
DOI: 10.1111/cgf.15002 COMPUTER GRAPHICS forum
Volume 43 (2024), number 1, e15002

End-to-End Compressed Meshlet Rendering

D. Mlakar,1 M. Steinberger1 and D. Schmalstieg2

1Graz University of Technology, Graz, Austria
{daniel.mlakar, steinberger}@icg.tugraz.at
2University of Stuttgart, Stuttgart, Germany
dieter.schmalstieg@visus.uni-stuttgart.de

Abstract
In this paper, we study rendering of end-to-end compressed triangle meshes using modern GPU techniques, in particular, mesh
shaders. Our approach allows us to keep unstructured triangle meshes in GPU memory in compressed form and decompress
them in shader code just in time for rasterization. Typical previous approaches use a compressed mesh format only for persistent
storage and streaming, but must decompress it into GPU memory before submitting it to rendering. In contrast, our approach
uses an identical compressed format in both storage and GPU memory. Hence, our compression method effectively reduces
the in-memory requirements of huge triangular meshes and avoids any waiting times on streaming geometry induced by the
need for a decompression stage on the CPU. End-to-end compression also means that scenes with more geometric detail than
previously possible can be made fully resident in GPU memory. Our approach is based on a novel decomposition of meshes into
meshlets, i.e. disjoint primitive groups that are compressed individually. Decompression using a mesh shader allows de facto
random access on the primitive level, which is important for applications such as selective streaming and fine-grained visibility
computation. We compare our approach to multiple commonly used compressed meshlet formats in terms of required memory and
rendering times. The results imply that our approach reduces the required CPU–GPU memory bandwidth, a frequent bottleneck
in out-of-core rendering.

Keywords: modeling, compression algorithms

1. Introduction

Open-world games, scientific simulations and many other graphics
applications can involve huge scenes that are challenging to store,
transmit and render. If the scene does not fit into GPU memory in
its entirety, the application needs to schedule data streaming and
decompression, such that the data become available just in time.
For such out-of-core rendering, an optimal compression rate must
be weighed against in-memory footprint and GPU friendliness.

Conventionally, a rendering system expects the scene to be in-
core, i.e. fully resident inGPUmemory. For scenes larger thanmem-
ory, a sparse representation with sequential access enables out-of-
core processing in the sense that a spatially bounded portion of the
scene is loaded intomemory (and decompressed, if any compression
has been applied). Such sequential access patterns can be applied to
tasks such as segmentation, smoothing or simplification, but they
are typically not compatible with rendering—draw calls require di-
rect access to the geometric primitives. If the scene is structured
into multiple meshes representing individual objects, one can sim-

ply select which meshes to load. However, the scene may consist of
a single huge mesh or several large meshes, which cannot be fully
resident. In this case, a common method is to segment the meshes
into regions. Regions should have a finite spatial extent, and their
primitive count should be chosen in a GPU-friendly manner. Ide-
ally, a region corresponds to a meaningful part of an object [CG08,
CKLL09], which can be loaded and decompressed individually.

The requirements of streaming rendering are not new [TMJ98,
LH04], but are still highly relevant in contemporary game tech-
nology. Streaming is prominently addressed in the Microsoft Di-
rectStorage API [Yeu20], which bypasses the CPU by streaming
directly from non-volatile storage into GPU memory, and has re-
cently been extended to include hardware-assisted Lempel-Ziv-like
decompression [Hoe22, CH22, Ura22]. A similar approach is avail-
able in Epic’s Nanite [Epi20] rendering engine.

However, the aforementioned tools for out-of-core rendering
pipelines do not directly aim at preserving GPU memory. Render-
ing is assumed to work from an uncompressed representation, in the

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1 of 14

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-5977-8536
http://creativecommons.org/licenses/by-nc/4.0/


2 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

sense that shader input can be read directly frommemory. Since both
GPU memory size and bandwidth must be considered scarce re-
sources, we prefer end-to-end compressed rendering, which decom-
presses triangles directly in the shader and limits the GPU memory
requirements to only the compressed, rather than the uncompressed,
geometry representation. Such an approach avoids the need for a
separate decompression stage on the CPU and considerably reduces
the overall memory footprint of the geometry data. It also simplifies
the engine code, since there is no need to maintain separate com-
pressed and uncompressed representations.

In this paper, we explore a compressed rendering infrastructure
that performs decompression directly in a mesh shader [Kub18],
operating on groups of geometric primitives called meshlets. The
ability to decompress geometry on the fly in the mesh shader makes
it easy to design a streaming system, since the same compressed rep-
resentation can be kept in GPUmemory and in non-volatile storage.
To support decompression in themesh shader, we present connectiv-
ity representations that lend themselves to fully parallel processing.
In summary, we make the following contributions:

• We present the first complete end-to-end compressed mesh ren-
dering pipeline.

• We introduce a novel decomposition of meshes into disjoint prim-
itive subsets (called laced wires), which allow random access
without vertex duplication.

• We describe how to create laced wires and how to efficiently de-
code them in parallel on the GPU.

• We compare our approach to multiple compressed and uncom-
pressed mesh representations.

2. Related Work

This paper focuses on triangle meshes, which are the most widely
used mesh representation in computer graphics. The most common
data structure, an indexed triangle mesh, consists of a triangle list
storing three consecutive vertex indices per triangle and a vertex
list storing vertex data, e.g. positions or normals. While this data
structure can be directly processed by the graphics pipeline, it is not
very compact. Hence, there is a large body of work on mesh rep-
resentations that require less memory through compression of ver-
tices, connectivity or both [MLDH15]. Most single-rate compres-
sion methods for meshes combine a lossless encoding of triangle
connectivity with a lossy encoding of vertex data. For brevity, we
do not consider lossy connectivity compression, i.e. mesh simplifi-
cation or re-meshing, but rather assume that the geometry quality is
already given at the desired rate.

2.1. Mesh compression

Vertex and attribute compression. Lossy compression of vertex
data is acceptable in many applications, since the vertex coordinates
and other attributes usually do not require full floating point preci-
sion [Dee95, Cal01, MSGS11, HV01]. The application of quantiza-
tion by converting coordinates to a fixed point format and stripping
the least significant bits is often possible without any visual deteri-
oration [PBCK05, KXW*18]. In fact, some meshes, such as those
acquired with 3D scanning, tend to store only noise in their least

significant bits. However, hand-modelled meshes may have their
parts expressed with varying precision, making a mechanism for
non-uniform quantization necessary. A straightforward method to
address non-uniformity is hierarchical decomposition of the mesh
into parts with homogeneous precision inside each part. Compres-
sion rates can potentially be further increased by exploiting local
coherence in the value sequence through delta-encoding or predic-
tion [IA02]. In contrast to position quantization, domain and pre-
cision requirements of other frequently used attributes, like nor-
mals [CDE*14] and texture coordinates, are known in advance,
making their quantization less challenging.

Connectivity compression. Most compact connectivity represen-
tations use some form of constrained graph traversal of themesh and
encode the traversal steps using a set of symbols with low entropy.
A popular choice are triangle strips [Ise00], given as a sequence of
vertices, where each new vertex together with its two predecessors
in the sequence defines a new triangle.While standard triangle strips
attach each new vertex to alternating edges of the previous triangle,
a special symbol is used to choose the edge in generalized triangle
strips to allow longer strips. With more complex traversal patterns,
e.g. aligning strips next to each other [Cho97] or in concentric cir-
cles [BPZ99], encoding efficiency can be further improved.

Other traversal patterns include spanning trees [Tau98] or region
growing [Ros99], the latter probably being the most influential idea
in connectivity compression. In region growing, the border of the
already encoded part of the mesh is incrementally extended, guided
by a custom traversal strategy, and newly encountered triangles are
encoded. Noteworthy traversal strategies include the cut-border ma-
chine [GS98] as well as EdgeBreaker [Ros99] and its many im-
provements [CR04, SKR01]. Alternatively, region growing can also
be expressed in terms of the valence of added vertices [TG98], e.g.
in FreeLence [KPRW05].

The Laced Ring (LR) [GLRL11] structure can be seen as a kind
of dual representation of a generalized triangle strip. A very long
triangle strip stores hardly more than one vertex reference for each
encoded triangle. However, in practice, the additional operations re-
quired for a generalized triangle strip (edge swap, restart) incur a
30–40% overhead [GLRL11]. The laced ring replaces triangle se-
quences with sequences of adjacent vertices. For each edge between
two vertices, two references to laces, i.e. triangles formed by extra
vertices adjacent on each side of an edge, are stored. While this rep-
resentation also requires approximately one reference per triangle,
it is easier to find long vertex sequences than to find long triangle
sequences (a triangle has three neighbours, while a vertex has six on
average [GLLR13]). We expand upon the idea of laces in this paper.

