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Figure 1: Our anatomically constrained human shape model allows to infer the skeleton from a surface scan. Due to injecting anthropometric
measurements into the latent code, our model can then locally manipulate both the skeleton shape and the soft tissue distribution of a person.

Abstract
Human shape spaces have been extensively studied, as they are a core element of human shape and pose inference tasks.
Classic methods for creating a human shape model register a surface template mesh to a database of 3D scans and use
dimensionality reduction techniques, such as Principal Component Analysis, to learn a compact representation. While these
shape models enable global shape modifications by correlating anthropometric measurements with the learned subspace,
they only provide limited localized shape control. We instead register a volumetric anatomical template, consisting of
skeleton bones and soft tissue, to the surface scans of the CAESAR database. We further enlarge our training data to
the full Cartesian product of all skeletons and all soft tissues using physically plausible volumetric deformation transfer.
This data is then used to learn an anatomically constrained volumetric human shape model in a self-supervised fashion. The
resulting TAILORME model enables shape sampling, localized shape manipulation, and fast inference from given surface scans.

CCS Concepts
• Computing methodologies → Mesh models; Volumetric models; Shape analysis; Learning latent representations;

1. Introduction

Human shape modeling has been extensively studied due to its ap-
plication in various fields, such as shape and pose estimation from
multi-view stereo or monocular RGB(-D) input. Starting from sim-
ple linear PCA models [ASK*05; LMR*15] to recent advances
in machine learning models [RBSB18; BBP*19], these models
are used as the foundation for many downstream tasks such as

† The first two authors contributed equally

body composition estimation [WNT*21], the creation of virtual
humans [AWLB17; AMB*19; WAB*20], or generating synthetic
training data for image recognition tasks [WBH*21]. Most of the
approaches train on commercially available 3D scan databases such
as CAESAR [RBD*02] or 3D Scanstore [3DS23]. These 3D scans
naturally provide only what is easily observable from the outside:
the silhouette of the scanned subject. However, by setting the fo-
cus on modelling the skin layer of humans, models that want to
learn how to accurately modify a given virtual human, suffer from
missing anatomical information.
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Modifying realistic virtual humans has gained attention due to
its promising applicability in VR therapy [PSR*14; MTM*18;
WDM*22; WMF*22], which can serve as a complementary in-
tervention technique to classic forms of therapy. Such VR sys-
tems can immersively expose patients with anorexia or obesity to
generic or personalized virtual humans at different levels of weight
or Body Mass Index (BMI), allowing patients to reflect on and re-
searchers to gain insight into possibly occurring body image distur-
bances. However, current models for body weight/BMI modifica-
tion are typically learnt on surface-only models and employ global
models such as Principal Component Analysis [ACPH06; HSS*09;
PSR*14; DWM*22], leading to shape modification models provid-
ing only limited localized control. Participants have stated the re-
quest for changing the composition of specific body parts in addi-
tion to a global BMI/weight modification [DWM*22].

In this paper, we present our TAILORME model, which is able
to achieve such localized shape manipulation. We leverage re-
cent advances in inferring anatomical structures from surface scans
[DLG*13; KIL*16; KWB21; KZBP22] to register a volumetric
anatomical template model to the CAESAR database, resulting in
pairs of skeleton and skin meshes. The main contribution of our
work is to provide a novel statistical model that clearly separates
the distribution of skeleton and soft-tissue in its latent space. In
order for our model to successfully learn separate parameter sets,
we calculate the full Cartesian product of all skeleton shapes and
all soft-tissue distributions using volumetric deformation transfer
[BSPG06], allowing us to transfer the soft tissue distribution of
subject i onto the skeleton of subject j.

The resulting data set is then used to train a neural network
that learns the common underlying parameters from a person’s
bone structure and soft tissue distribution. Examples that share ei-
ther a common skeleton or a common soft tissue distribution can
be sampled from the Cartesian data set. These commonalities are
learned and encoded with an autoencoder using the SpiralNet++
[GCBZ19] approach. To separate the skeleton and soft tissue dis-
tribution a self-supervised learning approach inspired by Barlow
Twins [ZJM*21] is used, which reduces redundancy in the under-
lying distributions. To allow local modification of body regions,
measurements are taken on the example Cartesian data set and are
additionally injected into the latent code to reduce the correlation
of the remaining parameters with these known measurements.

In summary, this paper presents a novel approach for learning an
anatomically constrained volumetric human shape model, which
through its learning paradigm disentangles correlations between
the skeleton shape space and the soft tissue distributions. The la-
tent code of our model can be sampled to generate various human
skeleton shapes with different soft tissue distribution characteris-
tics. The measurement injection into the latent code of our model
allows localized shape manipulation: the anatomical structure can
be quickly inferred from a 3D scan of a human and then locally
modified by the user. This allows to simulate weight gain/loss in
different regions of the body. We publicly release our TAILORME

model at https://github.com/mbotsch/TailorMe to
enable further research and development of applications for vol-
umetric anatomical human shape models.

2. Related Work

2.1. Human Shape Models

Data-driven human shape models are ubiquitous and widely stud-
ied. Learnt from registering a template model to a database of
3D scans, most popular models are based on Principal Component
Analysis (PCA) of vertex positions [LMR*15; OBB20]. Pishchulin
et al. [PWH*17] discuss best practices and provide a public imple-
mentation of the complete pipeline from surface scans to a para-
metric shape model. Other approaches directly encode triangle de-
formations from the template to the registered models [ASK*05]
or a decomposition of these triangle deformations [FB12]. Since
they are based on a database of 3D scans, these methods capture
the variation of human body shape only on a surface level. In con-
trast, our model is trained on additional volumetric information by
fitting an anatomically plausible skeleton model into the registered
surface scans.

