the end of
each encoding iteration. Subsequently, the blocks are sorted based
on their perceptual score. The compression level is then determined
by the value of the effort parameter, which represents the percent-
age of blocks that will undergo further refinement in the next iter-
ation. As a result, developers are able to control the trade-off be-
tween quality and encoding speed by adjusting this parameter.

Similar to Etc2Comp’s approach, we merge the local buffers
in each thread that contain problematic pixel blocks into a single
buffer. The handling of this buffer varies depending on the three

quality modes. In the fast and normal modes, we sort the blocks in
the merged buffer in descending order based on their error values.
By arranging the blocks in this manner, with higher error values to-
wards the front, we can extract only the top 10% or 40% of blocks
for the fast and normal modes, respectively. We have determined
the percentages according to our experiments will be introduced in
Section 4.2. Conversely, in the best mode, we transmit all of the
problematic blocks listed in the buffer to the GPU, eliminating the
need for error-based sorting.

For further use in the GPU encoder, we convert the buffer data
into an image. We define the width and height of the image to be the
same, using 4×ceil(

√
N), where N is the total number of problem-

atic pixel blocks, as each block’s size is 4 × 4. Subsequently, we
apply zero-padding to the image to maintain the rectangular shape
(Figure 6).

Figure 6: The left image consists of problematic pixel blocks on
kodim05 in the test set. As shown in the right image, which displays
a zoomed-in view of the red box, the left image was created by ac-
cumulating 4×4 pixel blocks with high error values during CPU
encoding. A rectangle image like this example is sent to the GPU.

3.3. Design of the GPU Encoder

GPU Encoder

K-Means
Clustering

ETC1
Mode

T-/H-
Mode P-Mode Mode

Selector

+ =

Result of
the CPU Encoder

Result of
the GPU Encoder

Output

Input

Figure 7: A flow chart for the GPU Encoder consisting of five
steps. When this GPU Encoder finishes all the encoding process, we
combine the encoding results from the CPU and GPU to generate
the final encoding output.

The GPU encoding component of our encoder is based on the
Betsy GPU compressor [Gol22]. Figure 7 illustrates the entire GPU
encoding process. Similar to traditional CPU-based ETC2 com-
pressors, Betsy employs multiple modes to encode each block and

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 11 H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

Original
Betsy

+ Fix
quantization

errors

+ Apply
the perceptual

error metric

kodim05

+ Selective
compression

method

+ CPU-GPU
hybrid

compression
(Best mode)

Uncompressed

Figure 8: How to solve issues of BetsyGPU observed in kodim05. Please focus on the areas indicated by the red arrows. Our first two
approaches, fixing quantization errors in Betsy and applying the perceptual error metric, effectively eliminate compression artifacts, including
block artifacts, color bleeding, and blurring. Our last two approaches, selective compression and CPU-GPU hybrid compression schemes,
have a minimal impact on compression quality while significantly reducing encoding time. To better discern the quality difference, please
zoom in on the image.

selects the mode that yields the smallest error. It utilizes massive
parallelism on the GPU in each mode, enabling it to achieve higher
speeds than other CPU-based high-quality encoders. Betsy pro-
vides a quality parameter ranging from 0 to 2, and the number of
iterations and the range of search spaces are determined based on
the value of this parameter. Among the three available quality pa-
rameter values, we have chosen a value of 1 for our pipeline due
to its optimal encoding speed-quality trade-off, as demonstrated in
Table 1 (Section 4.4).

While Betsy aims to achieve high-quality and high-encoding
speed by leveraging GPU parallelism in a brute-force manner, we
encountered several issues regarding compression quality and effi-
ciency. Figure 8 illustrates how we addressed these problems in the
original Betsy GPU compressor.

We first addressed the issue in Betsy’s code that generated quan-
tization errors. In the T-/H-mode compression shader, there was
a bug when converting an RGB444 quantized color to RGB888.
The maximum value of an 8-bit color should be 255, but the calcu-
lated values in the shader code sometimes exceeded this limit and
reached 285. This bug resulted in block artifacts because exces-
sively bright base colors, far from the original colors in the block,
were often generated after clipping the exceeded values to 255. Af-
ter fixing this bug, we observed a reduction in block artifacts.