Encoding shared boundaries. If a large mesh has to be segmented
into regions before compression, one has to deal with shared bound-
aries between the regions. Boundaries must be handled with care, to
avoid cracks between regions. The most common approach to avoid
cracks is to split meshes along the edges, leading to shared vertices
between regions. In this case, shared vertices are duplicated across
regions, which increases the memory footprint and may increase
the effort to keep vertex replicas consistent. Duplication is avoided
if the vertices are stored only for one region and referenced in all
other regions [YL07, CG08], but this requires reference counting

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 3 of 14

and separate vertex loading. Finally, the border vertices can also
be stored separately as vertex sequences (wires). The wires can
be created from an existing subdivision into regions [CKLL09],
or the regions can be created by recursively subdividing the mesh
by placing wires [CH09]. In the latter case, we can traverse the
hierarchical sub-division to extract any desired region size.

2.2. Compressed domain rendering on the GPU

The idea of on-the-fly decompression on the GPU has previously
been explored for domains in which large datasets are common.
Examples of such domains are volume rendering [SW03, BCF03,
FM07], rendering of large terrain data [DSW09, LC10] or spatial ac-
celeration structures [LH07]. All these domains deal with special in-
put formats involving samples organized in lattices, grids or boxes.

In contrast, the connectivity of a triangular mesh is usually given
as a general graph, which requires more complex methods for de-
compression when using single-instruction multiple-data (SIMD)
parallelism. Data dependencies of typical low-entropy encoding
schemes, where each step relies on the previous one, are not well
suited for SIMD. Instead, a semi-regular layout is required that al-
lows many threads direct access to compressed data. Such a layout
can take the form of long strips [JBG17] or boundaries in region-
growing schemes [MSGS11].

Unfortunately, data-parallel decompression in these methods re-
quires scattered writes of the decompressed data to GPU memory.
Consequently, rendering involves a separate pass, which consumes
substantial memory bandwidth. In addition, the overall size of the
mesh is limited to what fits in memory. Commercial game engines,
such as Unreal Nanite [KSW21], strike a trade-off between com-
pression and speed by decompressing into an intermediary, low-
entropy (but randomly accessible) format in GPU memory.

A recent paper by Nikolaev et al. [NFR22] investigates an idea
similar to ours by comparing the use of geometry shaders and mesh
shaders to decode and render on the fly. However, unlike us, they
employ a region-growing scheme [Ros99], which has severe draw-
backs for GPU operation: Not only does region growing preclude
locality of data references, but the decoding scheme (region grow-
ing of mesh connectivity and delta encoding of geometry) is also
inherently serial. Hence, the authors can support parallel decoding
only on the level of meshlets, but not on the level of individual tri-
angles. Unfortunately, this significant limitation is not discussed or
evaluated in the paper. We demonstrate the performance improve-
ments of our approach over the work of Nikolaev et al. in Section 5.

2.3. Mesh layout optimization

In standard rendering with depth buffer hardware, primitives can
be submitted to the graphics pipeline in any order, which lets us
freely choose the best mesh layout for a given purpose. Locality of
references is often a primary concern, since it has several benefits.
First and foremost, it improves the coherence of the vertex cache
on the GPU, reducing redundant per-vertex computations [Dee95,
Hop99]. Many algorithms have been proposed to produce either
cache-aware [LY06, CK07] or cache-oblivious [YLPM05] layouts.
Cache aware algorithms require exact knowledge of cache sizes,

while cache-oblivious algorithms optimize locality without details
about the cache. For example, the matrix of triangle-to-vertex ref-
erences can be sorted for minimal bandwidth [IL05]. Even simple
techniques such as following a space-filling curve can yield layouts
that are within a few percent of the theoretical optimum [VSSP12].
Besides reference locality, other criteria can be considered in layout
generation, such as compact memory footprint, geometric coher-
ence or minimal overdraw [CSN*12, SNB07, HS16].

The mesh layout is also implicitly considered when a compres-
sion algorithm traverses a mesh during encoding. Depth first traver-
sals, which produce long sequences of connected triangles for com-
pression can be similar to cache-oblivious algorithms, if a ‘wind-
ing’ path is used [CK07]. However, non-winding sequences may
compress equally well [GLLR13], while having a rather poor cache
coherence [DBGP05]. Likewise, breadth-first traversals, which use
region growing [Ros99], refer to the entire mesh and are not neces-
sarily cache coherent. In other words, good compression does not
imply good cache coherence.

Moreover, a modern GPU operates on batches, i.e. primitive
groups with an upper bound on the number of vertices and trian-
gles. Optimal throughput is contingent not only on the reference
location, but also on a batch-friendly layout [YL06]. Batches can
be computed by greedy splitting of a cache-oblivious layout, e.g.
to minimize overdraw at runtime [SNB07]. However, if the mesh
is already segmented during preprocessing, e.g. to generate a com-
pressed mesh representation that supports random access, we would
like to choose segments that also serve as GPU-friendly batches.

3. Compressed Meshlet Representation

We propose laced wires, a random-accessible, compressed mesh
structure that combines the advantages of previous methods, namely
laces [GLRL11] and wires [CKLL09, CH09]. Our representation is
both compact and SIMD-friendly, which is critical for end-to-end
compression with high SIMD utilization. A wire is simply a se-
quence of vertices connected by edges [CKLL09]. We use wires to
represent the boundary and the interior of a meshlet, such that two
adjacent meshlets refer to the same wire at their shared boundary.
Laces store the vertices of the two triangles to the left and right of a
given edge. We apply laces to the wires so that neighbouring laces
wires interlockwithout redundant vertices. LR uses ring-shaped ver-
tex sequences that are made as long and winding as possible. The
LR scheme is optimized for global storage use in CPU memory, at
the expense of giving up any notion of local references. Our goal
is to fetch and decode a limited amount of memory into the cache
of a SIMD unit on the GPU to describe a meshlet in its entirety.
Therefore, our representation consists of multiple short sequences
per meshlet, rather than a single long one as in LR. The interlocking
of neighbouring laces avoids duplicated vertices, making the format
free of redundant storage and precludes any cracks between trian-
gles. See Figure 1 for a comparison of LR and laced wires.

The construction of our compressed representation comprises
four steps: Meshlet construction (Section 3.1) assigns triangles to
meshlets. Connectivity encoding (Section 3.2) converts the mesh-
let’s triangle data into the laced wire format. Vertex encoding (Sec-
tion 3.3) finds the minimum bitrate per vertex in a local coordinate

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



4 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

Figure 1: (Left) The Laced Ring (LR) consists of a single, closed sequence of vertices (shown in black). Triangles attached to edges of the LR
sequence are shown in blue and yellow only for better discrimination. Some isolated triangles (shown as gray outlines) remain; most of these
triangles can be integrated without extra storage requirements using special codes. (Right) The same mesh decomposed into three meshlets
(top left, top right, bottom), delineated by six external wires shown as coloured polylines (blue, orange, green, red, yellow, magenta). The three
internal wires (shown as black polylines) are greedily constructed using a spiral-like Hamiltonian path. Adjacent triangles stored with a wire
are displayed in the same colour as their wire. Corner vertices are shown as black dots.

frame considering a user-defined error tolerances. Packing the data
into a binary format (Section 3.4) completes the construction.

3.1. Meshlet construction

We cluster triangles into mutually disjoint meshlets, such that the
primitive limits are not exceeded: We allow for a maximum of 84
triangles and a maximum of 64 vertices, as recommended by Ku-
bisch [Kub18]. Ideally, a meshlet is a connected, compact and flat
sub-mesh. We expect that, if a meshlet is flat, the ‘‘vertical’ dimen-
sion of its geometry can be better compressed, and a meshlet with
compact shape will exhibit better locality of references overall.

Our meshlet construction algorithm is based on hierarchical face
clustering using a quadric error metric [GWH01]. Starting from sin-
gletons, i.e. clusters each containing only one triangle, clusters are
merged iteratively. The approach operates on a dual representation
of the mesh with clusters as nodes and weighted edges connecting
nodes that correspond to adjacent clusters. Clusters are only con-
sidered adjacent if they share at least one edge. The collapse of a
dual edge corresponds to the merging of two adjacent clusters. After
each merge, we delete all incident dual edges on the new cluster that
would lead to clusters exceeding the maximum number of vertices
or triangles when collapsed. We terminate the meshlet generation
when no more legal merging operations of any two adjacent clusters
are possible, i.e. once there are nomore dual edges in the dual-mesh.

