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Abstract
Remote sensing images (RSIs) often possess obvious background noises, exhibit a multi-scale phenomenon, and are character-
ized by complex scenes with ground objects in diversely spatial distribution pattern, bringing challenges to the corresponding
semantic segmentation. CNN-based methods can hardly address the diverse spatial distributions of ground objects, especially
their compositional relationships, while Vision Transformers (ViTs) introduce background noises and have a quadratic time
complexity due to dense global matrix multiplications. In this paper, we introduce Adaptive Pattern Matching (APM), a light-
weight method for long-range adaptive weight aggregation. Our APM obtains a set of pixels belonging to the same spatial
distribution pattern of each pixel, and calculates the adaptive weights according to their compositional relationships. In addi-
tion, we design a tiny U-shaped network using the APM as a module to address the large variance of scales of ground objects
in RSIs. This network is embedded after each stage in a backbone network to establish a Multi-stage U-shaped Adaptive Pat-
tern Matching Network (MAPMaN), for nested multi-scale modeling of ground objects towards semantic segmentation of RSIs.
Experiments on three datasets demonstrate that our MAPMaN can outperform the state-of-the-art methods in common metrics.
The code can be available at https://github.com/INiid/MAPMaN.

CCS Concepts
• Computing methodologies → Neural networks; Image segmentation;

1. Introduction

As a pixel-wise classification problem, semantic segmentation is a
fundamental task in the field of computer vision, and significantly
contributes to the analysis of remote sensing images (RSIs) and
relevant applications, including land use classification [DDS22],
agricultural production estimation [LYY∗23], and environmental
monitoring [YSL∗20]. Compared to natural images, there are some
considerable difficulties in RSIs as illustrated in Figure 1. Firstly,
RSIs often possess obvious background noises, which are repre-
sented by disturbing elements (e.g., shadows, blurred edges, and
ambiguous backgrounds) [WZC∗20] [CNG∗23] and unrelated re-
mote ground objects [DTB21]; beside, RSIs tend to exhibit a multi-
scale phenomenon that both inter-class and intra-class ground ob-
jects have significant scale variations; furthermore, ground objects
in RSIs frequently exist within specific spatial distribution pattern
(e.g., buildings are individually placed, whereas cars, roads, and
houses jointly represent a neighborhood); even within the same pat-
tern, ground objects may exhibit complex compositional relation-
ships and geometric variations (e.g., buildings are likely to have
different orientations and shapes).

† Corresponding author (Email: t.feng@zju.edu.cn).

Convolutional Neural Networks (CNNs) have been adopted
as a preferred solution to semantic segmentation of images, in-
cluding RSIs, given their outstanding capability to extract fea-
ture [PZY∗17, ZSQ∗17, ZLDB20]. However, most convolutional
kernels used in the CNN-based semantic segmentation methods are
actually a type of fixed filters, demonstrating two obvious limita-
tions in the applications with RSIs: (1) The fixed weights cause
sub-optimal performance for modeling compositional relationships
with significant differences; (2) the fixed shapes lead to unsatis-
factory adaptability to geometric variations. Recently, deformable
convolutions [DQX∗17, ZHLD19] have been proposed to address
the issue on geometric variations, which support irregular sampling
and emphasize the parts of interest within the sampled pixels by
modulation scalars. However, they are yet to consider the composi-
tional relationships among the sampled points.

To resolve the above-discussed limitations, recent studies have
exploited the attention mechanism to establish Vision Transform-
ers (ViTs) [DBK∗20, WLZ∗22]. The attention mechanism calcu-
lates the pixel-level similarity of the input image for weights ag-
gregation, and thus establishes adaptive long-range dependence.
However, it introduces excessive background noises and has a
quadratic time complexity due to dense matrix multiplications, lim-
iting the application scenarios in practice. Although local atten-
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Figure 1: Challenges in semantic segmentation of RSIs, includ-
ing (1) background noises from disturbing elements and unrelated
remote objects (in blue bounding boxes) for the reference pixel
(marked by the red star); (2) multi-scale phenomenon in inter-class
and intra-class objects (in yellow bounding boxes); and (3) objects
in same pattern with complex compositional relationships and ge-
ometric variations (in green bounding boxes).

tion [DTB21, LLC∗21] and sparse attention [HWH∗19, CGRS19]
have attempted to resolve these issues, it is noteworthy that their ca-
pabilities to capture long-range dependence and adapt to geometric
variations can be negatively impacted.

Recent studies have been devoted to investigating the use of
convolutions as an alternative to attention. [HFD∗21] finds that
the superior performance of local attention comes from sparse
connectivity, weight sharing and dynamic weight, which are also
achievable by dynamic depth-wise convolutions. Meanwhile, Con-
vNeXt [LMW∗22] is proposed to gradually transform a standard
ResNet into the design of ViTs and obtain several critical compo-
nents filling the performance gap between ViTs and CNNs. Fur-
thermore, Conv2Former [HLCF22] is presented with a convolu-
tional modulation operation for simplifying the attention mecha-
nism, which achieves the outperformance over ViTs. These studies
on the composition of the Transformer-based methods and the re-
thinking about CNN-based methods inspire us to devise a novel
method for semantic segmentation of RSIs following the advanta-
geous design of both ViTs and convolutions.