However, some block artifacts remained, as shown in the second
column of Figure 8. Upon analyzing these artifacts, we discovered
that most of them were caused by the equal weights assigned to
each RGB channel in the luma calculation. While this weighting
scheme may be suitable for increasing PSNR values, as the PSNR
of an RGB image is calculated from the MSE value of each chan-
nel with the same weight, it fails to account for the fact that the
human eye is more sensitive to green. To address this, we adjusted
the weights for luma calculations using the perceptual error metric

Original Betsy GPU

(0, 1),
(0, 2),
(0, 3),
(0, 4),

.

.

.

(14, 15)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Index Table

(0, 15),
(5, 10),
(3, 12),
(6, 9)

Ours

Figure 9: The difference in K-means clustering between the origi-
nal Betsy encoder and our encoder during the T-/H-mode process.
The number of index pairs for two initial points has been reduced
from 120 to 4.

introduced in iPACKMAN [SAM05]. The weight values for each
channel are the same as those given in Equation 1. Similar to Ström
and Akenine-Möller’s experiments [SAM05], we observed signif-
icantly improved block artifacts compared to the original Betsy
GPU Encoder after modifying the weights (shown in the third col-
umn of Figure 8).

While the quality has been improved to an acceptable level, the
low encoding speed of Betsy remains a problem. One of the main
reasons for this low encoding speed is that its brute-force searching
is excessive. In the original Betsy implementation, two initial points
are selected from 16 different pixels in a block in any order for K-
means clustering (16C2 = 120). Subsequently, K-Means clustering
is performed with all pairs in parallel, and the best base-color pair
is chosen based on the results.

Our solution to increase encoding speed involves reducing the
number of initial pairs of points, inspired by the selective compres-
sion method in THUMB [PS05]. We designate four special indices
located in diagonal regions, as shown in Figure 9. Each point in our
reduced set can still represent different partitions for two reasons.
Firstly, the T- or H-mode handles diagonally divided clusters better

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder 7 of 11

than the ETC1 mode, and secondly, pixels within each separate par-
tition exhibit spatial coherence. Therefore, our approach prevents
redundant clustering by avoiding the selection of adjacent pixels
with similar data as the initial cluster points. By reducing the num-
ber of initial paired points from 120 to 4, our approach significantly
improves encoding speed. However, there are no visual differences
observed before and after our selective compression (shown in the
fourth column of Figure 8).

The approaches described above are specifically related to the
GPU shader computations, and our hybrid CPU-GPU approach can
further enhance the synergy. The CPU encoding part efficiently
handles the non-problematic blocks, reducing the input GPU data.
Consequently, by leveraging both the CPU and GPU, we can signif-
icantly expedite the encoding process without compromising qual-
ity. Please compare the fifth and sixth columns of Figure 8.

4. Experiments & Results

4.1. Test Setup

For our experiment, we used the dataset utilized in QuickETC2
[Nah20a] for comparison with existing encoders. This texture
dataset consists of a total of 64 textures with a variety of sizes (rang-
ing from 256×256 to 8192×8192), channels (RGB and RGBA),
and types (such as photos, game textures, GIS data, synthesized
textures, and captured images). When compressing an image with
an alpha channel, our encoder compresses the alpha channel by the
CPU encoder only.

The desktop used for our experiments was equipped with an Intel
Core i5-12400 CPU, 32GB of RAM, NVIDIA GeForce RTX 3060,
a 1TB SSD, and running Windows 11. To measure the encoding
quality and speed, we wrote test scripts using Python version 3.10
and OpenCV version 4.6.0.

For encoding speed comparison, we initially measured the en-
coding time for each texture and then converted the results into
Mpixels/s to account for the varying sizes of the textures. This met-
ric indicates the number of pixels that can be processed within a
given time frame.

For quality comparison, we utilized the FLIP met-
ric [ANAM∗20]. The reason for choosing this metric is that
other commonly-used evaluation metrics in the image-processing
community, such as PSNR and SSIM [WBSS04], tend to un-
derestimate block artifacts that are noticeable in local areas or
overestimate less visible artifacts. ETCPACK’s slow mode, which
employs exhaustive searches, actually delivers the highest quality
in the ETC2 format. Nevertheless, PSNR or SSIM values of
Etc2Comp and Betsy are similar or higher than those of the refer-
ence ETCPACK encoder with the slow mode (Appendix includes
the detailed results). This observation aligns with the findings
reported by Nilsson and Akenine-Möller [NAM20]. In contrast,
the FLIP metric more accurately measures the compression quality
in this context as shown in Figure 12. Note that we used FLIP
version 1.2, mean values, and 67 pixels per degree (default) for our
experiments.