More sophisticated dimensionality reduction techniques have
also been applied to human shape models: Ranjan et al. [RBSB18]
propose a convolutional mesh autoencoder and introduce a pooling
and unpooling operation directly on the mesh surface structure. The
Neural 3D Morphable Models (Neural3DMM) network [BBP*19]
adjusts the pooling operations and uses a spiral convolutional op-
erator, which has been further refined by Gong et al. [GCBZ19].
Our model uses a similar autoencoder design paired with the self-
supervised learning technique Barlow Twins [ZJM*21].

2.2. Modifying Virtual Humans

Learning a shape modification model based on anthropometric
measurements has been explored in the field of Virtual Reality
body image therapy [DWM*22; WDM*22; WMF*22; PSR*14;
MTM*18]. The possibility to either passively present a generic vir-
tual human in different weight or BMI variants or letting partici-
pants actively change their personalized virtual human can and has
been used to gain insights into body image disorders for patients
with anorexia or adiposity.

A common approach is to model shape modification by learning
linear correlations between a set of anthropometric measurements
(e.g., as present in the CAESAR database [RBD*02]) and the low-
dimensional shape space [ACPH06; HSS*09; PSR*14; DWM*22].
The modified shape can then be computed by mapping the desired
measurement changes into the subspace through learned regressors
and then projecting the change in subspace coordinates back into
vertex space. Commonly used anthropometric measurements, such
as arm length and inseam, are highly correlated. The cited meth-
ods cannot completely disentangle this correlation in the anthropo-
metric measurements, leading to limited control over local shape
manipulation. Our non-linear model learns to separate the corre-
lations between these measurements, thereby enabling more local-
ized shape manipulations.

For surface models, there is some work on creating more lo-
cal shape space representations. Tena et al. [TDM11] propose a
method for automatically segmenting registered head meshes into
several components. A shape space is then learned for each com-
ponent separately and the resulting submeshes are stitched to-
gether. Sparse PCA combined with spatially-varying regularization

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/mbotsch/TailorMe


Wenninger et al. / TAILORME: Self-Supervised Learning of an Anatomically Constrained Volumetric Human Shape Model 3 of 13

weights [NVW*13] has also been shown to result in more localized
shape models. For an overview about parametric (head) surface
models, including global and local models, we refer the reader to
the survey by Egger et al. [EST*20]. These methods could achieve
localized shape control, but are only trained on surface meshes.

2.3. Anatomical Models

Achenbach et al. [ABG*18] trained a multi-linear model (MLM)
to find a lower-dimensional model of skull and corresponding head
shape, parameterized by skull shape and soft tissue distribution.
The MLM does not completely decouple the two parameter sets, so
changing the skin parameters can still affect the skeleton. Our non-
linear model better decouples skeleton from skin shape, i.e., when
changing skin parameters, the skeleton stays fixed.

Anatomy Transfer [DLG*13] is a method for warping an
anatomical template model into a target skin surface via a har-
monic space warp while constraining bones to only deform via
affine transformations. This can however lead to unnaturally scaled
or sheared bones, as discussed in other work [KIL*16; KWB21].

Saito et al. [SZK15] developed a physics-based simulation of
muscle and fat growth on a tetrahedral template mesh including an
enveloping muscle layer that separates the tetrahedral mesh repre-
senting the subcutaneous fat layer from the rest of the template.
[KIL*16] present a method for fitting such a physics-based simu-
lation to a set of 3D scans in different poses, to get a personalized
anatomical model. Their approach yields visually plausible results
but requires a complex numerical optimization strategy taking sev-
eral minutes and can therefore not be used for interactive VR inter-
ventions. Komaritzan et al. [KWB21] follow the approach of Saito
et al. [SZK15] by using a multi-layered model to separate skele-
ton, muscle, and skin surface derived from an anatomical template
model [Zyg23]. Their model is then fitted to a given skin layer in
a multi-stage optimization scheme. Embedding the high-resolution
skeleton and muscle meshes from the anatomical template into the
resulting layers is done by a triharmonic RBF warp. However, they
do not train a statistical model on the resulting shapes. Additionally,
their fitting approach is an order of magnitude slower compared to
our method.

The recent work OSSO [KZBP22] combines the STAR model
[OBB20] for human body shapes and a model of skeleton shapes
based on the Stitched Puppet Model [ZB15]. By fitting these two
models to a set of DXA images, the authors learn to regress skele-
tal shape from skin shape in PCA space. In the follow-up method
SKEL [KWS*23] the authors present a parametric biomechanical
skeleton and skin model with shared shape and pose parameters and
anatomically constrained degrees of freedom. The skeleton model
is registered to a subset of the AMASS dataset [MGT*19] by opti-
mizing bone scalings and poses via a biomechanical optimization
framework [WRS*22]. The skeletons inferred with both the OSSO
and SKEL approach may however show self-intersections with the
given skin mesh. In contrast, our model learns non-linear correla-
tions between skeleton and skin, provides a localized shape modifi-
cation model, and produces intersection-free pairs of skeleton and
skin meshes.

3. Training Data

We start by deriving all the parts of our template model and regis-
tering it to surface scans of the CAESAR database, yielding pairs of
skeleton and skin meshes (Section 3.1). We enlarge this data set by
computing the full Cartesian product of skeleton shape and soft tis-
sue distribution via volumetric deformation transfer (Section 3.2).
The resulting data set then constitutes the training data for our TAI-
LORME model. See Figure 2 for an overview of our method.