In this paper, we propose a compact and light-weight method
for long-range adaptive weight aggregation, named Adaptive Pat-
tern Matching (APM), where convolutions are exclusively adopted
to explore the upper bound of their capability to extract features.
Specifically, the APM comprises two processes, that is, Adaptive
Pattern Sampling (APS) and Adaptive Feature Modulation (AFM).
To begin with, the APS searches for a group of pixels belong-
ing to the same spatial distribution pattern of ground objects for
each pixel from its local features while identifying geometric varia-
tions of ground objects and filtering background noises; afterwards,
the AFM performs point-wise convolutions on the group of pixels
along the spatial and channel dimensions to recognize the composi-
tional relationships of ground objects in the pattern. To address the
multi-scale phenomenon of ground objects in RSIs, we design the
UAPM, a tiny U-shaped network using the APM as a module. The

UAPM is embedded in the backbone network to establish a Multi-
stage U-shaped Adaptive Pattern Matching Network (MAPMaN)
for semantic segmentation of RSIs, which enables the modeling of
ground objects in a nested multi-scale way.

The contributions of this work can be summarized as follows:

• We design a novel long-range adaptive weight aggregation
method to recognize spatial distribution patterns of ground ob-
jects in RSIs.

• We present a nested multi-scale architecture that embeds a tiny
U-shaped network after each stage of the backbone.

• We propose a Multi-Stage U-Shaped Adaptive Pattern Match-
ing Network for semantic segmentation of RSIs, suggesting the
superiority to other state-of-the-art methods on three datasets in
our experiments.

2. Related work

CNN-based methods. Drastically increasing computational re-
sources and data have driven researchers to propose numerous
CNN-based methods for computer vision tasks. To solve the
problem of semantic segmentation, which is a dense prediction
task, [LSD15] proposes Fully Convolutional Network (FCN) en-
abling the end-to-end training for the first time. Most of the sub-
sequent methods adapt an encoder-decoder architecture, where the
decoder incorporates various feature enhancement techniques, such
as spatial pyramid modeling [ZSQ∗17, CZP∗18, YWP∗18], sym-
metric structure-based multi-scale modeling [RFB15, LMSR17,
KGHD19], and attention mechanism [WGGH18, WPLK18,
HWH∗19].

Recent studies have presented further advancements on convo-
lutional kernels. DCNv1 [DQX∗17] employs irregular sampling
to handle visual object deformations; DCNv2 [ZHLD19] insti-
gates modulation scalars to emphasize the parts of interest within
the sampled pixels; DCNv3 [WDC∗23] optimizes the modulation
scalars with a multi-head mechanism. However, these methods still
use fixed weights and can hardly identify the various compositional
relationships among the sampled pixels.

Vision Transformers. Given to the excellent performance for
NLP tasks, Transformer [VSP∗17] has been widely adopted to form
a series of Vision Transformers (ViTs) towards computer vision
tasks. In particular, the vanilla ViT [DBK∗20] slices the input im-
age into fixed-size tokens and then projects them as patches, which
is the first purely Transformer-based method achieving impressive
results. Besides, Swim Transformer [LLC∗21] adopts the atten-
tion mechanism with shifted windows to introduce the convolution-
like inductive bias while reducing the computational cost. Pyramid
Vision Transformer (PVT) [WXL∗21] employs a pyramid struc-
ture similar to CNNs and brings suitability for dense prediction
tasks, including semantic segmentation. In addition, a series of
decoders [ZZT∗20, ZTT∗22, SGLS21] have emerged to enhance
dense prediction via multi-scale design and the revision of the at-
tention mechanism for ViTs.

Composition of ViTs. More recently, several studies attempt to
replace the token mixers represented by the attention mechanism
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Figure 2: Pipeline of our Adaptive Pattern Matching (APM) method, which consists of depth-wise convolutions and point-wise convolutions
to enable the light-weight design. Given an input feature map D ∈ RH×W×C, two depth-wise convolutions are applied to obtain S and R.
For a pixel di in D, the pattern’s information PS , PR, and PD ∈ RC×K are sampled based on offsets {(∆sx,k,∆sy,k)} ∈ RK×2. Afterwards,
spatial and channel modulations are conducted in parallel to obtain adaptive weights. Finally, adaptive weights are used to conduct the
aggregation for the enhanced feature vector zi.