100%

10%

40%

Effort

Figure 10: The presented results showcase the experimental find-
ings regarding the extent of utilization of the problematic pixel-
block buffers. The visual representation begins from the left, il-
lustrating a scenario of 100% usage, and gradually progresses to-
wards the right, demonstrating a successive 10% reduction in us-
age at each subsequent interval.

4.2. Effort Parameter Assignment

We conducted experiments to determine the values of the effort
parameters, which represent the utilization ratios of the problem-
atic pixel-block buffers, for each quality mode. As a result, we
obtained the average of FLIP values and encoding speed for each
effort value, as illustrated in Figure 10. We observed that a value
of 40% yielded results near the middle in terms of both encoding
speed and quality. Therefore, we designated 10% as the fast mode
for high encoding speed, 40% as the normal mode, and 100% as
the best mode to achieve the highest quality.

4.3. Ablation Study

Original Betsy (Quality = 1)

+ Fix quantization
errors

+ Apply
the perceptual
error metric

+ Selective
compression method

Ablation study
Ours

(Best mode)

Ours
(Normal mode)

+ CPU-GPU
hybrid compression

Ours
(Fast mode)

Figure 11: Starting with the original Betsy GPU compressor, we
present the evaluations of quality and encoding speed for each of
our successive improvement steps. After conducting a comprehen-
sive analysis, the figures depict a gradual and consistent enhance-
ment in both quality and encoding speed throughout the entire pro-
cess.

We evaluated the encoding quality and speed of the steps out-
lined in Section 3.3, as depicted in Figure 11. Initially, by address-
ing the quantization error and implementing the perceptual error
metric, we observed an improvement in quality and a 10% reduc-
tion in the FLIP value. When applying our selective compression

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 11 H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

Uncompressed
Input

Betsy
(Q=1)

Betsy
(Q=2)

Etc2Comp
(Fast)

Etc2Comp
(Best)

ETCPACK
(Fast)

ETCPACK
(Slow)

Ours
(Best)

Kodim05

Jelly

0.0533 0.0522 0.0597 0.0517 0.0525 0.0459ꟻLIP :

0.0352 0.0345 0.0383 0.0327 0.0308 0.0254ꟻLIP : 0.0285

0.0493

vase_plant
ꟻLIP : 0.0412 0.0407 0.0440 0.0393 0.0384 0.0322 0.0367

etcpak

0.0571

0.0501

0.0721

Figure 12: Zoomed-in examples of the results from various encoders. Please focus on the areas indicated by the red and blue arrows. As
depicted in the figure, our encoder (best) delivers comparable quality to ETCPACK (slow), while the other encoders (or modes) exhibit some
compression artifacts, such as block artifacts, blurring, ringing, shape distortion, or color distortion.

method, the increase in the FLIP value was only around 0.00006
(0.015%), indicating minimal impact on quality. However, the en-
coding speed saw a significant increase by a factor of 6.5×. Fi-
nally, by merging the CPU and GPU encoders, the hybrid encoder
in the best mode achieved 1.6× higher encoding speed with sim-
ilar quality compared to the GPU-only encoder. In comparison to
the original Betsy, our encoder in the fast mode is 22× faster while
maintaining similar FLIP values.

4.4. Results in Terms of Quality & Encoding speed

In this subsection, we compare the encoding speed and quality of
several different encoders: etcpak 1.0, Betsy, Etc2Comp, and ETC-
PACK 2.74. As mentioned in the QuickETC2 paper [Nah20a], the
open-source version of Etc2Comp ignores color values in trans-
parent regions during compression, resulting in increased errors in
RGBA textures. However, this issue has been resolved in etccom-
press.exe included in Unity version 2020.3.47f1 LTS. Hence, we
utilized this executable from Unity for quality measurement. Since
this executable does not have a time measurement feature, we mea-
sured the encoding time using the original open-source version of
Etc2Comp. We discovered that the fast and best modes in etccom-
press.exe correspond to the original Etc2Comp’s effort parameters
of 0 and 70, respectively. The detailed configuration values for each
encoder are described below.