3.2. Connectivity encoding

To encode the connectivity information of a meshlet, we introduce
laced wires. We adopt the idea of ‘laces’ [GLRL11], i.e. specify-
ing triangles adjacent to an edge sequence rather than a triangle se-
quence. We apply laces to wires of vertices shared by two neigh-

bouring meshlets and call this structure an external wire. The inte-
rior of each meshlet is also converted into a laced wire; the resulting
structure is called an internal wire.

Each meshlet with k neighbours consists of one interior wire and
k exterior wires. In Figure 1, left, an example of LR is shown, which
consists of a single vertex cycle. On the right of the figure, our data
structure is shown: The mesh is decomposed into three meshlets,
leading to six external wires (in color) and three internal wires (in
gray).

Unlike a decomposition of the mesh into meshlets, which have
duplicated vertices along the boundary, the laced wire representa-
tion is free of redundancies. Each triangle is stored in exactly one
wire; each vertex is stored in exactly one wire, except for the corner
vertices shared by three or more meshlets. However, the geometry
of a meshlet can be entirely reconstructed from the wires associated
with the meshlet, making random access possible.

The order of vertices in a wire follows a sequence of edges. In
external wires, the orientation of the edge sequence is set coun-
terclockwise along the boundary of the adjacent meshlet with the
smaller index. For an internal wire, a Hamiltonian path is deter-
mined using a greedy algorithm that resembles an erosion process
(Figure 1, right). If no Hamiltonian path exists, it is approximated by
multiple paths chosen to be as long as possible. To find the Hamil-
tonian path, vertices are sorted into levels based on their shortest
path to the boundary. A path is constructed by iteratively adding
a new vertex connected by an edge to the current tip of the path,
always prioritizing vertices in lower levels. This strategy conquers
the meshlet interior from the boundary in a spiral-like pattern. If
none of the remaining free vertices is connected to the tip of the
path, any free vertex can be connected through an intermediary ‘vir-
tual’ edge by inserting a special symbol that signals a sequence
restart.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 5 of 14

Figure 2: Triangle configurations distinguished in decoding. From
left to right: regular triangle requiring one reference triangle, cor-
ner triangle requiring two references, unconnected triangle requir-
ing three references, adjacent two/three reference triangle pair.

The laces of external wires refer to vertices in adjacent internal
wires and vice versa. External wires store references to vertices in
internal wires using the native numbering of the adjacent internal
wire on either side. Conversely, internal wires must refer to several
external wires. Random access requires that each reference to a ver-
tex of an external wire must be resolvable without iterating over
the entire boundary. Thus, we define a unique ordering of boundary
vertices, starting at the corner shared with the neighbouring meshlet
with the smallest index and commencing in counterclockwise order.
References to external wires use this ordering and are resolved us-
ing a parallel index rewriting step based on the sequence of corners
(and, hence, external wires) along the boundary.

In an optimal path, each triangle is adjacent to exactly one edge of
the path and can be encoded as a 1-reference triangle (1RT). Unfor-
tunately, optimal paths can rarely be found, so we have to handle two
additional configurations [GLRL11], as shown in Figure 2. First, a
two-reference triangle (2RT) adjacent to two edges, must not be en-
coded twice; therefore, we have to invalidate one of its references.
Second, a triangle that is not adjacent to any edge cannot be omitted
and therefore must be encoded as a 3-reference triangle (3RT). All
3RT are assigned to an internal wire; i.e. no irregular triangles can
be present in an external wire. To reduce the number of references,
a 3RT and a 2RT which share the non-path edge of the 2RT can be
encoded together using the two references of the 2RT.

3.3. Geometry encoding

We encode vertices of each wire by uniformly quantizing them in a
per-wire local coordinate frame. The local coordinate frame directly
determines the quantization domain. Therefore, we try to identify a
quantization domain that minimizes the number of bits required per
vertex, as described below.

Per-wire local coordinate frame. First, we construct the coor-
dinate frame for each wire. As our meshlets are constructed with
planarity in mind, we can find a tightly fitting oriented bounding
box (OBB) by aligning it with the dominant plane of the meshlet.
The OBB specification is further quantized to nine values (rotation,
translation and scale for each dimension) with one byte each.

Vertex quantization. We use the OBB of a wire to compute the ac-
tual quantization of the vertex positions. Our quantization scheme
allows choosing the desired precision at the granularity of individ-
ual wires, which can be important for faithfully representing meshes
with small details, or for supporting multiple level of detail repre-
sentations per object. Care is taken to ensure that the full vertex
precision can be recovered from the quantized vertices (see the sup-
plement for details). Corner vertices, i.e. vertices shared by more

Figure 3: Binary representation for laced wires. The header (blue)
contains the number of vertices n as well as an offset o to the vertices
in the binary representation and the local wire transformation T .
The connectivity data (green) is split into sections corresponding
to left-hand side, right-hand side and irregular connectivity, each
preceded with the corresponding size. Vertex data (gray) contain
15 bits for quantization bits per dimension followed by the quantized
vertices.

than two meshlets, are encoded in the coordinate frame of the entire
mesh and are stored separately as a pseudo-wire (without connec-
tivity). Note that each vertex is stored exactly once, making cracks
impossible even after heavy quantization.

3.4. Binary format

Each laced wire is represented as a fully self-contained bit string
containing all the information required for decoding after random
access. We distinguish between header data, connectivity data and
vertex data (Figure 3). The header contains the number of vertices
and the OBB. The connectivity data stores the vertex references for
the left- and right-hand side laces in separate sub-sequences, as only
one of them is required to decode an external wire for a meshlet.
Each symbol is one byte in size, with two bits encoding the triangle
type and six bits distinguishing up to 64 vertices. The vertex data
(quantized values x, y, z values) is stored in a packed bit string.

In addition to the encoded wires, we need meta-data to look up
the wires for each meshlet: we need the indices of its internal wire,
its external wires, and its corners. We store this information in a
per-meshlet structure, together with an offset to the meshlet’s first
external wire index.

4. Decoder Implementation on the GPU

We pre-fetch compressed meshlet data from non-volatile storage
as needed. Unlike conventional preloading of geometry, the pre-
fetched data are stored inGPUmemory in compressed form, thereby
significantly reducing the memory footprint. By combining the
gains in memory efficiency resulting from (1) sparse residency
of scene data and (2) the compressed in-memory representation,
huge scenes can be handled that would not be possible with either
method alone.

For decoding, we use a pipeline consisting of an amplification
shader followed by a mesh shader as shown in Figure 4. The for-
mer is used to decide which meshlets need to be decompressed in
a subsequent mesh shader for rendering. Mesh shaders allow us to
re-define the geometry stage of the GPU pipeline in a completely

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



6 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

Figure 4: In this overview, colours indicate whether internal wire
data (green) or external wire data (blue) or both are involved.
Each amplification shader instance is launched with a group of four
threads, each deciding visibility for a single meshlet. Depending on
the visibility, 0–4 mesh shader instances are launched. Each mesh
shader instance is executed with 32 threads and decodes a single
meshlet from its internal wire and the external wires.

free manner. We show how the mesh shader can be employed for
compressed rendering, such that both the input and the output of the
geometry stage use memory bandwidth frugally. Input bandwidth
is preserved by loading only compressed meshlets. The final de-
compression into triangles, vertices and attributes happens on the
fly in the mesh shader. Therefore, the full bandwidth for the uncom-
pressed mesh stream is only required between the mesh shader and
the rasterizer stage, where it is supported by hardware caches.

4.1. Amplification shader

The amplification shader is used to select the meshes required
to render the current frame. Cluster-based culling techniques are
well known and let us discard more geometry earlier in the
pipeline [KMGL99, HA15,Wih16]. The first step applies view frus-
tum culling. We use the local wire transformation of the internal
wire to define a bounding sphere of the meshlet. We can use the cen-
tre of the bounding box as the centre of the bounding sphere and half
the bounding box diagonal as an initial estimate of the sphere’s ra-
dius. Since the bounding volume is tested very frequently, we found
that a bounding sphere is faster than a bounding box, as it requires
transforming only one centre-point instead of eight corners. We use
8 bits per meshlet to store a scale for the initial radius, to ensure that
the scaled internal wire bounding sphere contains the entire mesh-
let. To perform frustum culling, we transform the centre and scaled
radius from wire local coordinates to the global coordinate frame
and test it against the six frustum planes.