in ViTs with Multi-Layer Perceptrons (MLPs) [THK∗21] or its
variants [HJY∗22]. These replacements achieve competitive perfor-
mance, which, however, have raised the question on the key to im-
pacting the performance of ViTs. In addition, [LMW∗22] devises
ConvNeXt to gradually transform the standard ResNet into the de-
sign of ViTs, which discovers several critical components enabling
the purely convolution-based model to outperform ViTs. [HFD∗21]
observes the similarities between depth-wise convolution and local
attention regarding sparse connectivity and weight sharing; con-
siderable performance is obtained by replacing the local atten-
tion in Swim Transformer with the dynamic depth-wise convolu-
tion. [HLCF22] presents Conv2Former that exploits the convolu-
tional modulation operation and models the attention via calcu-
lating adaptive weights with large-kernel depth-wise convolutions,
exhibiting performance comparable to ViTs. These methods inspire
us to decompose the attention mechanism and implement its key el-
ements using convolutions. Therefore, we devise the APM that can
outperform the attention mechanism and thus increase the upper
bound of convolutions’ capability to extract features.

3. Proposed method

The attention mechanism can dynamically select and aggregate
information based the relationships among sequences. In CNN-
based methods, the attention mechanism is employed to capture
long-range dependence and model context information. In ViTs,
the attention mechanism serves as the key component. We formu-
late the general form of the attention mechanism in this paper as
follows. Given queries Q ∈ RNq×C, keys K ∈ RNkv×C, and values

V ∈RNkv×C, the attention mechanism calculates the similarities be-
tween each query qi and all keys using dot product. It aggregates
the corresponding values weighted by these similarities as follows:

Att(Q,K,V) =
Nkv

∑
j=1

exp(qi · k j)

∑
Nkv
j=1 exp(qi · k j)

· v j,∀i ∈ {1,2, . . . ,Nq}. (1)

In practice, the multi-head self-attention (MHSA) module has
been more widely adopted given its improved performance and ca-
pability of representation. Specifically, self-attention refers to that
queries, keys, and values are mapped from the same input flattened
feature map D ∈ RN×Ĉ, where N denotes the number of pixels in
D; multi-head refers to that D is mapped into h heads using h sep-
arate feature mapping sets and the final result is the concatenation
of all heads’, which can be defined as follows:

headi = Att(W q
i D,W k

i D,W v
i D), (2)

MHSA(D) =Concat(head0,head1, ...,headh−1)W
o, (3)

where headi ∈ RN×C
h represents the output of the i-th head. The

feature mappings W q
i ,W

k
i ,W

v
i ∈ R

C
h ×Ĉ embed the input into dif-

ferent feature spaces, while W o ∈ RC×C combines the results from
the multi-heads.

In retrospect, the MHSA module is characterized by (1) adopt-
ing multiple feature mapping sets so that heads can capture differ-
ent patterns of relationships in the input; and (2) allowing the input
sequences to interact with each other and assigning weights based
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Figure 3: Example of Adaptive Pattern Sample. Firstly K offset
coordinates are obtained by successive depth-wise and point-wise
convolutions. Taking the offset coordinates (1.3,-1.5) as an exam-
ple, the coordinates of the sampled pixel are obtained as (4.0+1.3,
4.0-1.5) = (5.3, 2.5), and finally the value here is obtained by bilin-
ear interpolation for the four pixels in the green box.

on their correlations to efficiently process the various spatial distri-
butions. However, obvious drawbacks still exist with the MHSA
module, among which the most influential one is the establish-
ment of dependence among all sequences. For RSIs with complex
backgrounds, such dependence is very likely to introduce excessive
noises and cause performance degradation. In addition, performing
n queries for n key-value pairs leads to the O(n2) time complexity,
especially when employing the multi-head strategy, which requires
more significant computation. Several studies adapt sparse atten-
tion via local-block computing or location-specific pixel selection
to reduce computation, but are yet to address the problem of indis-
criminate dependence establishment.

3.1. Adaptive Pattern Matching

For a pixel di, the adaptive weight aggregation method represented
by the attention mechanism can be formulated as follows:

zi = ∑
d j∈region(di)

Φ
(

fq (di) , fk
(
d j
))

fv
(
d j
)
, (4)

where region(di) denotes the entire feature map in the global at-
tention or specific pixels at certain locations in the sparse attention,
Φ represents the dot product operation, and fq, fk, and fv refer to
feature mappings.

Our Adaptive Pattern Matching (APM) method, which is com-
posed of Adaptive Pattern Sampling (APS) and Adaptive Feature

Modulation (AFM), improves the above formulation of adaptive
weight aggregation as follows:

zi = ∑
P j∈pattern(di)

Φ
(

fs
(
P j

)
, fc

(
P j

))
P j. (5)

Specifically, the APS differs from the indiscriminate sampling
adopted by the self-attention mechanism, and searches for a set of
pixels P = pattern(di) belonging to the same spatial distribution
pattern for each pixel according to its local features, which can
identify geometric variations of ground objects and ignore back-
ground noises; the AFM includes two simple but effective methods
to calculate adaptive weights Φ

(
fs
(
P j

)
, fc

(
P j

))
regarding spa-

tial and channel dimensions, so as to identify the compositional
relationships among the pixels in the same spatial distribution pat-
tern.