• Betsy with 0, 1, and 2 as the quality parameters
• Etc2Comp with the fast (effort = 0) and best (effort = 70) modes
• ETCPACK with the fast and slow modes
• H-ETC2 with the fast, normal, and best modes

Table 1: Average FLIP values and Mpixels/s for each encoder
across the dataset of 64 textures. Lower FLIP values and higher
Mpixels/s indicate higher compression quality and faster encoding
time, respectively.

Compressor Mode FLIP Mpixels/s
etcpak 0.0506 1350.82
Betsy Q=0 0.0474 6.20

Q=1 0.0444 5.63
Q=2 0.0438 2.22

Etc2Comp Fast 0.0480 3.97
Best 0.0419 0.15

ETCPACK Fast 0.0419 0.85
Slow 0.0375 0.0041

H-ETC2 Fast 0.0440 127.87
(ours) Normal 0.0421 86.15

Best 0.0400 60.14

Table 1 provides a summary of our experimental results. The

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder 9 of 11

quantitative analysis based on our encoder in the best mode is de-
scribed as follows. Firstly, when comparing the average Mpixels/s
with Betsy for each quality parameter, we observe that our encoder
outperforms Betsy with a quality parameter of 0 by 9.7×. How-
ever, the average FLIP value represented by our encoder is approx-
imately 8.6% lower than that achieved by Betsy with a quality pa-
rameter of 2. This indicates that our encoder is capable of encoding
textures with better quality and encoding speed compared to Betsy.

Comparison to Etc2Comp is similar to the above comparison to
Betsy. Our encoder in the best mode is 15× faster than Etc2Comp
in the fast mode, but ours has a 4.5% lower average FLIP value than
Etc2Comp in the best mode.

Compared to ETCPACK, a reference encoder, our encoder
achieves significantly faster encoding times, often tens or thousands
of times faster. In terms of quality, our encoder surpasses ETC-
PACK in the fast mode, with an average FLIP difference of about
0.0019 (4.5%). However, our encoder in the best mode is behind
ETCPACK in the slow mode, with an average FLIP difference of
0.0025 (6.3%). Nevertheless, upon a thorough examination of the
entire encoding results in the test set, no noticeable visual differ-
ences have been observed between them. This demonstrates that
our encoder can achieve similar quality encoding results to the ref-
erence encoder in significantly less time. A encoding speed-quality
graph for each encoder in each mode is depicted in Figure 1.

Although our hybrid encoder is slower than etcpak due to the
additional GPU encoding process, it effectively reduces most com-
pression artifacts observed in etcpak. Consequently, our encoder in
the best mode achieves a 21% lower average FLIP value. Addition-
ally, the speed gap between the fast and best modes of H-ETC2 is
narrower than that of Etc2comp and ETCPACK. In contrast to the
approach of expanding the search space in their best/slow mode us-
ing exhaustive search, we focus on adjusting only the amount of
input texels to recompress. This results in relatively smaller speed
differences between the fast and best modes (approximately 2×).

We qualitatively analyze the results shown in Figure 12 as fol-
lows. In the helmet and the fox picture in kodim05, we can observe
that Betsy, in all modes, produces block artifacts due to quantiza-
tion errors. While Etc2Comp and etcpak improve upon this, some
block artifacts remain. ETCPACK in the fast mode exhibits better
results than Etc2Comp but slightly rougher results compared to that
in the slow mode. The results from our encoder in the best mode
provide comparable quality to ETCPACK in the slow mode.

Next, let’s analyze the results in jelly. Betsy exhibits ringing and
block artifacts in the eye, and these artifacts are only completely
removed in ETCPACK (slow) and our encoder (best), but not in
the others. The block artifacts at the boundaries between the jellies
are most severe in etcpak due to similar luma values between the
pink and green jellies. ETCPACK (slow) and our encoder (best)
also demonstrate the highest quality in this particular test.

The final image, vase_plant, showcases the mixed results of our
encoder. As depicted in the first row, most of the block artifacts
present in etcpak are effectively handled by the other encoders,
including ours. However, in the second row, our encoder still ex-
hibits block patterns in the upper-left side of the orange floral leaf.
This occurred because the region has low contrast, leading the CPU

encoder to compress it using the Planar mode. The error values
of these blocks were low, preventing them from being accumu-
lated into problematic pixel-block buffers. While this represents the
worst-case scenario in the test set, these block patterns are not vis-
ible unless a user zooms in on the image. Therefore, we believe
that this case does not cause any visual inconvenience to users after
mapping the texture to an object.