A second step applies back-face culling, using a cone that cov-
ers all normals of the meshlet. Since the meshlets are already very
flat by construction, most normals will point approximately in the
direction of the local x-axis. Therefore, instead of explicitly stor-
ing a cone axis, we use the x-axis of the local coordinate frame of
the internal wire. We use the centre of the internal wire bounding

Figure 5: For backface culling, an oriented bounding box (dashed
rectangle) enclosing the meshlet triangles (brown polyline) is com-
puted. The angle of a cone enclosing the normals (red, green and
blue vectors) is determined. Moreover, the cone apex B is displaced
from the bounding box centre A so that it lies in the negative half-
space of all triangles.

box as the cone apex, similar as before for the bounding sphere, and
we use 8 bits per meshlet to store the cone angle, such that it con-
tains all triangle normals of the meshlet. An angle exceeding 90º
implies a strongly curved meshlet, which should be split into mul-
tiple meshlets. To ensure that the apex is in the negative half-space
of all triangles, we use another 8 bits to store an offset of the apex
from the centre along the cone axis (Figure 5).

With the local transformation of the internal wire, we can perform
frustum and back-face culling, with only 3 bytes additional data per
meshlet for the bounding sphere radius scale, the cone angle and
the apex offset. If a meshlet is not culled, a mesh shader instance is
launched to decompress it.

4.2. Mesh shader

Each mesh shader instance is launched with a thread group (32
threads) and is responsible for decoding a single meshlet. The ver-
tices of internal and external wires have to be dequantized and trans-
formed from the wire’s local coordinate frame into the global one.
Furthermore, triangle indices have to be decoded from the laced
wire representation of the internal wire and from one side of each in-
volved external wire. The mesh shader requires specifying the num-
ber of output vertices and triangles prior to any writing to the out-
put arrays. Therefore, we traverse all the wires (internal and exter-
nal) and load their headers into shared memory. We extract the total
number of vertices from the headers and pass it to the mesh shader.
Unfortunately, the number of triangles in the meshlet cannot be de-
termined in the same manner, as it cannot be directly inferred from
the number of symbols that describe a wire’s connectivity (which in-
cludes irregularities, such as empty references and restarts). There-
fore, we always set the number of mesh shader output triangles to
the maximum number of triangles, i.e. to 84, and pad all unused
triangles with zeros. We empirically determined that zero-padding
is faster than explicitly storing and filling in the exact number of
triangles.

Internal wire connectivity. For internal wires, we must decode
both sides of the wire connectivity and the irregular triangles. We

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 7 of 14

assign one thread to each symbol on either side of the wire. Each
thread reads one symbol and determines whether it encodes a trian-
gle. Thread voting forms a bit mask that indicates which triangles
exist. By counting the bits set in themask, each thread can determine
its write offset in the output array. Threads that have encountered a
valid triangle decode their vertices and write the result to the out-
put array. Each thread then reads a new symbol until the input is
consumed. Finally, irregular 3RT connectivity is decoded with one
thread per triangle.

Internal wire vertices. Internal wire vertices are decoded in par-
allel with one thread per vertex. First, each thread determines the
quantization bits per dimension, which can be found in the first
15 bits of the vertex data. From the vertex size, each thread computes
its offset into the encoded wire vertices and unpacks the quantized
value for each dimension into a register. From there, the vertex is
dequantized to get the position in the wire’s local coordinates. The
transformation is unpacked from the header that resides in shared
memory, and the vertex is transformed into the global coordinate
frame. After applying the view-projection transformation, the ver-
tex is written to the output.

External wire connectivity. Decoding the connectivity of exter-
nal wires is similar to internal wires, but must consider multiple ex-
ternal wires instead of one single internal wire. Each external wire
contains a different number of symbols, making it more challenging
to decode the symbols in parallel. Instead of parallelizing over the
edges of a single wire as before, we parallelize over multiple wires.
Decoding of external wires commences in two stages. In the first
stage, we set up the parallel decoding work. We iterate over the ex-
ternal wires and determine which side of the external connectivity
we have to decode. For each symbol of each external wire, a thread
is reserved. In the second stage, symbols are decoded in parallel,
until no more symbols are left to decode. As before, threads vote if
they have encountered a valid triangle to form a bit mask. The bit
mask lets the threads write the decoded triangle to the right output
position. In the unlikely case that we cannot assign all symbols of a
single wire to threads, we decode the wire’s connectivity in multi-
ple iterations.

External wire vertices. The decoding of an external wire vertex
follows the same procedure as that used for internal wire vertices.
The quantized values are unpacked from their binary representation,
dequantized into positions given in the local coordinate frame and
subsequently transformed into global coordinates using the transfor-
mation stored in the wire header. A single external wire usually does
not have enough vertices to utilize all threads of the mesh shader’s
thread group. Therefore, we parallelize over the vertices of multiple
wires with different numbers of vertices. Joint decoding of multi-
ple wires requires a prefix sum over the number of vertices in each
wire in order to obtain an offset into the vertex output array. Dur-
ing the prefix sum, each thread determines the work description for
one vertex, i.e. the offset of the external wire assigned to the thread,
together with the wire index. We then iterate over the wires and as-
sign threads to vertices, until a thread group is fully assigned. Next,
we use register shuffles to pass the work description to the decoding
thread. Each decoding thread computes the vertex size of its wire,
finds the offset to its vertex, decodes it and writes it into the output

array at the location implied by the offset plus the vertex index in-
side the wire. If the wire is on the right-hand side of the meshlet, the
vertex order is reversed to follow the meshlet boundary. The thread
group goes on to decode the next batch of vertices, until all wires
have been decoded.

Two successive external wires that form the boundary of a mesh-
let share a corner. Therefore, we can use one thread per external
wire to retrieve the starting corner and write it to the correspond-
ing position in the output array. Note that only the corners of the
currently processed mesh need to be loaded. Moreover, all corner
vertices are encoded in the same global coordinate frame, so their
transformation can be stored once in constant memory.

5. Evaluation

We evaluate our approach in terms of space (achieved compression
rates) and time (decoding performance) compared to other com-
pressed and uncompressed mesh formats.

5.1. Meshlet formats

To investigate the influence of meshlet geometry and connectivity
compression, we compare our laced wire format with four alterna-
tive representations, each configured with two different internal for-
mats (basic and compact), resulting in a total of six candidates for
comparison. All basic versions use full-precision 32 bits vertex co-
ordinates and 32 bits primitive indices.

Triangle soup meshlet (TS). Arguably, the most trivial format is
to represent each meshlet as a triangle soup, where each triangle
has a copy of each of its vertices. Although this format results in
the least compact representation, no decoding is required. Among
the meshlet formats, this format serves as a baseline to better under-
stand the trade-off between data size and decoding effort. To load
a meshlet, only the offset into the global buffer and the number of
primitives are required. Note that, despite its simplicity, TS repre-
sents a meshlet format, due to the local grouping of primitives. We
did not compare a global triangle soup format, since we deemed
it too unsophisticated. Instead, we compare with a global indexed
mesh (see below).

In the compact version of this format, the vertices are quantized
globally according to the size of the overall mesh bounding box. The
quantized vertices can subsequently be packed in memory such that
each vertex requires the exact number of bits towhich it is quantized.
The meshlet record is padded to the next 32-bit word boundary.

Indexed meshlet (IX). The IX format avoids redundant copies of
a vertex inside a meshlet, as present in TS, by using index buffers.
IX relies on a global vertex buffer to store unique mesh vertices.
Meshlets contain a vertex index buffer that stores references in the
global vertex buffer for each vertex referenced in the meshlet. In
addition, each meshlet has a primitive index buffer that defines the
triangles locally, i.e. by referencing the local vertex index buffer.
This two-level indirection from primitives to local vertex indices
and further on to global vertices improves compactness.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



8 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

Figure 6: Our test data comprise three scenes composed of the large meshes shown here. From left to right: Armadillo, Dragonfly, Neptune,
Dragon, Statuette, Crab (Female Blue Crab c/o The Smithsonian), Bee (Eulaema Meriana Bee c/o The Smithsonian), David (c/o The Digital
Michelangelo Project). In the bottom, right half of each image, the meshlets are indicated by random colour coding.

In the compact version of this format, we quantize the vertices ac-
cording to the overall mesh bounding box as before and pack them
in memory. Furthermore, we store each reference from a primitive
to the vertex index buffer in only 8 bits, since we only need to dis-
tinguish 64 or fewer vertices. The entries in the vertex index buffer
are stored in 32 bits, so the vertices of large meshes are addressable.