3.1. Skin and Skeleton Registration

Existing anatomical models, as provided for example by Zygote
[Zyg23] or 3D Scanstore [3DS23], are only available with pro-
hibitive licensing. In order to make our model publicly available,
we commissioned a 3D artist to build an anatomical template
model. It provides a male and female template, both including
meshes for skin, eyes, mouth, teeth, muscle, and skeleton (Fig-
ure 3). All meshes in the male template are consistently topolo-
gized with their counterparts in the female template. With 23752
vertices, our skin mesh has approximately 3.5 times more vertices
than the popular SMPL [LMR*15] or STAR [OBB20] models,
allowing us to more accurately model skin geometry. We follow
the layered model approach and generate a skeleton wrap that en-
velopes the high-detail skeleton mesh and has the same triangula-
tion as the skin layer[KWB21]. This provides a trivial correspon-
dence between skin and skeletal layers.

Our skin surface input data is derived from the European sub-
set of the CAESAR database [RBD*02], consisting of about 1700
3D scans annotated with 3D landmarks and anthropometric mea-
surements. To bring all scans into uniform topology and pose, we
employ the template fitting approach proposed by Achenbach et
al. [AWLB17], adapted to use the skin surface of our template
model. This leaves us with 776 male and 919 female skin meshes
denoted by Si. In the following, all computations are done on the
male and female data set separately, due to the anatomical differ-
ences especially in the hip and shoulder region.

From the fitted skin meshes, we use an author-provided imple-
mentation of InsideHumans [KWB21] to estimate skeleton lay-
ers Bi, resulting in non-intersecting pairs of skeleton and skin
meshes (Bi,Si). Since the InsideHumans approach excludes the
head, hands, and feet region from the skeleton layer, we inherit this
limitation. We denote the set of vertices belonging to these regions
by E . Equipped with this data, we can now enlarge our training data
set by computing the Cartesian product of skeleton shape and soft
tissue distribution in a physically plausible way.

3.2. Volumetric Deformation Transfer

We train our model on the Cartesian product of two shape dimen-
sions: skeleton shape and soft tissue distribution. To this end, we
transfer the soft tissue of subject i onto the skeleton of subject j,
which we achieve through deformation transfer [SP04; BSPG06].

In the standard formulation of deformation transfer, the defor-
mation gradients are computed from a triangle on Bi to the corre-
sponding triangle on Si. These deformations are then applied to B j
in order to generate S j. However, as seen in Figure 4 (center right),
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Figure 2: Overview of our data processing pipeline. We first fit our template model to the CAESAR database, resulting in registered skin
surfaces. We use the InsideHumans method [KWB21] to infer anatomical structures from these surface fits. To learn a separated parameter
space for skeleton and soft-tissue distribution, we generate the Cartesian product of all soft-tissue distributions and all skeleton shapes,
using volumetric deformation transfer. We train our autoencoder by sampling pairs, which share either a common skeleton or soft-tissue
distribution from our Cartesian data set.

Figure 3: Male and female template model. In this work, we derive
an additional skeleton layer that wraps the high resolution skeleton
mesh and shares the triangulation with the skin layer.

this formulation can lead to interpenetrations of skin and skeleton.
These artifacts can happen because the triangle-based deformation
gradients between Bi and Si do not encode any volumetric infor-
mation of the soft tissue enclosed in between these two surfaces.
To alleviate this problem we formulate the soft tissue transfer as a
volumetric deformation transfer problem.

First, we compute the mean skeleton Bµ and mean skin mesh Sµ
over all training models. Since the two layers share the same tri-
angulation, the corresponding faces between the skeleton and skin
layer span prismatic elements that can trivially be split into three
tetrahedra. We denote the resulting tetrahedral mesh enclosed be-
tween Bµ and Sµ (hence representing the mean soft tissue distribu-
tion) as Sµ. The vector Xµ containing the stacked vertex positions
of Sµ is composed from the vertex positions of the bone mesh Bµ

and the skin mesh Sµ, denoted by XB
µ and XS

µ , respectively.

Transferring the soft tissue layer of subject i onto the skeleton
of subject j can then be formulated as a volumetric deformation

transfer. The deformation gradients Ft ∈ R3×3 per tetrahedron t
encode the deformation from the mean tetrahedral mesh Sµ to the
tetrahedral mesh Si of subject i. From the four vertex positions
x1,x2,x3,x4 of tetrahedron t in Si we build the edge matrix

Et
i =

(
x1 −x4, x2 −x4, x3 −x4

)
.

The matrix Et
µ is built analogously from the vertices of Sµ. The

deformation gradient of tetrahedron t could then be computed as
Ft = Et

i
(
Et

µ
)−1. However, part of the desired deformation is al-

ready explained by the deformation of Bµ to B j. To account for this,
we express the deformation gradients relative to reference frames
on Bµ and B j. Each tetrahedron t can be associated with a triangu-
lar face on the skeleton layer Bµ and B j, respectively. These trian-
gles define orthonormal reference frames Rt

µ and Rt
j , respectively,

which leads to the final formulation for deformation gradients:

Ft = Rt
j
(
Rt

µ
)T Et

i
(
Et

µ
)−1

. (1)

We then solve for vertex positions X j conforming to these de-
formation gradients in a least squares sense, while keeping the ver-
tices of the skeleton layer B j and E fixed. Formally, we solve the
gradient-based mesh deformation system(

GTDG
)

X j =
(

GTD
)

F, (2)

with Dirichlet boundary constraints for every vertex belonging to
B j ∪E . The matrices GTD and G represent the discrete divergence
and gradient operators for tetrahedral meshes [BSPG06], and F ver-
tically stacks the desired deformation gradients Ft . Solving this lin-
ear system yields new skin vertices XS

j .