Adaptive Pattern Sampling. As shown in Figure 3, for a feature
map D ∈RH×W×C, where H, W , and C denote D’s height, weight,
and number of channels, two consecutive convolutions are adopted
to compute 2-dimensional offsets (∆SX ,∆SY ) for all pixels as fol-
lows:

(∆SX ,∆SY ) = ψ(W o
0 (W

o
1 D)), (6)

where SX ,SY ∈ RH×W×K respectively represent the horizontal
and vertical offsets, W o

0 ∈ R2K×C denotes a point-wise convolu-
tion with kernel size of 1× 1 to change the number of channels,
W o

1 ∈ RC×C denotes a depth-wise convolution with kernel size of
5× 5 to collect local information, ψ refers to a splitting operation
that divides a feature map into two parts along the channel dimen-
sion, and K refers to the number of sampled pixels.

For a reference pixel r at position (px, py), the k-th sampled pixel
r′k corresponds to the offset (∆sx,k,∆sy,k) as follows:

r′k = f (px,k, py,k) = f (px +∆sx,k, py +∆sy,k), (7)

where f (·) denotes a function that obtains the corresponding value
from the feature map based on a pair of coordinates.

Since (∆sx,k,∆sy,k) are fractions, we use a linear kernel to aggre-
gate the pixels near r′k as:

r′k = ∑
(px,t ,py,t )∈τ

g(px,t , py,t) f (px,t , py,t), (8)

where τ denotes a set of the four pixels closest to (pxk, pyk), and
g(·, ·) represents a kernel that is implemented as bilinear interpola-
tion. All sampled pixels are concatenated along the spatial dimen-
sion to obtain the pattern P ∈ RK×C.

Adaptive Feature Modulation. Inspired by [HLCF22] and
[HFD∗21], we adapt two parallel depth-wise convolutions to the
input feature map D ∈ RH×W×C to obtain the preliminary mod-
ulation weights S ∈ RH×W×C and R ∈ RH×W×C, as shown in
Figure 2. This allows each channel to be approximated as a head in
the MHSA module, which can capture a specific compositional re-
lationship to enhance the APM’s capability of representation. Com-
pared to [HLCF22] using a convolutional kernel of size 11×11, our
method requires a smaller kernel of size 5× 5 that greatly reduces
the number of parameters.
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Figure 4: Architecture of the proposed MAPMaN and UAPM. (a) Our MAPMaN follows the encoder-decoder architecture, whose encoder
is a ResNet50 with dilated convolutions and decoder consists of UAPMs and fusion stages. (b) Our UAPM only adopts depth-wise and
point-wise convolutions to enable a light-weight design that significantly reduces memory consumption and computational complexity while
adding limited parameters.

For a reference pixel r at position (px, py), we perform APS on
S, R, and D to respectively obtain the pattern’s information PS ,
PR, and PD ∈ RC×K as follows:

PS = ξ(S,{(∆sx,k,∆sy,k)}), (9)

PR = ξ(R,{(∆sx,k,∆sy,k)}), (10)

PD = ξ(D,{(∆sx,k,∆sy,k)}), (11)

where K represents the number of sampled pixels in the pattern,
and ξ(X ,{(∆sx,k,∆sy,k)}) denotes a function that selects the pix-
els from the feature map X based on the 2-dimensional offsets
{(∆sx,k,∆sy,k)} ∈ RK×2.

For PS , adaptive weights are calculated along the spatial dimen-
sion according to the compositional relationship of the pattern pix-
els as follows:

fs(PS) =W s
0 (W

s
1PS), (12)

where W s
0 ∈ RK×(K/ε),W s

1 ∈ R(K/ε)×K are two simple point-wise
convolutions along the spatial dimension, ε denotes the reduction
ratio. It is noteworthy that the adaptive weights for each channel

are calculated separately according to its own content following the
style of depth-wise convolution. This design allows each channel to
focus on an unique compositional relationship.

For PR, adaptive weights are calculated along the channel di-
mension to determine the importance of the compositional relation-
ship represented by each channel as follows:

fc (PR) = σ((W c
0 (W

c
1 AvgPool(PR)))

+(W c
0 (W

c
1 MaxPool(PR)))),

(13)

where σ represents the Sigmoid function, W c
0 ∈ RC×(C/ε),W c

1 ∈
R(C/ε)×C are two point-wise convolutions along the channel di-
mension. The pairing relationships between pixels in different pat-
terns may be different. For example, buildings and roads constitute
neighborhood, and shrubs and roads form gardens. Therefore, we
introduce two parallel pooling operations to capture pattern-related
global context information.