Self-contained meshlet (SC). This format introduces some vertex
redundancy to make meshlets independent and self-contained. In
contrast to IX, the SC format does not have a local vertex index
buffer, but, instead, each meshlet contains its own vertices directly.
Vertices at the boundary are duplicated. To access its data, each SC
stores an offset from the start of its primitive indices and its vertices,
as well as the number of triangles and vertices in the meshlet.

For the compact version, the vertices are quantized and packed
again, and the meshlet triangles are represented in 3 bytes as in IX.

Global indexed mesh (GI). In addition to the different meshlet
representations, we also added numbers for a GI, the most widely
used and commonly known format. The GI consists of a global ver-
tex buffer and a global index buffer that defines the triangles by ref-
erencing the vertex buffer accordingly.

For connectivity, the GI requires 12 bytes per triangle. Packing of
indices is not possible because a large vertex buffer needs to be ad-
dressed; hence, no compression can be achieved. However, vertices
can be stored either in a basic format (12 bytes per vertex) or in a
globally quantized format, as described in Section 5.2.

5.2. Evaluation setup

All experiments were carried out on an Intel Core i7-7700 equipped
with 64 GB of RAM and an NVIDIA RTX 4090. We used three dif-
ferent scenes with different sizes, labelled S, M and L, which are
comprised of a variety of different meshes, as shown in Figure 6.
Scene L contains all meshes, while scenes M and S are subsets,
as detailed in Table 1. All formats use the same decomposition of
meshes into meshlets and differ only in how the meshlets are repre-
sented.

For the vertices of the input meshes (before encoding), we empiri-
cally determined a global quantization that leads to visually pleasing
results for all alternative formats, and our approach was configured
to undercut the resulting maximum decoding error. Most meshes
were quantized to 14 bits per vertex coordinate, except forArmadillo
(11 bits), Dragonfly (13 bits) and David (16 bits).

Table 1: General information about meshes in our test scenes. The columns
for scene S, M and L indicate if a particular mesh is included in the corre-
sponding scene. Furthermore, the number of triangles nt , vertices nv and
meshlets nm in the mesh and the average number of triangles nt and vertices
nv per meshlet are given.

Scene Tri Vert Mlets Tri Vert

S M L nt nv nm nt nv

×106 ×106 ×103

Armadillo × × 0.3 0.2 5.4 63.5 46.4
Dragonfly × × 2.7 1.3 41.9 63.3 47.2
Neptune × × × 4.0 2.0 63.1 63.5 46.9
Dragon × × × 7.2 3.6 113.0 63.9 47.4
Statuette × × × 10.0 5.0 157.6 63.5 46.9
Crab × × 11.3 5.7 177.8 63.6 46.8
Bee × × 16.9 8.5 265.4 63.9 47.0
David × 56.2 28.2 887.7 63.3 46.3
Scene S 21.2 10.6 333.7
Scene M 52.5 26.2 824.3
Scene L 108.7 54.4 1711.9

5.3. Compression rates and decoding times

In order to evaluate compression rates, we compare the required
memory footprint of our approach with the alternative formats
(TS, IX, SC and GI) in the basic and compact versions. Mem-
ory requirements and per-frame times are presented in Table 2.
The compression rates achieved by the compact versions over the
basic versions are 2.23× smaller for TS, 2.38× for IX, 2.91×
for SC and 1.22× for GI. Except for TS, where the applied op-
timizations almost double the average frame time over all scenes
(0.56× of the framerate), they do not cause a significant change
in per frame time (1.13× for IX, 0.99× for SC and 1.00×
for GI).

We attribute the large impact of the compact format on frame
time in TS to the fact that almost all the work required for de-
coding is concerned with vertices, since the connectivity is im-
plicit in this format, while substantially more vertices have to be
decoded than in all the other formats. Therefore, unpacking and
dequantizing the vertices introduce a substantial decoding over-
head. Moreover, memory transfers increase as vertex coordinates
are generally no longer aligned to 4 byte addresses. Note that the
other approaches manage to amortize the decoding work by reduc-
ing the transfer from GPU memory, and SC even performs slightly
better.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 9 of 14

Table 2: Required space (sb, sc) and per-frame render time (tb, tc) for differ-
ent scene sizes using the basic and compact formats in comparison to laced
wires. Additionally, we show the compression rate (sb/sc) and relative time
(tb/tc) of the compact over the basic format. Subscript b denotes the basic,
and c, the compact version.

Basic Compact Rate Basic Compact Rate
sb sc sb/sc tb tc tb/tc
MB MB ms ms

Scene S
TS 767 338 2.27 2.08 3.68 0.56
IX 450 188 2.39 0.74 0.71 1.04
SC 448 153 2.93 0.66 0.67 0.99
GI 382 310 1.23 1.93 1.93 1.00
Laced wires 95 1.60

Scene M
TS 1896 831 2.29 5.13 9.16 0.56
IX 1113 464 2.40 2.13 1.77 1.20
SC 1108 376 2.95 1.62 1.62 1.00
GI 945 767 1.23 6.47 6.47 1.00
Laced wires 236 3.92

Scene L
TS 3927 1850 2.13 10.69 19.30 0.55
IX 2304 981 2.35 4.32 3.77 1.15
SC 2290 807 2.84 3.30 3.32 0.99
GI 1957 1611 1.21 10.44 10.46 1.00
Laced wires 509 8.18

Table 3: Details on scene partitioning in our approach. For internal and
external wires, we list the number of wires wi, we, number of triangles ti, te,
number of vertices vi, ve, and the number of corners c. The subscript i de-
notes internal wires, and, e, external wires.

Int. wires Ext. wires Corners

wi ti vi we te ve c
×106 ×106 ×106 ×106 ×106 ×106 ×106

Scene S 0.34 12.18 6.19 1.00 9.04 3.76 0.66
Scene M 0.82 30.21 15.40 2.46 22.28 9.20 1.64
Scene L 1.71 63.63 32.41 5.10 45.07 18.60 3.41

Comparing absolute decoding times of the compact versions in
Table 2 reveals that among the methods competing with laced wires,
SC achieves both the best compression rate and the fastest decom-
pression time. SC encodes the 109 M triangles and the 54 M ver-
tices of the large scene in 807 MB and renders a frame in 3.3 ms.
By comparison, GI requires about 3× longer in both its basic and
compact versions.

The laced wires method beats all competitor formats in terms of
compression rate, only requiring 63% of the next-best compressing
competitor format, SC. The additional compression rate comes at
the price of higher decoding cost: It takes 8.18 ms to decode and
render the large scene, which is about 2.5× the frame time of SC,
but still 28% faster than the standard format GI. To better under-
stand how the required memory in our approach is distributed, we
show a detailed breakdown of the three scenes in Tables 3 and 4. In-
ternal and external wires contribute approximately equal to the data

Table 4: Data for internal wires (di), external wires (de) and corners (dc),
total data required to decode and render the scene (dt ). Padding to 32 bits
boundaries (typically 1 − 4% overhead) is included in the data. Adjacency
data (da) stores external wire identifiers for each internal wire and two cor-
ner indices for each external wire.

di de dc da dt
MB MB MB MB MB

Scene S 36.81 37.55 3.48 17.27 95.12
Scene M 91.75 93.23 8.52 42.60 236.10
Scene L 203.68 197.83 18.92 88.37 508.81

Table 5: Memory consumption for connectivity and geometry of the differ-
ent approaches in their original (sb) and compact form (sc), the relative
compression rate of compact over basic (sb/sc) and the compression rate
of compact over the baseline provided by the compact global indexed mesh
(gc/sc). Furthermore, we list the memory per element for basic and compact
formats (eb, ec), where an element is a triangle for connectivity and a vertex
for geometry.

Basic Compact Rate Rate Basic Compact
sb sc sb/sc gc/sc eb ec
MB MB B B

Connectivity
GI 1304 1304 1.00 1.00 12.00 12.00
TS 0 0 0 0
IX 1318 340 3.88 3.84 12.13 3.13
SC 1318 340 3.88 3.84 12.13 3.13
Laced wires 219 5.96 2.01

Geometry
GI 653 306 2.13 1.00 12.00 5.63
TS 3927 1848 2.12 0.17 72.16 33.97
IX 986 639 1.54 0.48 18.12 11.74
SC 972 463 2.10 0.66 17.86 8.51
Laced wires 280 1.09 5.14

size and together constitute around 80% of the total required mem-
ory. The corner data only require approximately 3–4%, although
the vertices are quantized in a single large domain and therefore
require more bits to achieve the requested precision. Adjacency in-
formation, i.e. the data that associates external wires to the internal
wire of a meshlet and two corners with each external wire, makes
up about 18% of the total amount of data.