In order to smoothly blend into the boundary region E , we define
per-tetrahedron interpolation weights wt ∈ [0,1], which decrease
based on the distance to E . We use wt to linearly interpolate be-
tween the desired deformation gradients Ft and the deformation
gradients computed from Sµ to the target subject S j, thereby ensur-
ing a smooth transition into E .

In the presented volumetric formulation, the deformation gra-
dients Ft include information about the volumetric stretching and
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Figure 4: Transferring the soft tissue of the left model onto the skeleton of the center-left model using surface-based deformation transfer,
the skeleton wrap protrudes the skin (center-right). Our volumetric deformation transfer successfully avoids these artifacts (right).

compression of the tetrahedron t of the soft tissue layer. Since Sµ
and Si do not exhibit inverted elements, the deformation gradients
Ft do not contain any inversions. As such, solving Equation (2)
avoids self-intersections between skin and skeleton (shown in Fig-
ure 4, right), since those would require tetrahedra to invert, which
in turn would lead to a high deviation from the target deforma-
tion gradient. Figure 5 shows several examples of transferring the
soft tissue distribution of a set of subjects with different height and
weight characteristics onto the same skeleton.

4. Model Learning

Our objective is to learn a compact representation of human body
shapes. We do so using a specific autoencoder architecture. To en-
able guided and localized shape manipulation, we inject anthro-
pometric measurements into the autoencoder’s latent representa-
tion. We measure the length of the torso, arms, and legs on the
skeleton, and the circumference of chest, waist, abdomen, and hips
on the skin meshes. By injecting normalized values of those mea-
surements into our latent representation, we form an expressive
latent code. Our neural network architecture is a convolutional
autoencoder with local mesh convolutions based on SpiralNet++
[GCBZ19]. Decoupling the two shape dimensions is accomplished
by splitting the latent code into two parameter sets: one for skeleton
shape and one for soft tissue distribution (Section 4.1). We define a
loss function based on the Barlow Twins method [ZJM*21], which
allows us to reduce the redundancy in the latent code (Section 4.2).

4.1. Network architecture

Our shape compression task is implemented using a convolutional
autoencoder. To achieve decoupling of skeleton shape and soft tis-
sue distribution, we encode all samples using the encoder of our
network, and split the resulting embeddings z into two parts: z(B)

representing the skeleton and z(S) representing the soft tissue dis-
tribution. To facilitate semantic control in the latent space, the nor-
malized values of the measurements taken on the original meshes
are then appended to one of the two parts of the latent represen-

tations. Measurements taken on the skeleton are appended to z(B),
skin measurements are appended to z(S).

As a first design for the shape compression task, we experi-
mented with utilizing two separate PCA models for the skeleton
and soft tissue distribution. The PCA weights then formed the in-
put to our autoencoder, which learned to decouple the two shape
dimensions. This is in line with the OSSO approach [KZBP22],
where the correlation between skin and skeleton shape is learned by
a linear regressor between two PCA subspaces. We found that the
resulting model separates the skeleton and soft tissue distribution,
but only provides global shape control when modifying semantic
parameters in the latent space, due to the global influence of the
PCA weights. Figure 6 shows an example of the global influence,
where modifying arm length also changes the body height.

To mitigate the global effects, we opt for an autoencoder using
the SpiralNet++ approach [GCBZ19], which utilizes a mesh con-
volution and pooling operator. This design enables local shape con-
trol when modifying the entries in the latent space that correspond
to the anthropometric measurements.

The structure of our autoencoder is shown in Figure 7. The sam-
ples X ∈R37143×3 drawn from our Cartesian product data set (Sec-
tion 3.2) consist of the vertex positions XS and XB of the skin mesh
and the skeleton wrap (the latter excluding vertices in E belonging
to head, hands, and feet). We normalize the vertex positions before
using them as input for our autoencoder. Our latent code utilizes
48 parameters for the skeleton and soft tissue distribution each.
We take three measurements on the skeleton (torso, arm and leg
length), four measurements on the skin (chest, waist, abdomen and
hip circumference), and append them to the resulting embeddings
via skip connections. This results in a total of 103 parameters in the
latent space.

4.2. Cross-correlation Loss

Our encoder creates a latent representation z for each sample X in
the Cartesian data set. Samples with identical skeleton shape should
result in identical skeleton embeddings z(B), while samples that

© 2024 The Authors.
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Figure 5: Exemplary results of transferring the soft tissue of various people (top row) onto a single target skeleton via volumetric deformation
transfer (bottom row). Note that soft tissue characteristics of the top row and skeletal dimensions of the bottom row are faithfully preserved.

Figure 6: Representing skeletons and skins in PCA subspaces sep-
arates their parameters, but the global nature of PCA prevents lo-
calized changes: Increasing the arm length of the left model also
causes the body height to increase (right).

share soft tissue distribution should result in identical soft tissue
embeddings z(S). We achieve this using a self-supervised learning
approach based on Barlow Twins [ZJM*21], where the loss formu-
lation penalizes dissimilar embeddings for similar input samples.