5. Discussion

5.1. Limitations

By implementing selective compression in the GPU encoder, we
successfully improved encoding speed. However, it is important to
note that in rare and extreme cases, such as when deviating from the
index pattern we have established, our encoder may not accurately
calculate proper base colors. Figure 13 showcases several examples
of such extreme cases. Nevertheless, during our tests, we did not
encounter any instances of quality degradation in these scenarios.
In fact, if the hue difference within a block is not significant and
the two partitions exhibit distinct levels of saturation or brightness,
the ETC1 mode can effectively handle the compression, even if our
encoder’s T- or H-mode struggles to compress the block optimally.

Figure 13: Failure cases that our selective compression mishan-
dles. The four index pairs we use (Figure 9) fail to properly divide
the partitions in the above cases.

Another limitation is that GPU encoding accounts for a signifi-
cant portion of the total encoding time in our hybrid implementa-
tion. While the CPU encoding component, derived from etcpak, ex-
hibits fast encoding speed, the GPU encoding component remains
comparatively slower, even after our optimizations. This is primar-
ily due to the fact that the GPU encoder explores a much broader
search space and tests all possible compression modes. As a re-
sult, our encoder currently performs ETC2 encoding sequentially
in a pipeline format. However, if there were a method to offload
more processing burden onto the CPU encoding part in exchange
for higher-quality compression [Nah23], it could potentially bal-
ance the encoding time with the GPU encoder.

5.2. Conclusions and Future Work

In this paper we have introduced a hybrid ETC2 encoding pipeline
that combines CPU and GPU processing. Our pipeline uses the
GPU encoding component to enhance compression quality follow-
ing CPU encoding. As a result, our encoder achieves a better bal-
ance between compression quality and encoding speed, surpass-
ing other encoders in the experiment. Specifically, our encoder
achieves comparable quality to ETCPACK in the slow mode and
outperforms other encoders in terms of encoding speed, except for
etcpak.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 11 H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder

Currently, the default ETC2 configuration in Unity utilizes etc-
pak, ETCPACK (fast), and Etc2Comp (best) for the fast, normal,
and best settings, respectively [Uni22]. However, given the signif-
icant speed and quality enhancements offered by our encoder, we
believe it can be considered as an alternative to the encoders used
in the last two settings. By incorporating our encoder, the ETC2
encoding process will be considerably faster, while simultaneously
delivering superior quality.

In terms of future work, we aim to explore the applicability of
our CPU-GPU hybrid approach to other texture formats, including
ASTC and BC7. Additionally, we are keen on enhancing perfor-
mance by refining the balance between CPU and GPU processing
times, as mentioned earlier.

Acknowledgments

We appreciate the reviewers for their error corrections and con-
structive suggestions, and we also thank the authors of etcpak and
Betsy who have opened their source code to the public. We plan to
release the H-ETC2 source code introduced in this paper soon at the
following link: https://github.com/gusrlLee/HETC2.
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1G1A1093404). Image courtesy of Kodak, Simon Fenney,
Crytek, UNC GAMMA Lab, Spiral Graphics, Vokselia Spawn, Ce-
sium, Google, fhernand of Sketchfab.

References

[ANAM∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-
KARSSON M., ÅSTRÖMAND MARK D. FAIRCHILD K.: FLIP: A dif-
ference evaluator for alternating images. Proceedings of the ACM on
Computer Graphics and Interactive Techniques (HPG 2020) 3, 2 (2020).
doi:10.1145/3406183. 7

[AND14] ANDRE J.-P.: etc2_encoder, 2014. URL: https:
//github.com/titilambert/packaging-efl/blob/
master/src/static_libs/rg_etc/etc2_encoder.c. 3

[BAAM17] BARRINGER R., ANDERSSON M., AKENINE-MÖLLER T.:
Ray accelerator: Efficient and flexible ray tracing on a heterogeneous
architecture. Computer Graphics Forum 36, 8 (2017), 166–177. doi:
10.1111/cgf.13071. 3

[Eri18] ERICSSON: ETCPACK, 2018. URL: https://github.
com/Ericsson/ETCPACK. 1, 2

[GB17] GOOGLE INC., BLUE SHIFT INC.: Etc2Comp - texture to
ETC2 compressor, 2017. URL: https://github.com/google/
etc2comp. 1, 2, 5