Different from the dot product used in Equation 4, we employ
the Hadamard product as follows:

Φ
(

fs(PS, j), fc(PR, j)
)
= fs(PS, j) · fc(PR, j), (14)

which outputs the adaptive weights for all pixels within the pattern.
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Figure 5: Visualization of example segmentation maps output from our MAPMaN and other state-of-the-art methods for comparison. (a) and
(b) are from ISPRS Vaihingen test set; (c), (d), and (e) are from ISPRS Potsdam test set. The regions in red boxes refer to the areas that are
prone to confusion or ambiguity.

Finally, the adaptive weights are element-wise multiplied with PD
and summed along the spatial dimension to output the feature vec-
tor that has been enhanced via adaptive pattern matching.

3.2. Tiny U-shaped network with APM

To extract features in a multi-scale manner, our UAPM, a tiny U-
shaped network, incorporates the above-discussed APM as a mod-
ule at the bottom level. As shown in Figure 4(b), our UAMP adopts
depth-wise convolutions with kernel size of 2 and stride of 2, which
facilitates the learning of local information prior to downsampling.
Besides, a residual connection is employed between the feature
maps of the same size to reduce the complexity, instead of con-
catenation and convolution for fusion. It is noteworthy that our
UAPM only uses depth-wise and point-wise convolutions to ensure
the light-weight design.

Rather than being used solely for multi-scale modeling, our
UAPM can be embedded into an outer network to provide the fol-
lowing benefits: (1) It significantly reduces the memory consump-
tion and the computational complexity required by the bottom-level
feature enhancement (e.g., APM); (2) it increases the receptive field
and thus enables the bottom-level feature enhancement module to
capture long-range dependence more effectively; and (3) it effec-
tively reuses the spatial information of the feature maps using resid-
ual connections, so as to enhance the modeling of fine details.

3.3. Multi-Stage U-Shaped APM Network

To validate the UAMP’s capability to be embedded in an outer net-
work, we devise MAPMaN, a Multi-Stage U-Shaped Adaptive Pat-
tern Matching Network that that follows the encoder-decoder archi-
tecture, as depicted in Figure 4(a). Our MAPMaN takes as input an
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Table 1: Comparison with the state-of-the-art methods on LoveDA, ISPRS Vaihingen and ISPRS Potsdam test sets. Highest scores are in
bold. All scores are reported in percentage.

Method
LoveDA Vaihingen Potsdam

back buil road water barren forest agri mloU AF mloU OA AF mloU OA

MANet [LZZ∗22] 38.7 51.7 42.6 72.0 15.3 42.1 57.7 45.7 90.41 82.71 90.96 92.90 86.95 91.32
Segmenter [SGLS21] 38.0 50.7 48.7 77.4 13.3 43.5 58.2 47.1 88.23 79.44 89.93 92.27 86.48 91.04

LANet [DTB21] 40.0 50.6 51.1 78.0 13.0 43.2 56.9 47.6 88.09 79.28 89.83 91.95 85.15 90.84
DeepLabv3+ [CZP∗18] 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6 86.77 77.13 89.12 90.86 84.24 89.18

FarSeg [ZZWM20] 43.1 51.5 53.9 76.6 9.8 43.3 58.9 48.2 87.88 79.14 89.57 91.21 84.36 89.87
Semantic FPN [KGHD19] 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2 87.58 77.94 89.86 91.53 84.57 90.16

PSPNet [ZSQ∗17] 44.4 52.1 53.5 76.5 9.7 44.1 57.9 48.3 86.47 76.78 89.36 89.98 81.99 90.14
FLANet [SLL∗22] 44.6 51.8 53.0 74.1 15.8 45.8 57.6 49.0 87.44 78.08 89.60 93.12 87.50 91.87
OCRNet [YCW20] 44.2 55.1 53.5 74.3 18.5 43.0 60.5 49.9 89.22 81.71 90.47 92.25 86.14 90.03

SwimUperNet [LLC∗21] 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.0 89.90 81.80 91.00 92.24 86.37 90.98
DANet [FLT∗19] 44.8 55.5 53.0 75.5 17.6 45.1 60.1 50.2 86.88 77.32 89.47 89.60 81.40 89.73

ConvNeXt [LMW∗22] 46.9 53.5 56.8 76.1 15.9 47.5 61.8 51.2 90.50 82.87 91.36 93.03 87.17 91.66
ISNet [JLCY21] 44.4 57.4 58.0 77.5 21.8 43.9 60.6 51.9 90.19 82.36 90.52 92.67 86.58 91.27

UNetFormer [WLZ∗22] 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4 90.40 82.70 91.00 92.80 86.80 91.30
BiFormer [ZWK∗23] 43.6 55.3 55.9 79.5 16.9 45.4 61.5 51.2 89.65 81.50 90.63 91.47 84.51 90.17

PoolFormer [YLZ∗22] 45.8 57.1 53.3 80.2 19.8 46.1 64.5 52.4 89.59 81.35 90.30 92.62 86.45 91.12

MAPMaN (Ours) 47.3 59.5 56.7 80.5 20.3 48.6 65.0 54.0 91.54 84.64 91.79 93.43 87.88 91.98

RGB remote sensing image R0 and aims to output the correspond-
ing semantic segmentation map. The encoder is based on ResNet50
with dilated convolutions [CZP∗18], and the decoder comprises the
UAPM, layer normalization, and a sequence of fusion convolutions
following each stage of the encoder.