We extend the concept of pairs in Barlow Twins by using quadru-
plets, built by all four combinations of skeletal and soft tissue dis-

tribution from two samples each for pairs of skeleton and skin
meshes. We randomly select two different indices k, l for skele-
tons and two different indices for the distribution of soft tissues
m,n from our training data set. Let Xkm denote the vertex posi-
tions resulting from transferring the soft tissue distribution of sub-
ject m onto the skeleton of subject k via volumetric deformation
transfer (Section 3.2). From the chosen indices (k, l,m,n) we cre-
ate a quadruplet containing the entries (Xkm,Xkn,Xlm,Xln), such
that each entry shares either its skeleton or its soft tissue distribu-
tion with two of the other entries. These quadruplets are processed
in batches by our autoencoder. The forward process of the encoder
for one quadruplet in a batch is visualized in Figure 8.

Following the Barlow Twins method [ZJM*21], we reduce the
redundancy in the embeddings of common features – resulting from
samples that share either the skeleton shape or the soft tissue distri-
bution – by computing empirical cross-correlation matrices of the
embeddings and penalizing their deviation from the identity matrix.
The cross correlation loss is defined as

LBT = ∑
i
(1−Cii)

2 +λ∑
i

∑
j ̸=i

C2
i j, (3)

with

Ci j =
1

BS ∑
b

zA
b,i · z

B
b, j. (4)

The batch size is marked as BS, the batch dimension is denoted
by b, and the index dimensions of the network output are repre-
sented by i and j. λ is a trainable hyperparameter to weight the
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Figure 7: Our network architecture is based on four SpiralNet++[GCBZ19] convolution and pooling blocks in the encoder. A final dense
layer is connecting the last layer of the encoder to achieve our embeddings z. We divide the embeddings into two parts, one for the skeleton
and the other one for the soft tissue distribution. We append the normalized values of the measurements (the lengths of torso, arms and legs
and the circumferences of chest, waist, abdomen, and hips) taken on the input mesh via a skip connection to the latent code. The decoder is
the reversed order of the encoder using four unpooling and convolution blocks.
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Figure 8: Processing a quadruplet of samples in the encoder and
dividing the embeddings into two parts: one for the skeleton and
one for the soft tissue distribution. After separation the normalized
measurements are appended to the respective embeddings. If the
divided embeddings are noted the same way, they are merged for
the entire batch. In order to calculate the cross-correlation loss
between pairs, the cross-correlation matrices are calculated for the
positions colored in the same way.

importance of off-diagonal entries being close to 0 in the empiri-
cal cross-correlation matrices. z(A) and z(B) are batches of embed-
dings, which are selected as described in the following. Note that
Equation (4) differs from the original definition in that we do not
use batch normalization on the embeddings before calculating the
entries of the cross-correlation matrices Ci j. Our model achieves
greater accuracy without batch normalization and enables more ef-
ficient manual modifications to the reconstructed meshes.

We rearrange the embeddings in a batch to group all components
with similarities on the source data set. These embeddings should
have a minimal redundancy when originating from the same distri-
bution. This is indicated when sharing one of their indices in the
training data set k, l, m, or n. We can form four cross-correlation
matrices for the quadruplets in the batch: z(B)

km ⊗ z(B)
kn , z(B)

lm ⊗ z(B)
ln ,

z(S)
km ⊗ z(S)

lm , and z(S)
kn ⊗ z(S)

ln , where ⊗ denotes the outer product
of the batched embeddings. We calculate the cross-correlation loss
LBT for each matrix using Equation (3) and sum up the total loss
for all four matrices of the batch to compute our redundancy loss
LQ. Note that we do not need to minimize the redundancy between
skeleton and soft tissue parameters directly to learn a separation.

Let LR denote the L1 reconstruction loss over all samples of the
quadruplets in the batch. We train our network to minimize the
combined loss function

L= LR +βLQ, (5)

where β is a trainable hyperparameter that balances the importance
of reconstruction and redundancy reduction in our loss function.

We train the autoencoder using the Adam Optimizer [KB15].
A randomized hyperparameter search is conducted and the high-
est performing model in the validation data set was selected. We
trained our models over the complete training set, resulting in 12
epochs for female and 27 for males. This model was trained us-
ing a learning rate of 1.71 · 10−4 for females and 1.78 · 10−4 for
male. We used redundancy importance values with β = 0.52 for
females and β = 0.42 for males. The optimal importance hyperpa-
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rameter for off-diagonal entries to achieve best performance was
λ = 2.3 ·10−2 for females and λ = 4.3 ·10−2 for males.

5. Post-Processing

After the inference of the decoder, the resulting meshes might
show certain artifacts. We observed asymmetries in the face region,
which are amplified when modifying the latent code towards the
boundary of the learned distribution. This is in part due to the fact
that the variance of the face region was not part of the modification
in the training data set (Section 3.1). To mitigate potential artifacts,
we apply three post-processing steps after decoding: (i) the face re-
gion is symmetrized, (ii) the resulting skin surface is smoothed and
(iii) intersections between the skeleton and skin layer are resolved.
As a final step, we embed the high-resolution anatomical skeleton
into the skeleton wrap using a triharmonic space warp.

5.1. Face Symmetrizing & Smoothing

After the inference of the decoder, we approximately symmetrize
the face region by adapting the approach of Mitra et al. [MGP07].
A reflective symmetry plane is defined at the center of the head,
based on which corresponding vertex pairs (vi,v j) on both sides can
be determined. The y-coordinate of these vertex pairs are adjusted
to match approximately: y′i =

3
4 yi +

1
4 y j. Afterwards, one explicit

smoothing step [DMSB99] is performed on the skin mesh in order
to reduce high frequency noise, which may occur when applying
drastic changes to the latent parameters.