[Gol22] GOLDBERG M. N.: Betsy GPU compressor, 2022. URL:
https://github.com/darksylinc/betsy. 1, 2, 3, 5

[Int22] INTEL: oneAPI specification release 1.2-rev-1, 2022.
URL: https://spec.oneapi.io/versions/latest/
oneAPI-spec.pdf. 3

[KHH∗09] KIM D., HEO J.-P., HUH J., KIM J., YOON S.-E.: HPCCD:
Hybrid parallel continuous collision detection using CPUs and GPUs.
Computer Graphics Forum 28, 7 (2009), 1791–1800. doi:10.1111/
j.1467-8659.2009.01556.x. 3

[Mic18] MICROSOFT: Texture block compression in Di-
rect3D 11, 2018. URL: https://docs.microsoft.
com/en-us/windows/win32/direct3d11/
texture-block-compression-in-direct3d-11. 1

[MV15] MITTAL S., VETTER J. S.: A survey of CPU-GPU heteroge-
neous computing techniques. ACM Computing Survey 47, 4 (jul 2015).
doi:10.1145/2788396. 3

[Nah20a] NAH J.-H.: QuickETC2: Fast ETC2 texture compression using
luma differences. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH Asia 2020) 39, 6 (2020). doi:10.1145/3414685.
3417787. 2, 3, 4, 7, 8, 11

[Nah20b] NAH J.-H.: QuickETC2: How to finish ETC2 compression
within 1 ms. In ACM SIGGRAPH 2020 Talks (2020). doi:10.1145/
3388767.3407373. 3

[Nah23] NAH J.-H.: QuickETC2-HQ: Improved ETC2 encoding tech-
niques for real-time, high-quality texture compression. Computers &
Graphics (2023). doi:10.1016/j.cag.2023.08.032. 9

[NAM20] NILSSON J., AKENINE-MÖLLER T.: Understanding SSIM.
ArXiv e-prints (2020). doi:10.48550/arXiv.2006.13846. 7

[NKL∗10] NAH J.-H., KANG Y.-S., LEE K.-J., LEE S.-J., HAN T.-D.,
YANG S.-B.: MobiRT: an implementation of OpenGL ES-based CPU-
GPU hybrid ray tracer for mobile devices. In ACM SIGGRAPH ASIA
2010 Sketches (2010), pp. 50:1–50:2. doi:10.1145/1899950.
1900000. 3

[NKP∗15] NAH J.-H., KIM J.-W., PARK J., LEE W.-J., PARK J.-S.,
JUNG S.-Y., MANOCHA D., HAN T.-D.: HART: A hybrid architecture
for ray tracing animated scenes. IEEE Transactions on Visualization and
Computer Graphics 21, 3 (2015), 389–401. doi:10.1109/TVCG.
2014.2371855. 3

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS S.,
OLSON T.: Adaptive scalable texture compression. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on High-
Performance Graphics (2012), pp. 105–114. doi:10.2312/EGGH/
HPG12/105-114. 1

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., ET AL.: OptiX: a general purpose ray tracing
engine. ACM Transactions on Graphics (TOG) 29, 4 (2010), 1–13.
doi:10.1145/1778765.1778803. 2

[PBPP11] PAJOT A., BARTHE L., PAULIN M., POULIN P.: Combi-
natorial bidirectional path-tracing for efficient hybrid CPU/GPU ren-
dering. Computer Graphics Forum 30, 2 (2011), 315–324. doi:
10.1111/j.1467-8659.2011.01863.x. 3

[PP14] PALTASHEV T., PERMINOV I.: Texture compression tech-
niques. Scientific Visualization 6, 1 (2014), 106–146. URL: http://
sv-journal.org/2014-1/06/en/index.php?lang=en. 1

[PS05] PETTERSSON M., STRÖM J.: Texture compression: THUMB:
Two hues using modified brightess. In SIGRAD 2005 The Annual
SIGRAD Conference Special Theme-Mobile Graphics (2005), no. 016,
Linköping University Electronic Press, pp. 7–12. URL: https://ep.
liu.se/ecp/016/002/ecp01602.pdf. 2, 6

[Ric12] RICH GELDREICH: rg_etc1: Fast, high quality ETC1 (Ericsson
Texture Compression) block packer/unpacker, 2012. URL: https://
code.google.com/archive/p/rg-etc1/. 3