Specifically, the ResNet block at the i-th stage extracts a fea-
ture map Ri from Ri−1. The corresponding UAPM then conducts
multi-scale modeling on Ri, followed by layer normalization, to
obtain an intermediate feature map Si. Except for S4 that is equiv-
alent to F4, each Si is concatenated with Fi+1 along the channel
dimension, followed by fusion convolution, to generate a fused fea-
ture map Fi. In particular, the bottleneck-like fusion convolution in
our MAPMaN is light-weight by using depth-wise convolution. Fi-
nally, the fuse feature map of the 1-st stage is upsampled to the size
of the input image to reach the output segmentation map.

4. Experiments

4.1. Datasets and metrics

We conduct the experiments on three RSI datasets and adopt com-
mon metrics to evaluate the performances of our MAPMaN and
other methods for comparison.

ISPRS Vaihingen. The ISPRS Vaihingen dataset [RSJ∗21] con-
sists of 33 TOP image tiles and digital surface models (DSMs)
with a ground sampling distance (GSD) of 0.09 m, ranging from
1996× 1995 to 3816×2550 in pixels regarding the size of image.
In our experiments, we only use the TOP image tiles that have three
multi-spectral bands: near-infrared, red, and green. The dataset in-
volves 6 land cover categories (i.e., impervious surfaces, buildings,
low vegetation, trees, cars, and clutter/background). We select the
images with IDs 1, 5, 7, 11, 13, 15, 17, 21, 23, 26, 28, 32, 34, and
37 for training, and the image with id 30 for validation, and the

Table 2: Comparison with selected context aggregation modules
on Params (M) and FLOPs (G). The size of feature map used for
calculating Params and FLOPs is 2048×128×128.

Method Params (M) FLOPs (G)

DCNv3 Block [WDC∗23] 42.8 702.2
PPM [ZSQ∗17] 23.1 309.5
ASPP [CZP∗18] 15.1 503.0
DAB [FLT∗19] 23.9 392.2

ConvMod Block [HLCF22] 21.3 348.3
OCR [YCW20] 10.5 354.0

PAM+AEM [DTB21] 10.4 157.6
ILCM+SLCM [JLCY21] 11.0 180.6

UAPM (Ours) 3.3 26.4

rest images for testing. All images are cropped into patches of size
1024×1024 in pixels.

ISPRS Potsdam. The ISPRS Potsdam dataset [RSJ∗21] is a 2-
dimensional semantic labeling dataset that contains 38 very fine
spatial resolution (GSD 0.05 m) TOP image tiles, each of which is
of size 6000× 6000 in pixels. The dataset involves the same cate-
gories as the ISPRS Vaihingen dataset, but has three different types
of images: IRRG, RGB, and RGBIR. In our experiments, we only
use the RGB images. We select images with IDs 2_13, 2_14, 3_13,
3_14, 4_13, 4_14, 4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15, and
7_13 for testing, the image with ID 2_10 for validation, and the
rest images for training. All images are cropped into patches of
size 1024×1024 in pixels.

LoveDA. The LoveDA dataset [WZM∗21] contains 5987 high
spatial resolution images (GSD 0.30 m) of size 1024 × 1024 in
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Table 3: Ablation study on the influence of each part in our MAP-
MaN on LoveDA and ISPRS Potsdam test sets. Highest scores are
in bold. All scores are reported in percentage.

Model
LoveDA Potsdam

mloU AF mloU OA

Model 1 50.8 91.87 85.19 90.30
Model 2 52.4 92.60 86.43 90.94
Model 3 53.1 92.87 86.91 91.23
Model 4 53.6 93.15 87.43 91.63

MAPMaN (Ours) 54.0 93.43 87.88 91.98

pixels, and involves 7 land cover categories (i.e., building, road,
water, barren, forest, agriculture and background). Compared to IS-
PRS Vaihingen and Potsdam datasets, it is significantly larger and
covers two domains (i.e., urban and rural areas), posing consider-
able challenges due to the presence of multi-scale objects, complex
backgrounds, and inconsistent class distributions. We use 2522 im-
ages for training, 1669 images for validation and the other 1796
images for testing.