5.2. Intersection Avoidance

After decoding from the latent space, the resulting skeleton B̄ with
vertices V might slightly protrude the skin layer S, especially when
the target skin measurements in the latent code are set to lower val-
ues. We detect protruding triangles and add all vertices belonging
to its two-ring neighborhood to the collision set C.

When inferring the skeleton for a skin S given by a 3D scan (as
demonstrated in Section 6.5), we want to keep the vertices on S
fixed, as they can be considered ground truth. As such, in order to
resolve the detected collisions, we solve for a new skeleton layer B
by minimizing

E(B) = Ereg
(
B, B̄

)
+Eclose

(
B, B̄

)
+wcollEcoll(B,S) , (6)

where Ereg is a bending constraint on the skeleton layer:

Ereg
(
B, B̄

)
=

1
2 ∑

xi∈B
Ai ∥∆xi −Ri∆x̄i∥2 . (7)

Ri ∈ SO(3) denotes the rotation matrix optimally aligning the ver-
tex Laplacians between the resolved surface B and the initial sur-
face B̄. The Laplace operator is discretized using cotangent weights
and Voronoi areas Ai [BKP*10],

Eclose constrains vertices that are not part of the collision set C to
stay close to their original position:

Eclose
(
B, B̄

)
=

1
|V \C| ∑

xi /∈C
∥xi − x̄i∥2 , (8)

and Ecoll defines the collision avoidance term:

Ecoll(B,S) =
1
|C| ∑

xi∈C
wi ∥xi −πS(xi)∥2 , (9)

where πS(xi) projects vertex xi to lie 2.5 mm beneath the colliding
triangle’s plane on the skin S.

We iteratively minimize Equation (6) via the projective dynam-
ics solver implemented in the ShapeOp library [DDB*15]. We set
wcoll = 50, wi = 1, and progressively increase the per-vertex col-
lision avoidance weight wi by 1 each iteration in which the colli-
sion could not be resolved. After each iteration, the Laplacian of
the initial state B̄ in Equation (7) is updated to the current solution,
thereby making the skeleton layer slightly less rigid. Following this
optimization scheme, we could reliably resolve all between-layer-
collisions in our tests.

Note that when modifying the soft tissue distribution over a
given skeleton B, we analogously keep the vertices on B fixed, and
solve for a new intersection-free skin layer S.

5.3. Embedding High-resolution Skeleton

Once an intersection-free pair (B,S) is generated, we embed the
high-resolution skeleton mesh SK by following Komaritzan et
al. [KWB21], i.e., using a space warp based on triharmonic radial
basis functions [BK05]. The matrix of the involved linear system
depends on the template skeleton B̃ only and hence can be pre-
factorized. After generating a new skeleton B, the solution can be
inferred by back-substitution, and the space warp can efficiently be
evaluated to embed the high-resolution anatomical skeleton.

6. Results and Applications

The resulting TAILORME model allows local shape manipulation
based on the injected measurements in the latent space. For a
demonstration of the final model, we refer the reader to the ac-
companying video. In the following, we evaluate the performance
of the model on our test data set, and compare our approach to the
related approaches of OSSO [KZBP22], SKEL [KWS*23], MLM
[ABG*18] and standard PCA approaches [ACPH06; PSR*14]. Fi-
nally, we demonstrate the modification of 3D-scanned realistic vir-
tual humans.

6.1. Model Evaluation

To quantitatively evaluate the fit of our trained model defined in
Section 4, we do not perform the post-processing decribed in Sec-
tion 5. We use separate data sets for training and model evalua-
tion. The training subset is utilized for model optimization, while
a validation subset is used to conduct an automated evaluation and
to estimate the models capability for generalization. To minimize
the validation set bias, we utilize a third subset of our data set for
testing. The splitting is done such that the skeleton and soft tissue
distribution of an individual ends up in only one of these subsets.

For training our model, we use a batch size of 64 samples. We
divide our data set into training, validation, and test such that the
number of Cartesian pairs in the final data set corresponds to a ra-
tio of 8:1:1. Let a, b, and c denote the number of samples in the
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Figure 9: Mean Euclidean vertex distance when evaluating over
all samples in the male (left) and female (right) test data set. Our
model achieves a maximum Euclidean distance of 11.5 mm for
males and 13.9 mm for females.

training, validation, and test set, respectively. We want the ratio of
squared subset samples a2 : b2 : c2 to match the target split ratio of
8 : 1 : 1. This split results in 539 samples for the female and 456
samples for the male training set. The validation and test sets have
190 female and 160 male samples each. Using deformation trans-
fer, we effectively square the training set size to 290521 female and
207936 male samples. The validation and test sets contain 36100
samples for females and 25600 samples for males each.

Figure 9 displays our model’s reproduction error for the skin,
measured as per-vertex distance averaged over all meshes in the
test data set, when using the decoder back propagation method.
The vertex distances of the fitted skins are evenly distributed on
the limbs and face, but in the chest and abdomen regions the largest
average deviation from the target is observed. Overall, our model
attains a maximum per-vertex error of 13.9 mm over all samples in
the test data set.

The mean absolute error is the L1 loss for the predicted mesh X′

to the input mesh X with n vertices, which is defined as

L1 =
1

3n

∥∥X−X′∥∥
1 =

1
3n

n

∑
i=1

∥∥xi −x′i
∥∥

1 . (10)

When using the encoder and decoder for reproduction of the test
data set, we achieve a mean absolute error for the skeleton wrap and
the skin of 5.2± 1.5 mm for females and 5.4± 1.5 mm for males.
The cross-correlation matrices in Equation (4) converge to the iden-
tity matrix. The individual mesh measurements positively correlate
with each other as the circumferential measurements on the original
meshes show a strong connection.