5.4. Compression ratio of connectivity

We now analyse the required memory for connectivity separately,
as shown in Table 5. For brevity, we only investigate the large scene
in this analysis.

TS does not explicitly require space for connectivity. The original
IX and SC approaches are quite similar to GI in how they define con-
nectivity using primitive indices, but additionally require the num-
ber of triangles as well as an offset into the primitive indices per
meshlet. In contrast to GI, we can reduce the primitive indices in IX
and SC to 8 bits, as they refer to the vertices locally, resulting in a
compression ratio of 3.88.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



10 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

Figure 7: All compared mesh and meshlet formats for comparison
in a space versus time diagram. Basic versions as squares, compact
versions as circles, ours as triangle.

For laced wires, the memory requirements come from encoding
the references of the laces. Our approach requires data that cannot
be explicitly assigned to geometry or connectivity, i.e. the adjacency
data. We split this data into two portions relative to the number of
triangles nt and the number of vertices nv in the scene and assign
them to connectivity and geometry, respectively. nt/(nt + nv ) of the
general data is added to the connectivity.

To establish a common baseline, we compare the compression
ratios relative to the connectivity of GI. We can see that IX and SC
reach a compression ratio of 3.84×, which translates to 3.13 bytes
per triangle, compared to 12.13 bytes in their respective basic ver-
sions and 12 bytes in GI. Our approach has a connectivity compres-
sion ratio of 5.96× compared to GI, which is reflected in a triangle
size of 2.01 bytes. This result means that laced wire connectivity
compresses 1.56× better than IX and SC.

5.5. Compression ratio of geometry

GI requires less memory for geometry than the meshlet formats (ex-
cept laced wires). The reasons are that TS duplicates vertices in each
triangle, IX requires a local vertex index array per meshlet with one
4 bytes index in the global vertex array, and SC contains a copy of
vertices at the boundary of the meshlet for each adjacent meshlet.

The memory for geometry in laced wires is computed as every-
thing required to decode the vertices,i.e. the offset to the first ver-
tex byte in the wire, the number of vertices and the quantization
bits used for each dimension of the meshlet vertices. Furthermore,
it contains 9 bytes for the local transformation per wire.

Laced wires take the lead with a compression ratio of 1.09×
compared to GI with quantized vertices. Hence, laced wires are the
onlymethod that could actually reduce the per-vertex size compared
to the compact GI format. Adding additional vertex attributes that
can take advantage of the local meshlet coordinate frame would
further help amortize the 9 bytes overhead per meshlet caused by
the local meshlet transformation. Similarly to the connectivity data,

Figure 8: Comparison of vertex size in our approach B/v dec when
matching maximum decoding error of a global quantization B/v
equiv.

nv/(nt + nv ) of the general data that cannot be explicitly assigned
to connectivity or geometry is added to the geometry data.

TS takes the last spot, as its redundant vertices induce a large
overhead. IX and SC cannot amortize the additional data (local in-
dices and copied boundary vertices), resulting in compression rates
of 0.48× and 0.66×, respectively. Compared to 5.63 bytes per ver-
tex in GI, these compression rates result in vertices with 11.74 bytes
for IX, 8.51 bytes for SC and 5.14 bytes for our approach.

Figure 7 shows the approaches evaluated in a space/time diagram.
Laced wires achieve the smallest memory requirements. IX and SC
can be decoded and rendered faster, but require significantly more
memory. TS is not viable, as it requires a significant amount of time
and memory. GI as a standard format is outperformed by SC and
laced wires in both space and time; it seems that compression pro-
vides clear benefits.

5.6. Analysis of vertex quantization

Our scenes contain meshes which have been quantized a-priori to
the minimum precision necessary for consistent visual quality. To
demonstrate the effect of this a-priori quantization on compression,
we quantize the bee mesh globally with different numbers of bits
per vertex coordinate, determine the maximum quantization error
and run our algorithm to quantize each meshlet locally, such that
all results stay below the maximum global quantization error. The
results of this experiment with 8–16 bits per vertex coordinate can
be found in Figure 8.

It is interesting to see that the difference in vertex precision be-
tween our local quantization and a global quantization is not con-
stant for matching decoding errors. There are two main reasons for
that: (1) corners are quantized in the global coordinate frame, i.e.
their quantization bits usually match the global quantization, caus-
ing outliers in the average vertex size. (2) The decoding error does
not decrease linearly with increasing quantization. Nevertheless, all
results stay significantly below the vertex size of a global quantiza-
tion for a given tolerance.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 11 of 14

Table 6: Comparison to existing methods, grouped into Class 1 (decode on CPU), Class 2 (decode into GPU memory) and Class 3 (decode on the fly). Column
‘Conn.’ lists the average bits per triangle (bpt) for compressed connectivity. Column ‘Final’ reports estimated speed in Giga-triangles per second (Gtps) for
‘Both’ (‘Decode’ plus ‘Render’ times) multiplied with the ‘Corr[ection] factor’ derived from the relative GPU speed. For Meyer et al. [MSGS12], we report
‘min’and ‘max’performance values, since the variations in their results are significant, and our extrapolated numbers may, therefore, be unreliable. For Jakob
et al. [JBG17], no rendering speed was reported, so we conservatively assume a time of zero. For Karis et al. [KSW21], no GPU model was disclosed, so we
assume an RTX 3080 (the latest generation in 2020).

Method Year Class Conn. Hardware Decode Render Both Corr. Final
bpt Gtps Gtps Gtps factor Gtps

Draco [Goo22] 2023 1 2.0 CPU
Gurung [GLLR13] 2013 1 6.0 CPU
Meyer [MSGS12] (min) 2012 2 4.6 Nvidia GTX 580 0.05 0.0034 0.00 ∼ 15× ∼0.05
Meyer [MSGS12] (max) 2012 2 4.6 Nvidia GTX 580 1.72 0.65 0.47 ∼ 15× ∼7.07
Jakob [JBG17] 2017 2 3.3 Nvidia GTX 980Ti 0.34 0.00 0.34 ∼ 4× ∼1.37
Karis [KSW21] (Nanite) 2020 3 17.0 Assumed: GTX 3080 1.50 ∼ 2× ∼3.00
Nicolaev [NFR22] 2022 3 12.0 Nvidia RTX 2070 Mobile 1.14 ∼ 3× ∼3.42
Laced wires 2023 3 16.0 Nvidia RTX 4090 13.33 1× 13.33

5.7. Comparison to existing methods

In this section, we present comparisons to existing methods based
on the numbers reported in the original publications. To make a
meaningful comparison with the performance numbers originally
reported (since we do not have access to the code of these works),
we estimate a speed correction factor based on public GPU bench-
marks [WMMS23].We are interested in comparing the compression
rate of connectivity (measured in bits per triangle, bpt) and the joint
time to decode and render (in Giga-triangles per second,Gtps, using
basic rendering, such as Phong shading).

We group the methods into three classes. Class 1 contains meth-
ods for decoding on the CPU [Goo22, GLLR13], which serve as a
reference for the state of the art in connectivity compression rate
(but not speed). Class 2 are GPU methods decoding into mem-
ory [MKSS12, JBG17]. Class 3 are GPU methods decoding on the
fly. In addition to our approach, we know of only two such meth-
ods [NFR22, KSW21].

Table 6 summarizes the data. We see that classes 1 and 2 can de-
liver connectivity compressionwhich ismore or less close to the the-
oretical optimum (1–2 bpt), but the need for storing decompressed
data in memory limits the maximum speed. Moreover, these meth-
ods rely on the decompressed mesh to fit into memory. Class 3 re-
quires more memory for connectivity (12–17 bpt), but runs clearly
faster in comparison. Even though the extrapolated performance
numbers used in this comparison must be taken with a grain of
salt, since the relative speed of GPU models is a coarse estimate,
the overall picture consistently suggests that laced wires outperform
all previous methods in terms of speed. This observation can be at-
tributed to the combined usage of compactness and locality in the
mesh shader.

6. Limitations

Encoding time of our approach can become quite long for large
meshes, from tens of minutes to hours for large scenes. The main
cause for long encoding times is exhaustive searches for optimal

vertex paths to construct laced wires. Another costly step involving
many transformations between coordinate systems is the search for
the smallest vertex encoding with a given error tolerance. Encod-
ing times could be significantly reduced by heuristically pruning
the search and by optimizing the encoder, which currently runs on
a single CPU thread. However, we did not attempt a multi-threaded
(or GPU) implementation yet.