Metrics. We adopt overall accuracy (OA), average F1 score per
class (AF), and mean intersection over union (mIoU) as evaluation
metrics. Since the LoveDA dataset is tested online, we only em-
ploy the IoU of each class and mIoU for evaluation. The mIoU is
calculated as follows:

IoUi =
pii

∑
N
j=1 pi j +∑

N
j=1 p ji − pii

, (15)

mIoU =
1
N

N

∑
i=1

IoUi, (16)

where pi j represents the number of pixels that have true value i and
predicted value j, pii refers to the true positive count, pi j and p ji
respectively denote false positives and false negatives, and N is the
number of classes.

4.2. Implement details

We implement our MAPMaN using Python and PyTorch on a
workstation with two NVIDIA GTX A6000 graphics cards (96
GB GPU memory in total). For training, the AdamW optimizer
with weight decay of 1e-4 is adopted, and the initial learning rate
is set to 1e-4 with the poly decay strategy. The training epochs
for Vaihingen, Potsdam, and LoveDA datasets are 250, 100, and
50, respectively, with a batch size of 4 for all. Following previous
studies [DTB21,LZZ∗22], we employ data augmentation methods,
such as random scaling (0.5, 0.75, 1.0, 1.25, 1.5), random vertical
flipping, random horizontal flipping, and random rotation for train-
ing. The augmented images are randomly cropped into patches of
size 512× 512 in pixels. During the inference process, data aug-
mentation techniques such as random flipping and multi-scale pre-
diction are used.

To avoid being impacted by other advanced architectures

Figure 6: Visualization of the pixels output from APM at each
stage. Red star marks the query pixel.

(e.g., ViTs), the most basic ResNet50 with dilated convolu-
tions [CZP∗18] is adopted as the backbone. After each stage of
ResNet50, we embed a UAPM for feature augmentation. The opti-
mal configuration has downsampling rates of (4, 4, 4, 4) for UAPM
and the numbers of sampled pixels of (16, 9, 5, 5) for APM at each
stage (see Section 4.4). In addition, we employ GELU [HG16] ac-
tivation function and layer normalization to expedite the conver-
gence, and use dropout with a ratio of 0.10 to prevent overfitting.

4.3. Comparison results

We compare our MAPMaN with a series of representative semantic
segmentation methods. As shown in Table 5, our MAPMaN signifi-
cantly outperforms all other methods on three datasets. Specifically,
our MAPMaN obtains an increase by 1.6% in mIoU compared to
PoolFormer and UNetFormer on LoveDA test set. As to ConvNeXt,
the proposed method achieves an increase by 1.8% on ISPRS Vai-
hingen test set and by 0.7% on ISPRS Potsdam test set in mIoU.
The outstanding performances on three datasets suggest that our
MAPMaN has the strong capability of generalization.

Figure 5 shows the visualization of example results output from
PSPNet, UNetFormer, PoolFormer, ConvNeXt and our MAPMaN.
It is observable that our MAPMaN performs satisfactorily in rec-
ognizing the overall framework and edges of ground objects with
complex backgrounds and identifying the shapes of complex spe-
cific compositions, such as gardens consisting of vegetation and
trails. For incorporating UAPMs, the proposed method is highly
capable to recognize the details in multi-scale objects, especially
those small-scale ones.

In addition, we compare several context aggregation modules
with our UPAM regarding the number of parameters (Params) mea-
sured in million (M) and the number of floating-point operations
per second (FLOPs) measured in giga (G). Because of only using
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Table 4: Comparison of selected long-range weight aggregation methods. The size of feature map used for calculating Params and FLOPs
is 512×32×32 as same as that of the input to the APM module at the first stage.

Method Params (M) FLOPs (G)
LoveDA Potsdam

mIoU AF mIoU OA
Global MHSA [DBK∗20] 2.6 7.0 52.6 92.90 86.95 91.41
DCNv3 Layer [WDC∗23] 5.2 5.3 52.9 93.06 87.24 91.63
CovMod Layer [HLCF22] 2.9 3.0 53.2 93.08 87.21 91.63

Deformable MHSA [ZSL∗20] 2.6 2.7 53.4 92.97 87.17 91.59
APM (ours) 1.1 2.0 54.0 93.43 87.88 91.98

Table 5: Ablation study on the influence of the downsampling fac-
tor and the number of sampled pixels of UAPM at each stage on
LoveDA test set.

Downsampling Pixel Numbers of mIoU
Factors Combination Pixels

(2, 2, 2, 2) medium (16, 9, 9, 9) 51.9

(4, 4, 4, 4)

small
(9, 5, 3, 3) 52.9
(9, 5, 5, 5) 53.5
(9, 9, 9, 9) 53.1

medium
(16, 9, 5, 5) 54.0
(16, 9, 9, 9) 53.2

(16, 16, 16, 16) 53.1

large
(25, 16, 9, 9) 53.0

(25, 16, 16, 16) 52.8
(25, 25, 25, 25) 52.5

(8, 8, 8, 8) medium (16, 9, 9, 9) 52.9

(16, 16, 16, 16) medium (16, 9, 9, 9) 50.8

depth-wise and point-wise convolutions, our UAPM requires sig-
nificantly less Params and FLOPs compared to the regular methods
as shown in Table 2. It is noteworthy that our UAPM requires only
31% of Params and 8% of FLOPs compared to the light-weight
OCR module, which greatly enhances the efficiency for semantic
segmentation.