When inferring a skeleton from a given skin XS , we use the
Adam optimizer [KB15] on the latent parameters z and minimize
the L1 error for the skin arising from decoding z to the target skin
of the sample. For skins we achieve a mean absolute reproduction
error on the test data set of 2.8 ± 0.5 mm for females and 2.9 ±
0.5 mm for males. For skeleton wraps we reach a mean absolute
error of 6.3±1.4 mm for females and 6.9±1.7 mm for males.

6.2. Comparison to OSSO and SKEL

We qualitatively compare our work to the OSSO approach
[KZBP22]. This method computes a linear regressor between skin
and skeleton PCA shape spaces, after fitting both shape models to a
set of DXA Scans. As DXA scans are taken in a lying pose, OSSO
first reposes a given skin mesh to this pose, infers skeleton shape
there, and finally reposes the given result to the input pose. As seen
in Figure 10, when compared to our skeleton prediction, the skele-
ton inferred by OSSO exhibits a skewed and unnaturally shifted rib
cage as well as large gaps between bone structures, such as the el-
bow region or in between ribs and spine. We also compare our work
to the SKEL approach [KWS*23], where a combined parametric
model for biomechanical skeleton and skin shape is presented. The
final model is able to infer an animatable biomechanical skeleton
from given SMPL parameters as shown in Figure 10. We observe
that SKEL’s template skeleton misses bones for the clavicles and
the lower spine unnaturally detaches from the pelvis, when fitting
the model to a target skin.

Moreover, both OSSO’s and SKEL’s skeleton protrudes through
the given skin, while our method resolves these intersections (Sec-
tion 5.2). We evaluated the number of skeleton and skin intersec-
tions by fitting our model, OSSO, and SKEL to 1697 samples from
the European subset of the CAESAR data set [RBD*02]. For OSSO
and SKEL, there is no single sample which is free of intersections.
Our model produces self-intersections in only 1.30 % of cases, and
then only due to the RBF warp in the head region, where hairs are
not correctly handled in our method – a limitation we inherit from
the InsideHumans approach [KWB21].

We quantitatively evaluate the geometric difference between the
skeleton fits of our method, OSSO, and SKEL on the 1697 CAE-
SAR samples by calculating for each model the average per-vertex
distance and the two-sided Hausdorff distance between the respec-
tive skeletons, and then averaging those numbers over all samples.
Our model then attains an average per-vertex distance of 0.76 cm to
SKEL and 0.56 cm to OSSO, and a Hausdorff distance of 6.20 cm
to SKEL and 5.78 cm to OSSO. For comparison, the skeletons in-
ferred by SKEL and OSSO deviate by an average per-vertex dis-
tance of 0.64 cm and a Hausdorff distance of 4.71 cm.

6.3. Comparison to MLM

We compare our model to the multilinear model (MLM) presented
in [ABG*18]. The MLM approach requires the computation of
a 3D tensor to separate the skeleton and soft tissue dimensions.
Given our model with 51 skeleton and 52 soft tissue parameters,
the MLM requires a total of 292M parameters. Our method re-
quires two orders of magnitude fewer parameters (2.1M) to process
the same number of input variables. When applying the MLM ap-
proach to our training data, we found that the decoupling process
of the two parameter sets is incomplete. This effect can also be ob-
served in the original work. Achenbach et al. [ABG*18] provide a
demo application at https://ls7-gv.cs.tu-dortmund.
de/publications/2018/vcbm18/vcbm18.html, where
changing the first skull parameter causes subsequent changes to the
first soft tissue parameter to also change the resulting skull shape.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://ls7-gv.cs.tu-dortmund.de/publications/2018/vcbm18/vcbm18.html
https://ls7-gv.cs.tu-dortmund.de/publications/2018/vcbm18/vcbm18.html


10 of 13 Wenninger et al. / TAILORME: Self-Supervised Learning of an Anatomically Constrained Volumetric Human Shape Model

Figure 10: Comparison of OSSO [KZBP22] (left) and SKEL [KWS*23] (center) with our approach (right). The OSSO skeleton protrudes
through the skin (yellow protrusions circled in red), we resolve these kinds of collisions (right). The rib cage inferred by OSSO is skewed
(black inset) and the stitched puppet model results in gaps between bone structures (dashed blue inset). The SKEL skeleton (center) is missing
the clavicles (circled in red). The individual spine segments (lumbar, thoracic and cervical) are not properly aligned (black inset).

6.4. Comparison to Surface PCA

To show the benefits of our local and non-linear autoencoder and
mesh convolution design (Section 4), we compare our method to
the common approach of modelling anthropometric shape manip-
ulation by correlating measurements with a global and linear PCA
subspace learned from surface scans [ACPH06; PSR*14]. These
methods allow global shape manipulation, but provide only lim-
ited local control. For an example of this effect, we compare the
results of shortening arm length with our model and the model pro-
posed by Piryankova et al. [PSR*14]. Figure 11 shows that our
model provides local control of arm length, whereas the surface
based approach results in notable changes in the leg region. To in-
teractively explore the shortcomings of the surface based approach,
we invite the reader to experiment with the demo application at
https://bodyvisualizer.com, and try to change the in-
seam parameter, while keeping the other measurements fixed. This
changes the model’s arm length in addition to the desired effect of
changing the leg length.