Our current representation is a trade-off between size and decod-
ing speed. Wire headers in particular have a non-negligible memory
footprint that could be further optimized, for example, by using hier-
archical bounding boxes. It also seems possible to use larger mesh-
lets, although it is unclear at this point what constraints are imposed
by the cache sizes afforded by the mesh shader.

Currently, laced wires are limited to encode manifold geometry,
as vertices in a wire are visited exactly once and laces assume at
most two triangles adjacent to an edge. Non-manifold meshes can
be handled by splitting them into multiple manifold meshes in a
preprocessing step, but this solution can lead to suboptimal results
if too many sub-meshes must be generated.

7. Conclusion

The ever-increasing amount of geometry data inmodern 3D applica-
tions poses great challenges. In this paper, we present an approach
for end-to-end rendering of compressed mesh. This approach has
several advantages. Assets are regularly stored in compressed for-
mat. While compression can greatly reduce the size in non-volatile
memory, the CPU has to perform decompression before submit-
ting the data to the GPU for rendering. GPU memory footprint and
bandwidth are not improved by compression. Decompression on
the GPU, such as applied in Nanite, can relieve the CPU from de-
compression duties, making it free for other tasks. However, exist-
ing GPU decompression approaches store the decompressed data in
GPUmemory in addition to the compressed data (with compression
buffers managed internally). This solution even increases the total
pressure on GPU memory.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



12 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

Our approach to tackle these challenges is based on a novel de-
composition of a mesh into locally coherent primitive groups, which
we call laced wires. Laced wires store connectivity and geometry,
avoid vertex duplication and can be compressed, stored and trans-
mitted independently. Small groups of laced wires make up a mesh-
let, i.e. a small triangle cluster, for which efficient culling can be
performed before decoding. Decompression occurs on the fly in a
mesh shader, and the results are passed directly to the rasterizer.

We have demonstrated that on-the-fly decompression of geomet-
ric data on the GPU just in time for rasterization is viable on the
GPU today. As the gap between memory bandwidth and compu-
tational bandwidth is constantly widening, the relative computa-
tional overhead of decompression will decrease over time. Care-
fully chosen hardware enhancements, such as support for quantized
attributes, may drastically improve decompression throughput at a
modest cost. It would also be interested to determine how laced
wires can be used to accelerate ray tracing, which would likely
combine a meshlet representation with a spatial acceleration data
structure.

Acknowledgements

This work was funded by Christian Doppler Society and Qualcomm
Technologies Inc.

References

[BCF03] Binotto A., Comba J., Freitas C.: Real-time volume
rendering of time-varying data using a fragment-shader compres-
sion approach. In IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, PVG 2003 (2003), pp. 69–75.

[BPZ99] Bajaj C. L., Pascucci V., Zhuang G.: Single resolution
compression of arbitrary triangular meshes with properties.Com-
putational Geometry 14, 1 (1999), 167–186.

[Cal01] Calver D.: Vertex decompression in a shader. Shader X,
2001.

[CDE*14] Cigolle Z. H., Donow S., Evangelakos D., Mara
M., McGuire M., Meyer Q.: Survey of efficient representa-
tions for independent unit vectors. Journal of Computer Graphics
Techniques (JCGT) 3, 2 (2014), 1–30.

[CG08] Chen L., Georganas N. D.: Region-based 3D mesh com-
pression using an efficient neighborhood-based segmentation.
SIMULATION: Transactions of The Society for Modeling and
Simulation International 84, 5 (2008), 185–195.

[CH09] Courbet C., Hudelot C.: Random accessible hierarchi-
cal mesh compression for interactive visualization. Computer
Graphics Forum 28, 5 (2009), 1311–1318.

[CH22] Cassie Hoef D. P.: Directstorage 1.1 now available. Di-
rectX Developer Blog. https://devblogs.microsoft.com/directx/
directstorage-1-1-now-available/ (2022). Accessed 17 Jan. 2024.

[Cho97] Chow M. M.: Optimized geometry compression for real-
time rendering. In Proceedings of the IEEE Visualization Con-
ference (1997), pp. 347–354.

[CK07] Chhugani J., Kumar S.: Geometry engine optimization:
cache friendly compressed representation of geometry. In Sym-
posium on Interactive 3D Graphics (2007), B. Gooch and P. J.
Sloan (Eds.), ACM, pp. 9–16.

[CKLL09] Choe S., Kim J., Lee H., Lee S.: Random accessi-
ble mesh compression using mesh chartification. IEEE Transac-
tions on Visualization and Computer Graphics 15, 1 (2009), 160–
173.

[CR04] Coors V., Rossignac J.: Delphi: Geometry-based connec-
tivity prediction in triangle mesh compression. The Visual Com-
puter 20, 8-9 (2004), 507–520.

[CSN*12] Chen G., Sander P. V., Nehab D., Yang L., Hu L.:
Depth-presorted triangle lists. ACM Transactions on Graphics
31, 6 (2012), 160:1–160:9.

[DBGP05] Diaz-Gutierrez P., BhushanA., Gopi M., Pajarola
R.: Constrained strip generation and management for efficient
interactive 3D rendering. In Computer Graphics International
(2005), B. Guo, H. Pfister and D. Samaras (Eds.), IEEE Com-
puter Society, pp. 115–121.

[Dee95] Deering M.: Geometry compression. In SIGGRAPH’95:
Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA,
1995), pp. 13–20.

[DSW09] Dick C., Schneider J., Westermann R.: Efficient ge-
ometry compression for GPU-based decoding in realtime terrain
rendering. Computer Graphics Forum 28 (2009), 67–83.

[Epi20] Epic: A first look at unreal engine 5. Online an-
nouncement. https://www.unrealengine.com/en-US/blog/a-first-
look-at-unreal-engine-5 (2020). Accessed 17 Jan. 2024.

[FM07] Fout N., Ma K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics 13, 6 (2007), 1600–1607.

[GLLR13] Gurung T., Luffel M., Lindstrom P., Rossignac
J.: Zipper: A compact connectivity data structure for triangle
meshes. Computer-Aided Design 45, 2 (2013), 262–269.

[GLRL11] Gurung T., Lindstrom P., Rossignac J., Luffel
M.: Lr: Compact connectivity representation for triangle
meshes. ACM Transactions on Graphics 30 (July 2011),
1–8. https://www.sciencedirect.com/science/article/abs/pii/
S001044851200214X

[Goo22] Google: Draco 3D data compression. https://google.
github.io/draco/ (2022). Accessed 4 Dec. 2022.

[GS98] Gumhold S., Straßer W.: Real time compression of tri-
angle mesh connectivity. In Proceedings SIGGRAPH (1998), pp.
133–140.

[GWH01] Garland M., Willmott A., Heckbert P. S.: Hierar-
chical face clustering on polygonal surfaces. In Symposium on
Interactive 3D graphics (2001), ACM Press.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://devblogs.microsoft.com/directx/directstorage-1-1-now-available/
https://devblogs.microsoft.com/directx/directstorage-1-1-now-available/
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://www.sciencedirect.com/science/article/abs/pii/S001044851200214X
https://www.sciencedirect.com/science/article/abs/pii/S001044851200214X
https://google.github.io/draco/
https://google.github.io/draco/


D. Mlakar et al. / End-to-End Compressed Meshlet Rendering 13 of 14

[HA15] Haar U., Aaltonen S.: GPU-driven rendering pipelines.
In SIGGRAPH 2015: Advances in Real-Time Rendering in
Games (2015).

[Hoe22] Hoef C.: Directstorage 1.1 coming soon. DirectX Devel-
oper Blog. https://devblogs.microsoft.com/directx/directstorage-
1-1-coming-soon/ (2022). Accessed 17 Jan. 2024.

[Hop99] Hoppe H.: Optimization of mesh locality for transparent
vertex caching. In SIGGRAPH’99: Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1999), pp. 269–276.

[HS16] Han S., Sander P. V.: Triangle reordering for reduced
overdraw in animated scenes. In Symposium on Interactive 3D
Graphics and Games (2016), C. Wyman and C. Yuksel (Eds.),
ACM, pp. 23–27.

[HV01] Hao X., Varshney A.: Variable-precision rendering. In
Symposium on Interactive 3D Graphics (2001), pp. 149–158.

[IA02] Isenburg M., Alliez P.: Compressing polygon mesh ge-
ometry with parallelogram prediction. In IEEE Visualization
Conference (2002), pp. 141–146.