[SA13] SEGAL M., AKELEY K.: The OpenGL© Graphics Sys-
tem: A Specification (Version 4.3 (Core Profile) - February 14,
2013), 2013. URL: https://www.khronos.org/registry/
OpenGL/specs/gl/glspec43.core.pdf. 2

[SAM04] STRÖM J., AKENINE-MÖLLER T.: PACKMAN: Texture com-
pression for mobile phones. In ACM SIGGRAPH 2004 Sketches (2004),
p. 66. doi:10.1145/1186223.1186306. 2

[SAM05] STRÖM J., AKENINE-MÖLLER T.: iPACKMAN: High-
quality, low-complexity texture compression for mobile phones. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics Hardware (2005), pp. 63–70. doi:10.1145/1071866.
1071877. 1, 2, 6

[Smi18] SMITH S.: Adaptive scalable texture compression. In GPU Pro
360 Guide to Mobile Devices. AK Peters/CRC Press, 2018, pp. 153–166.
4

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/gusrlLee/HETC2
https://doi.org/10.1145/3406183
https://github.com/titilambert/packaging-efl/blob/master/src/static_libs/rg_etc/etc2_encoder.c
https://github.com/titilambert/packaging-efl/blob/master/src/static_libs/rg_etc/etc2_encoder.c
https://github.com/titilambert/packaging-efl/blob/master/src/static_libs/rg_etc/etc2_encoder.c
https://doi.org/10.1111/cgf.13071
https://doi.org/10.1111/cgf.13071
https://github.com/Ericsson/ETCPACK
https://github.com/Ericsson/ETCPACK
https://github.com/google/etc2comp
https://github.com/google/etc2comp
https://github.com/darksylinc/betsy
https://spec.oneapi.io/versions/latest/oneAPI-spec.pdf
https://spec.oneapi.io/versions/latest/oneAPI-spec.pdf
https://doi.org/10.1111/j.1467-8659.2009.01556.x
https://doi.org/10.1111/j.1467-8659.2009.01556.x
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://doi.org/10.1145/2788396
https://doi.org/10.1145/3414685.3417787
https://doi.org/10.1145/3414685.3417787
https://doi.org/10.1145/3388767.3407373
https://doi.org/10.1145/3388767.3407373
https://doi.org/10.1016/j.cag.2023.08.032
https://doi.org/10.48550/arXiv.2006.13846
https://doi.org/10.1145/1899950.1900000
https://doi.org/10.1145/1899950.1900000
https://doi.org/10.1109/TVCG.2014.2371855
https://doi.org/10.1109/TVCG.2014.2371855
https://doi.org/10.2312/EGGH/HPG12/105-114
https://doi.org/10.2312/EGGH/HPG12/105-114
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1111/j.1467-8659.2011.01863.x
https://doi.org/10.1111/j.1467-8659.2011.01863.x
http://sv-journal.org/2014-1/06/en/index.php?lang=en
http://sv-journal.org/2014-1/06/en/index.php?lang=en
https://ep.liu.se/ecp/016/002/ecp01602.pdf
https://ep.liu.se/ecp/016/002/ecp01602.pdf
https://code.google.com/archive/p/rg-etc1/
https://code.google.com/archive/p/rg-etc1/
https://www.khronos.org/registry/OpenGL/specs/gl/glspec43.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec43.core.pdf
https://doi.org/10.1145/1186223.1186306
https://doi.org/10.1145/1071866.1071877
https://doi.org/10.1145/1071866.1071877

H. Lee & J.-H. Nah / H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder 11 of 11

Table 2: Experimental results for each category in terms of quality (PSNR, SSIM, and FLIP) and encoding speed (Mpixels/s).