4.4. Ablation study

Influence of each part. To investigate the contributions of each
part in our MAPMaN, we conduct the ablation study on LoveDA
and Potsdam datasets, and the results are shown in Table 3. Specif-
ically, the configuration of each variant model is described as fol-
lows:

• Model 1: Removing the UAPMs as the baseline and keeping the
remaining components the same as our MAPMaN;

• Model 2: Based on Model 1, adding a UAPM after each stage of
the backbone; compared to Model 1, its performance verifies the
effectiveness of the nested multi-scale modeling;

• Model 3: Based on Model 1, adding an APM module after each
stage of the backbone; compared to Model 1, its performance
verifies the APM’s effectiveness;

• Model 4: Based on Model 2, embedding the APM module cal-
culating weights only along the spatial dimension in the deepest
layer of each UAPM; its performance suggests that semantic en-
hancement methods work well on feature maps with richer se-
mantic information;

• MAPMaN: Based on Model 4, adding the calculation of adaptive
weights along the channel dimension; the performance suggests
its capability to capture context information of patterns.

Additionally, we investigate the focus of the APM module at
each stage in our MAPMaN. As shown in Figure 6, the APMs at
shallower stages concentrate more on spatial details and patterns
formed by individual ground object, while the ones at deeper stages
pay attention to broader scenes. Therefore, the stage-specific adapt-
ability to different ground objects suggests the effectiveness of our
APM and multi-scale modeling.

Influence of hyperparameters. Our MAPMaN has two hyperpa-
rameters: the downsampling factor and the number of pixels per
pattern of the UAPM module at each stage. Considering the vast
search space, we adopt the following strategy to approximate the
optimal values for the hyperparameters: the same downsampling
factor is adopted for the UAPM at each stage, which is the base
for the selection of the number of pixels then. We select 25, 16,
9, 5, and 3 as the basic numbers of pixels. Under the hypothesis
that shallow features contain less semantic information and require
more pixels for pattern matching, we divide all pixel combinations
into three categories (i.e., small, medium and large) based on the
numbers of pixels in the first stage. Within each category, we pro-
gressively increase the numbers of pixels for deeper stages.

Table 5 presents the results regarding hyperparameters on
LoveDA test set. It is observable that a downsampling factor of
4 enable the optimal mIoU, and other values leed to performance
degradation. Regarding the numbers of pixels, we find that exces-
sive pixels in deeper stages can result in decreased performance,
while shallower stages require more pixels. Therefore, we select
the downsampling factors to (4, 4, 4, 4) and the numbers of pixels
to (16, 9, 5, 5) as the optimal values for the hyperparameters.

Comparison with long-range weight aggregation methods. As
shown in Table 4, we compare several weight aggregation meth-
ods with long-range modeling on LoveDA and ISPRS Potsdam
datasets. Specifically, we replace the APM modules in our MAP-
MaN with these methods, while the other parts remained un-
changed. Global and deformable MHSA modules are all 8-head.
The DCNv3 and CovMod blocks are the basic ones in [WDC∗23]
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and [HLCF22]. Experimental results show that using APM for
weight aggregation in our MAPMaN achieves the best performance
with the least computational cost. We interpret this finding as fol-
lows: First, indiscriminate feature aggregation with either Global
MHSA or CovMod introduces the background noises of RSIs; sec-
ond, the DCNv3 block neglects the compositional relationships of
ground objects; third, the attention mechanism compresses the de-
pendence along the channel dimension when calculating the simi-
larity map and lacks overall context understanding, which may lead
to inconsistent segmentation within large ground objects and per-
formance degradation of the deformable MHSA.

5. Conclusion

In this paper, we proposed MAPMaN, a Multi-Stage U-Shaped
Adaptive Pattern Matching Network for the semantic segmentation
of RSIs. Experimental results on LoveDA, ISPRS Vaihingen, and
ISPRS Potsdam datasets demonstrated the outperformance of the
proposed method over selected state-of-the-art methods for seman-
tic segmentation of RSIs in several common metrics. In the future,
we aim to further improve the proposed method by adopting dis-
crete positional encoding in APM against the unclear order rela-
tionship among sampled pixels, as well as processing sampled pix-
els into tokens with increased semantic information. Meanwhile,
we plan to employ recent methods to build a backbone network or
a ViT adapter with UAPM as the core, which may lead to a unified
model for various tasks on RSIs.
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