[IL05] Isenburg M., Lindstrom P.: Streaming meshes. In Pro-
ceedings of the 16th IEEE Visualization Conference, IEEE Vis
2005 (Minneapolis, MN, USA, Oct. 2005), IEEE Computer So-
ciety, pp. 231–238.

[Ise00] Isenburg M.: Triangle strip compression. In Proceedings
of Graphics Interface 2000 (May 2000), pp. 197–204.

[JBG17] Jakob J., Buchenau C., Guthe M.: A parallel approach
to compression and decompression of triangle meshes using the
GPU. Computer Graphics Forum 36, 5 (2017), 71–80.

[KMGL99] Kumar S., Manocha D., Garrett W., Lin M.: Hi-
erarchical back-face computation. Computers & Graphics 23, 5
(1999), 681–692.

[KPRW05] Kälberer F., Polthier K., Reitebuch U., Wardet-
zky M.: Freelence—coding with free valences. Computer
Graphics Forum 24, 3 (2005), 469–478.

[KSW21] Karis B., Stubbe R., Wihlidal G.: Nanite—a deep
dive. Tutorials notes, SIGGRAPH 2021 Course on Advanced
Real-Time Rendering. https://advances.realtimerendering.com/
s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
(2021). Accessed 17 Jan. 2024.

[Kub18] Kubisch C.: Introduction to turing mesh shaders. SIG-
GRAPH Talks. https://devblogs.nvidia.com/introduction-turing-
mesh-shaders/ (2018). Accessed 17 Jan. 2024.

[KXW*18] Kwan K. C., Xu X., Wan L., Wong T.
T., Pang W. M.: Packing vertex data into hardware-
decompressible textures. IEEE Transactions on Visual-
ization and Computer Graphics 24 (May 2018), 1705–
1716.

[LC10] Lindstrom P., Cohen J. D.: On-the-fly decompression and
rendering of multiresolution terrain. In I3D’10: Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3DGraph-
ics and Games (New York, NY, USA, 2010), Association for
Computing Machinery, pp. 65–73.

[LH04] Losasso F., Hoppe H.: Geometry clipmaps: Terrain render-
ing using nested regular grids. ACM Transactions on Graphics
23, 3 (Aug. 2004), 769–776.

[LH07] Lefebvre S., Hoppe H.: Compressed random-access trees
for spatially coherent data. InRendering Techniques. J. Kautz and
S. Pattanaik (Eds.). The Eurographics Association (2007).

[LY06] Lin G., Yu T. P.: An improved vertex caching scheme
for 3D mesh rendering. IEEE Transactions on Visualization and
Computer Graphics 12, 4 (July 2006), 640–648.

[MKSS12] Meyer Q., Keinert B., Sußner G., Stamminger M.:
Data-parallel decompression of triangle mesh topology. Com-
puter Graphics Forum 31, 8 (2012), 2541–2553.

[MLDH15] Maglo A., Lavoué G., Dupont F., Hudelot C.: 3D
mesh compression: Survey, comparisons, and emerging trends.
ACM Computing Surveys 47, 3 (Feb. 2015), 1–41.

[MSGS11] Meyer Q., Sussner G., Greiner G., StammingerM.:
Adaptive level-of-precision for GPU-rendering. In Vision, Mod-
eling, and Visualization (2011), P. Eisert, J. Hornegger and K.
Polthier (Eds.), The Eurographics Association.

[NFR22] Nikolaev A. V., Frolov V. A., Ryzhova I. G.: 3D
model compression with support of parallel processing on the
GPU.Programming andComputer Software 48 (2022), 181–189.

[PBCK05] Purnomo B., Bilodeau J., Cohen J. D., Kumar
S.: Hardware-compatible vertex compression using quantization
and simplification. In HWWS’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware
(New York, NY, USA, 2005), Association for Computing Ma-
chinery, pp. 53–61.

[Ros99] Rossignac J.: Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transactions on Visualization and Com-
puter Graphics 5 (1999), 47–61.

[SKR01] Szymczak A., King D., Rossignac J.: An edgebreaker-
based efficient compression scheme for regular meshes. Compu-
tational Geometry 20, 1-2 (2001), 53–68.

[SNB07] Sander P. V., Nehab D., Barczak J.: Fast triangle re-
ordering for vertex locality and reduced overdraw. ACM Trans-
actions on Graphics 26, 3 (2007), 89.

[SW03] Schneider J., Westermann R.: Compression domain
volume rendering. In IEEE Visualization, VIS 2003 (2003), pp.
293–300.

[Tau98] Taubin G.: Geometric compression through topological
surgery. ACM Transactions on Graphics 17 (1998), 84–115.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://devblogs.microsoft.com/directx/directstorage-1-1-coming-soon/
https://devblogs.microsoft.com/directx/directstorage-1-1-coming-soon/
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://devblogs.nvidia.com/introduction-turing-mesh-shaders/
https://devblogs.nvidia.com/introduction-turing-mesh-shaders/


14 of 14 D. Mlakar et al. / End-to-End Compressed Meshlet Rendering

[TG98] Touma C., Gotsman C.: Triangle mesh compression. In
Graphics Interface (1998), pp. 26–34.

[TMJ98] Tanner C. C., Migdal C. J., Jones M. T.: The clipmap:
A virtual mipmap. In Proceedings of the 25th Annual Confer-
ence on Computer Graphics and Interactive Techniques (New
York, NY, USA, 1998), Association for Computing Machinery,
pp. 151–158.

[Ura22] UralskyY.: Accelerating load times for directx games and
apps with gdeflate for directstorage. DirectX Developer Blog.
https://developer.nvidia.com/blog/accelerating-load-times-
for-directx-games-and-apps-with-gdeflate-for-directstorage/
(2022). Accessed 17 Jan. 2024.

[VSSP12] Vo H. T., Silva C. T., Scheidegger L. F., Pas-
cucci V.: Simple and efficient mesh layout with space-
filling curves. Journal of Graphics Tools 16, 1 (2012), 25–
39.

[Wih16] Wihlidal G.: Optimizing the graphics pipeline with com-
pute. In Game Developers Conference (2016).

[WMMS23] Wilson A., Miller A., Matthews M., Stevens
S.: 2023 GPU benchmark and graphics card comparison chart

(2023). https://www.gpucheck.com/gpu-benchmark-graphics-
card-comparison-chart. Accessed 17 Jan. 2024.

[Yeu20] Yeung A.: Directstorage is coming to PC. Mi-
crosoft Developer Blog. https://devblogs.microsoft.com/directx/
directstorage-is-coming-to-pc/ (2020). Accessed 17 Jan. 2024.

[YL06] Yoon S., Lindstrom P.: Mesh layouts for block-based
caches. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 1213–1220.

[YL07] Yoon S., Lindstrom P.: Random-accessible compressed
triangle meshes. IEEE Transactions on Visualization and Com-
puter Graphics 13, 6 (2007), 1536–1543.

[YLPM05] Yoon S.-E., Lindstrom P., Pascucci V., Manocha
D.: Cache-oblivious mesh layouts. In Proceedings SIGGRAPH
(2005), pp. 886–893.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Supporting Information

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://developer.nvidia.com/blog/accelerating-load-times-for-directx-games-and-apps-with-gdeflate-for-directstorage/
https://developer.nvidia.com/blog/accelerating-load-times-for-directx-games-and-apps-with-gdeflate-for-directstorage/
https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart
https://www.gpucheck.com/gpu-benchmark-graphics-card-comparison-chart
https://devblogs.microsoft.com/directx/directstorage-is-coming-to-pc/
https://devblogs.microsoft.com/directx/directstorage-is-coming-to-pc/

	End-to-End Compressed Meshlet Rendering
	1. Introduction
	2. Related Work
	2.1. Mesh compression
	2.2. Compressed domain rendering on the GPU
	2.3. Mesh layout optimization

	3. Compressed Meshlet Representation
	3.1. Meshlet construction
	3.2. Connectivity encoding
	3.3. Geometry encoding
	3.4. Binary format

	4. Decoder Implementation on the GPU
	4.1. Amplification shader
	4.2. Mesh shader

	5. Evaluation
	5.1. Meshlet formats
	5.2. Evaluation setup
	5.3. Compression rates and decoding times
	5.4. Compression ratio of connectivity
	5.5. Compression ratio of geometry
	5.6. Analysis of vertex quantization
	5.7. Comparison to existing methods

	6. Limitations
	7. Conclusion
	Acknowledgements
	References 
	Supporting Information