Betsy GPU Etc2Comp ETCPACK etcpak 1.0 Ours
Q=0 Q=1 Q=2 Fast Best Fast Slow - Fast Normal Best

PSNR
Photo 36.36 37.20 37.31 36.40 37.49 36.56 37.42 35.70 36.05 36.38 36.62
Game 37.43 38.15 38.24 37.54 38.56 37.71 38.46 36.22 36.96 37.29 37.55
GIS Map 37.30 38.11 38.25 37.68 39.04 37.83 38.96 34.64 37.09 37.50 37.81
Synth 38.81 39.41 39.51 38.80 39.72 38.87 39.58 37.04 37.65 37.95 38.10
Captured 46.54 46.82 46.91 46.60 48.53 47.20 48.63 41.62 46.37 46.49 46.67

SSIM
Photo 0.9597 0.9646 0.9649 0.9594 0.9663 0.9618 0.9654 0.9525 0.9533 0.9549 0.9583
Game 0.9641 0.9686 0.9689 0.9637 0.9697 0.9649 0.9684 0.9487 0.9576 0.9598 0.9629
GIS map 0.9724 0.9763 0.9767 0.9743 0.9791 0.9752 0.9783 0.9555 0.9672 0.9690 0.9730
Synth 0.9727 0.9794 0.9798 0.9745 0.9817 0.9709 0.9745 0.9031 0.9702 0.9724 0.9734
Captured 0.9909 0.9913 0.9914 0.9903 0.9914 0.9915 0.9915 0.9811 0.9897 0.9899 0.9903

FLIP
Photo 0.0506 0.0475 0.0469 0.0523 0.0450 0.0450 0.0402 0.0479 0.0467 0.0447 0.0424
Game 0.0502 0.0466 0.0460 0.0506 0.0447 0.0445 0.0401 0.0533 0.0476 0.0452 0.0426
GIS Map 0.0643 0.0615 0.0610 0.0621 0.0553 0.0561 0.0499 0.0807 0.0584 0.0564 0.0543
Synth 0.0384 0.0349 0.0345 0.0398 0.0339 0.0327 0.0299 0.0431 0.0332 0.0316 0.0297
Captured 0.0184 0.0183 0.0183 0.0176 0.0156 0.0165 0.0135 0.0360 0.0165 0.0165 0.0163

Mpixels/s
Photo 6.04 5.54 2.09 3.58 0.12 0.84 0.003 708.85 55.70 43.72 34.18
Game 5.94 5.38 2.23 4.14 0.17 0.80 0.004 1279.41 99.32 78.72 62.32
GIS Map 5.67 4.80 2.05 3.63 0.11 0.85 0.004 453.17 33.79 24.86 20.58
Synth 3.40 3.18 1.59 4.66 0.23 0.89 0.003 663.90 32.66 28.29 24.90
Captured 8.82 8.08 2.92 4.76 0.13 1.08 0.004 4618.02 575.59 316.98 177.40

[SP07] STRÖM J., PETTERSSON M.: ETC 2: texture compres-
sion using invalid combinations. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics Hardware (2007),
pp. 49–54. doi:10.2312/EGGH/EGGH07/049-054. 1, 2

[Tau22] TAUDUL B.: etcpak:the fastest ETC compressor on the planet,
2022. URL: https://github.com/wolfpld/etcpak. 2, 3, 4

[Uni22] UNITY TECHNOLOGIES: Unity user manual (2022.2),
2022. URL: https://docs.unity3d.com/2022.2/
Documentation/Manual/class-EditorManager.html.
9

[vMVJ22] ŽÁDNÍK J., MÄKITALO M., VANNE J., JÄÄSKELÄINEN P.:
Image and video coding techniques for ultra-low latency. ACM Comput-
ing Surveys 54, 11s (sep 2022). doi:10.1145/3512342. 2

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (2004), 600–612. doi:
10.1109/TIP.2003.819861. 7

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: a kernel framework for efficient CPU ray tracing. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–8. doi:10.1145/
2601097.2601199. 2

Appendix

Figure 14 illustrates the texture set employed in our experiments,
which can be categorized into five types: Photos (1st to 25th), game
textures (26th to 51st), GIS map data (52nd to 55th), synthesized
images (56th to 57th), and captured images from a camera for 3D
reconstruction (58th to 64th). In Table 2, the "Captured" dataset

exhibits a resolution of 8192 × 8192, resulting in higher PSNR
values than other input textures. Consequently, the proportion of
problematic pixel blocks to be reprocessed on the GPU is signifi-
cantly lower than in the other lower-resolution textures, leading to
a higher encoding speedup factor. Detailed experimental results for
each category are provided in Table 2.

Figure 14: 64 textures in the QuickETC2 test set [Nah20a].

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.2312/EGGH/EGGH07/049-054
https://github.com/wolfpld/etcpak
https://docs.unity3d.com/2022.2/Documentation/Manual/class-EditorManager.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-EditorManager.html
https://doi.org/10.1145/3512342
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199