6.5. Modifying Virtual Humans

As demonstrated in Figure 1, we can also fit our model to surface
scans of clothed humans, allowing us to modify virtual humans
with our TAILORME model. To this end, given a registered sur-
face scan conforming to our skin layer topology, we let our model
infer skin and skeleton shape by optimizing the mean absolute error
with additional weight decay in order to prevent overfitting.

To determine a fit for the skeleton and soft tissue distribution of a
person, gradient descent is performed on the latent parameters z us-
ing the Adam optimizer [KB15] implemented in PyTorch and run-
ning on the GPU. We apply a weight decay of 7.5 ·10−5 to prevent
fitting values that are too far outside of the learned embeddings.
Fitting the skeleton and soft tissue parameters takes < 100ms on a

Figure 11: Comparison of our localized shape modification (left)
with a global PCA approach [PSR*14] (right). Both models were
used to shorten arm length by 38mm. The vertex distance from the
original to the modified mesh is color coded. Our model enables
more localized shape changes, while the global PCA approach con-
siderably changes the leg region when modifying arm length.

desktop PC equipped with an NVidia RTX 3090 GPU and an Intel
Core i9 10850K CPU. The post-processing steps (Section 5) add
another 700 ms to the total inference time. This is an order of mag-
nitude faster than the Inside Humans approach [KWB21], whose
authors report a total time of approximately 20s on similar hard-
ware. We measure an inference time of approximately 2min for the
publicly available implementation of OSSO [KZBP22].

In order to modify the 3D scan of a person, we apply the changes
made to the latent code as a delta shape manipulation to the scan
of the person. By gθ(z̃) we denote the inference of our decoder for
the fitted latent parameters z̃ to a scan of a person X. For modified

© 2024 The Authors.
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Figure 12: The results of fitting our model to different scan poses
(top row). We first unpose the scan by fitting our human skin surface
template. The skeleton inference is then performed in the trained
A-pose. Finally, we employ linear blending skinning to repose the
results back to the observed scan pose (bottom row). Note that the
fingers of the second pose are not faithfully reproduced by the pose
estimation of the employed template fitting technique.

latent parameters z we apply the difference of decoding z̃ and z to
the scan, resulting in the modified person X′:

X′ = X+(gθ(z)−gθ(z̃)) . (11)

To prevent unnatural deformation of the head region, we stitch
the original head of the scanned person back onto the result-
ing mesh using differential coordinates similar to Döllinger et
al. [DWM*22].

6.6. Experiments with different poses

In Figure 12, we show examples of fitting our model to poses
which differ from our trained A-pose. We follow the OSSO ap-
proach [KZBP22] and first unpose a given scan by employ-
ing the surface-based template fitting approach of Achenbach et
al. [AWLB17]. Our model is then fit to the resulting A-pose surface
mesh, resulting in an unposed high-resolution skeleton embedding.
Since our template skeleton shares its animation rig with the skin
surface, we can then use linear blend skinning to repose the result-
ing skeleton.

Note that after applying the very simplistic linear blend skinning,
the resulting skeleton and skin meshes may show self-intersections,

as we only resolve these intersections in the A-pose of our tem-
plate. As linear blend skinning is obviously not an anatomically
correct animation technique, more sophisticated animation meth-
ods such as proposed in SKEL [KWS*23] or Fast Projective
Skinning [KB18] should be incorporated in future work to allow
anatomically sound animations based on our model.

7. Limitations

Due to the limited availability of such data, our model is not trained
on real anatomical data. We do note however, that the data needed
for learning our model – different soft tissue distributions on the
same skeleton – does not exist as ground truth data. Recent methods
have argued that relying on synthetic data alone could also be seen
as an advantage and that the trained models can still outperform
state of the art methods which are trained on real captured data
[WBH*21]. However, evaluating our model on real anatomical data
would still be desirable.

Our training data lacks information about the bone structure un-
derlying the head, hands, and feet of our subjects. Therefore, our
model cannot properly reproduce these areas. Due to this fact, we
observe asymmetric structures, especially occurring in the facial
region, which are amplified when modifying the latent code.

Although our resulting meshes are free of self-intersections, this
property only holds in the A-Pose. When animating the resulting
skeleton and skin, due to our simplistic use of linear blend skinning
we cannot guarantee that the skeleton does not protrude the skin.

8. Conclusion

We presented TAILORME, a novel approach for learning a volumet-
ric anatomically constrained human shape model. We computed the
Cartesian product of skeleton shapes and soft tissue distributions
from the CAESAR database using volumetric deformation trans-
fer. To decouple the two shape dimensions, we utilized a Barlow
Twins inspired learning approach to train our autoencoder from
pairs of skeleton and soft tissue distribution. The resulting model
can be used for shape sampling, e.g., generating various soft tissue
distributions on the same skeleton. It provides localized shape ma-
nipulation due to the injected measurements in the latent space of
our autoencoder. Compared to other methods, our model better de-
couples the skeleton and soft tissue shape dimensions, allows more
localized shape manipulation, and provides significantly faster in-
ference time.

In future work our model can be extended to include other
anatomical details such as the muscles used to generate and modify
humans. The skeleton, muscle, and soft tissue layers then can be
separated by our model applying a triple Barlow twins loss, where
pairs of eight are processed in a batch. Incorporating a skeleton
into the hands and feet will be beneficial rather than keeping them
static. Fitting a skull inside the head, similar to the approach of
Achenbach et al. [ABG*18], enables a more accurate modification
of the person’s facial features.

Being able to infer anatomical structures can be used to improve
the animation of virtual humans. Further investigations into de-
veloping an animation method for volumetric virtual humans that
avoids self-intersections is an interesting direction for future work.
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